Advances in Geosciences
Vol. 12  No. 08 ( 2022 ), Article ID: 54987 , 10 pages
10.12677/AG.2022.128108

华北克拉通东部白垩纪玄武岩的成因及源区变化:Sr-Nd-Pb同位素的证据

郭喜慧

哈尔滨师范大学,黑龙江 哈尔滨

收稿日期:2022年7月8日;录用日期:2022年8月11日;发布日期:2022年8月19日

摘要

白垩纪被认为是华北克拉通破坏的峰期,这一时期伴随有大量火山岩的喷发。大陆玄武岩的地球化学组成通常被认为是大陆岩石圈化学和同位素演化的最佳记录。其主要以碱性玄武岩为主,亚碱性玄武岩较少。这些玄武岩的化学成分和同位素组成的突变往往归因于其东部岩石圈的减薄。然而,造成这种突变的过程及其对大陆岩石圈演化的影响仍然不清楚。本文通过对华北克拉通东部白垩纪玄武岩的Sr-Nd-Pb同位素分析提出:大于108 Ma碱性玄武岩的εNd(t)值自东向西呈负向变化,具有岛弧递减的地球化学特征,暗示其交代岩石圈地幔源中来自俯冲板块的成分减少。相反,小于108 Ma白垩纪碱性玄武岩具有亏损的Sr-Nd同位素组成和类似OIB地球化学特征。这些观察结果表明,古太平洋板块向西俯冲是华北克拉通白垩纪玄武岩活动的主要原因。结合板块构造和地球物理的观察,我们认为古太平洋板块的平俯冲控制这些地球化学特征的变化以及华北克拉通的破坏,108 Ma的转变可能由于板片回卷造成的。

关键词

玄武岩,太平洋板块,华北克拉通,岩石圈减薄

Genesis and Source Area Variations of Cretaceous Basalts in Eastern North China Craton: Evidence of Sr-Nd-Pb Isotopes

Xihui Guo

Harbin Normal University, Harbin Heilongjiang

Received: Jul. 8th, 2022; accepted: Aug. 11th, 2022; published: Aug. 19th, 2022

ABSTRACT

The Cretaceous period is thought to be the peak of the north China Craton’s destruction, accompanied by massive volcanic eruptions. The geochemical composition of continental basalts is generally regarded as the best record of the chemical and isotopic evolution of the continental lithosphere. It is mainly alkaline basalt, sub alkaline basalt is less. Abrupt changes in the chemical and isotopic composition of these basalts are often attributed to thinning of the eastern lithosphere. However, the process that caused this mutation and its impact on the evolution of the continental lithosphere remains unclear. Based on the Sr-Nd-Pb isotopic analysis of cretaceous basalts in the eastern North China Craton, the εNd(t) values of alkaline basalts greater than 108 Ma show a negative change from east to west, showing the geochemical characteristics of island arc decline, suggesting that the metasomatic lithospheric mantle source is less derived from subduction plate. In contrast, cretaceous alkaline basalts less than 108 Ma have depleted Sr-Nd isotopic composition and OIB-like geochemical characteristics. These observations indicate that the westward subduction of the Paleo-Pacific plate was the main cause of cretaceous basalt activity in the North China Craton. Combined with the observations of plate tectonics and geophysics, we believe that the flat subduction of the Paleo-Pacific plate controlled the changes of these geochemical characteristics and the destruction of the North China Craton, and that the 108 Ma transition may have been caused by plate rewind.

Keywords:Basalt, Pacific Plate, North China Craton, Lithosphere Thinning

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

克拉通作为稳定的构造单元,它的破坏对于我们理解大陆的演化非常重要。华北克拉通东部的岩石圈从古生代到新生代发生了巨厚的减薄和破坏作用 [1] [3] [4] [5] [6],是世界上克拉通破坏最典型的地区,因此也是固体地球科学研究的热点前沿。它的深部动力学机制是我们理解克拉通破坏的关键,但却一直存在争议。前人通过不同的角度研究提出华北克拉通的破坏可能受控于:1) 扬子板块的深俯冲,2) 印度与亚洲大陆的碰撞,3) 多板块汇聚俯冲各种影响 [7],4) 古太平洋板块向亚洲大陆俯冲。但根据华北克拉通破坏的空间范围和时间,大多数学者认为华北克拉通受控于古太平洋板块的俯冲 [8] - [13],但一直没有找到明确的地质证据。

华北分布着大量与克拉通破坏有关的岩浆活动,其中最明显的是侏罗纪和白垩纪两期岩浆。白垩纪是华北克拉通东部岩石圈减薄和克拉通破坏的重要时期,反映在广泛的岩浆作用,包括a型花岗岩、镁铁质岩墙群、玄武岩、变质核杂岩、金属矿化(Au-Ag-Pb-Zn)和伸展型沉积盆地 [14] [15]。玄武岩的地球化学组成通常被认为是大陆岩石圈化学和同位素演化的最佳记录。其丰富的同位素特征为地壳物质向深部地幔的再循环提供了坚实的证据 [16]。其东部板内玄武岩的组成从霞石–碱性玄武岩到石英–拉斑玄武岩,碱性向拉斑玄武岩的转换通常伴随有不相容元素含量的下降和硅含量的增加 [17],然而对于这种转变发生的过程及其对岩石圈的影响一直存在困惑。本文通过总结华北克拉通东部白垩纪主微量、Sr-Nd-Pb同位素特征来研究华北克拉通东部玄武岩的成因及源区性质的变化来揭示白垩纪玄武岩地球化学特征突变的原因及其对大陆岩石圈演化的意义。

2. 区域地质背景

华北克拉通位于中国东部,北部为华北与西伯利亚板块碰撞形成的中亚造山带;南部是华南陆块与华北陆块及中间可能存在的微陆块在寒武纪到三叠纪时期多阶段拼合形成的大别–苏鲁造山带 [4]。它的东部陆块与西部陆块在18.5亿年左右发生拼合完成克拉通化。华北克拉通广泛发育显生宙的岩浆活动,根据锆石U-Pb定年的数据可以划分为5个阶段,石炭纪–中三叠世(主要是古生代,324~236 Ma),三叠纪(234~206 Ma),侏罗纪(200~145 Ma)、早白垩世(145~110 Ma)和新生代。

古生代以来,东部地块火山活动活跃。其中部发育山东蒙阴和辽宁阜县两个奥陶纪含金刚石金伯利岩地区(图1),为古生代存在较厚克拉通岩石圈提供了证据。晚中生代安山岩–粗安岩主要分布于东部以郯庐断裂为界、西部以太行山–大兴安岭重力异常为界的各种规模的拉张盆地中。辽西地区广泛发育义县组火山活动,代表了华北克拉通东部北缘,地层上以角度不整合覆于晚侏罗世土城子组(J3tc)之上,以不整合或断层覆于九佛堂组(K1jf)之下。义县组包含了大量的火山岩,主要由基性岩组成,其次是长英质岩石。四合屯地区义县组以其丰富而保存完好的化石而闻名,如有羽毛的恐龙和原始鸟类等 [18]。该地层始于新开岭村附近,止于四合屯村附近的化石观测点。阜新早古生代至二叠–三叠纪,华北克拉通东部受古亚洲洋板块南向俯冲 [19] 和古特提斯洋板块与扬子克拉通北向俯冲的影响 [7]。晚三叠纪以来,古太平洋板块沿着华北克拉通边缘向西俯冲,停滞于中国东部地幔过渡带。地球物理层析成像 [20] 和中国东部广泛存在的晚中生代–新生代的玄武岩(≤106 Ma) Mg同位素普遍异常 [21] [22]。推测古太平洋板块至少在125 Ma以前向地幔过渡带俯冲。

Figure 1. Geological map of the North China Craton (Zhao et al., 2012) [2]

图1. 华北克拉通地质图参考(Zhao et al., 2012) [2]

3. 华北克拉通东部玄武岩的成因

华北克拉通白垩纪的玄武岩主微量元素以及Sr-Nd-Pb-Hf同位素可以揭示地幔源区的性质以及华北克拉通岩石圈地幔的长期演化,主要分布在辽西和胶东半岛。

3.1. 华北克拉通东部白垩纪玄武岩的成因

山东省位于华北克拉通的东部,被郯庐断裂带分割成两部分,西部为鲁西,主要由奥陶纪金伯利岩组成,东部为胶东半岛,主要由苏鲁造山带和胶莱盆地组成。晚中生代大别苏鲁造山带和郯庐断裂带对华北克拉通东部岩石圈的破坏发挥了重要作用。同位素的特征显示鲁西分为两个不同的地幔区域(EMI和EMII),它们之间的岩石圈边界是郯庐断裂带的西侧 [23]。济南和邹平位于EMI的区域,源区中有低的87Sr/86Sr and εNd(t),这种类似于EM1型地幔可能代表了华北克拉通东南部的岩石圈地幔,未受扬子板块的大陆俯冲作用和郯庐断裂左旋剪切作用的影响。与大别–苏鲁造山带和郯庐断裂带相邻的沂南、蒙阴、方城早白垩世基性岩表现出EM2型地幔源区,初始87Sr/86Sr比值高且易变。 [24] 认为富集的地幔源中上地壳组分的加入提高87Sr/86Sr比值和降低εNd(t)值,从而解释沂南、蒙阴和方城岩浆中Sr-Nd同位素的变化。因此,三叠纪华南–华北碰撞过程中扬子地块的大陆俯冲作用可能促进了上地壳向郯庐断裂带南部或大别苏鲁造山带附近的岩石圈地幔的再循环 [25]。

[26] 认为在鲁西和胶东存在两种玄武岩,第一种是喷发在早白垩世有高SiO2含量和低Mg#(Fe2O3)T和TiO2含量,这些玄武岩具有类似于岛弧玄武岩的微量元素模式和富集的Sr-Nd-Hf同位素特征的高的(87Sr/86Sr)i和负的εNd(t)和εHf(t),这些玄武岩中Ni和Mn含量以及Fe/Mn比值类似于大洋中脊玄武岩。第二种玄武岩在晚白垩世喷发,具有低的SiO2含量和Mg#,高的(Fe2O3)T和TiO2含量,这些玄武岩具有类似于洋岛的微量元素组成具有低的(87Sr/86Sr)i和正的εNd(t)和εHf(t) (图2),橄榄石斑晶中Ni含量较高,Mn含量较低,Fe/Mn高于MORB条件下橄榄石形成的Fe/Mn [26]。这两类两类玄武岩的地球化学特征对比表明,它们来自不同成分的地幔源区,反映了不同类型的俯冲壳幔相互作用。早白垩世玄武岩起源于三叠纪大陆碰撞事件中,地幔楔型橄榄岩与俯冲大陆地壳的长英质熔体发生交代反应,在岛弧下形成了一个富集同位素的地幔域。晚白垩世玄武岩是地幔楔型橄榄岩与古太平洋俯冲洋壳形成的长英质熔体的交代反应,形成于类似OIB的同位素亏损地幔区域。

Figure 2. The initial Sr\\Nd isotope compositions of Cretaceous basaltic rocks from Luxi and Jiaodong in east-central China [26]

图2. 鲁西、胶东白垩纪玄武岩的初始Sr\\Nd同位素组成 [26]

3.2. 华北克拉通北部白垩纪玄武岩的成因

3.2.1. 阜新玄武岩的成因

辽宁阜新玄武岩为我们了解华北克拉通北缘中生代地幔的演化提供了契机。阜新碱锅玄武岩贫硅,富碱、钛、铝,属碱性玄武岩。在微量元素组成上,碱锅玄武岩轻度富集轻稀土元素和大离子亲石元素,不亏损高场强元素。它们具有低Sr、高Nd、Pb同位素比值。碱锅玄武岩的地球化学特征完全不同于方城玄武岩,这些地球化学特征类似于新生代的宽甸玄武岩和汉诺坝玄武岩,它们被认为是来源于软流圈地幔 [27] [28] [29],碱锅玄武岩Sr-Nd-Pb同位素亏损程度高于宽甸玄武岩和汉诺坝玄武岩,且更接近MORBs区域。

这些地球化学特征表明碱锅玄武岩来源于亏损的软流圈地幔 [30],同时 [30] 认为中生代岩石圈厚度可以碱锅玄武岩推断出。实验岩石学表明硅不饱和的碱性玄武岩的来源深度大于硅过饱和的拉斑玄武岩 [31] [32],如果碱性玄武岩表现出岩石圈的特征,其厚度在80公里以上,拉斑玄武岩表现出软流圈的特征则表明其厚度小于65公里。所以碱锅玄武岩表现出软流圈同位素的特征,因此推断中生代岩石圈的厚度可能小于65公里。华北克拉通南缘方城玄武岩辉石捕虏体的岩石地球化学资料表明,该地区中生代岩石圈地幔受到扬子板块中下地壳部分熔融形成的硅质熔体的强烈改造,这一改造极大改变了中生代岩石圈地幔的结构、成分和热机制,从古生代克拉通岩石圈地幔(富镁、铬方辉橄榄岩和二辉橄榄岩)到中生代高度富集的克拉通岩石圈地幔(富铁、钙尖晶石二辉橄榄岩)。岩石圈的横向扩张伴随软流圈的上涌和熔体与橄榄岩的相互作用是克拉通东部岩石圈减薄的机制。

3.2.2. 义县玄武岩的成因及源区性质

辽西早白垩世义县组是中生代华北克拉通东部最广泛的岩浆活动。橄榄石通常是在原始玄武岩熔体中首先结晶的,原则上,它保存了关于熔体的基本信息,同时消除了晚期岩浆作用的影响 [33]。橄榄石斑晶中的微量元素可以指示地幔原岩的性质,地幔中地壳物质的再循环,所以要将橄榄石斑晶与地幔捕虏晶区分开。 [34] 利用CaO含量来判断高镁橄榄岩的成因,低CaO (<1%)是典型的地幔捕虏晶。在辽西四合屯和义县玄武岩中橄榄石中CaO < 0.1 wt%以及微量元素特征(Al < 200 ppm,Ti < 40 ppm)被认为是岩浆成因 [34] [35]。 [36] 认为新开岭地区橄榄石中高Ni含量显示来源于一个辉石岩的源区。义县组玄武岩表现出高Fe/Mn、Ni、Cr来源于辉石岩源区; [35] 根据义县和四合屯中高Ni和Fe/Mn来源于橄榄石的源区,认为义县和四合屯Ni含量高可以用地幔熔融和橄榄石结晶之间的温度差异(70℃~230℃)来解释。然而最新高质量的实验岩石学结果 [37] [38] [39] 显示Ni和Mn在橄榄石和熔体之间的分配要比温度和压力更敏感,因此, [35] 结合橄榄石Zn/Fe,Zn/Mn和Co/Fe比值认为义县组玄武岩来源于橄榄岩的源区。

义县四合屯Sr-Nd-Pb同位素显示出一个类似于EMI的特征 [35],这些特征明显不同于华北克拉通东部奥陶纪(470 Ma)金伯利岩携带的地幔捕虏体 [40],其Sr-Nd-Pb同位素类似于EMII的特征。这表明近470 Ma的富流体事件重新水化和氧化了NCC东部岩石圈地幔。从华北克拉通的构造演化来看,其富水交代作用可能来自古亚洲洋板块的浅层俯冲带 [19] 或者太平洋板块的深俯冲。中生代NCC岩石圈地幔水化和氧化的熔融物可能来自于地幔过渡带,这被认为是地球深部的一个巨大的水库 [41] [42]。MTZ也被认为是一个重要的EM1型地幔储库,其Pb同位素组成为俯冲沉积物富钾的锰坝矿(低U/Pb、Th/Pb、Sm/Nd,中等Rb/Sr)长期保存形成的 [43]。而在地幔过渡带古老沉积物中放射性Pb同位素组成类似于早白垩世原始玄武岩。俯冲沉积物的加入也解释义县组玄武岩橄榄岩中高的Li含量,这被用作地壳参与来源的标志 [44]。 [34] 认为义县组和四合屯玄武岩来源于较浅太古宙难溶岩石圈地幔,这些原始玄武岩的高含水量、类似EM1的Sr-Nd和非放射性Pb同位素组成表明,中生代NCC岩石圈地幔受到上涌MTZ熔融物的重新水化和氧化作用。这种由MTZ上升的含水的流体是由太平洋板块的深俯冲引起的。 [45] 认为在晚中生代华北克拉通的东部的岩石圈地幔是一个氧化状态,地幔的高度氧化是显生宙俯冲板片释放含水熔体/流体。华北克拉通东部跟被移除是由于岩石圈地幔被氧化引起的(图3)。

Figure 3. Variation in oxygen fugacity of the mantle relative to the QFM buffer as a function of pressure [45]

图3. 地幔相对于QFM缓冲区的氧逸度随压力的变化 [45]

4. 华北克拉通东部岩石圈源区转变

根据前人的研究可以发现早白垩世玄武岩根据Nd同位素可以划分为两组:108 Ma以前形成的负εNd(t)玄武岩和108 Ma以后形成的正εNd(t)玄武岩 [46]。108 Ma之前形成的玄武岩表现出Sr-Nd同位素的富集且含量可变,其中方城和费县中的εNd和(87Sr/86Sr)i最低,承德和小岭玄武岩的εNd和方城和费县一致,(87Sr/86Sr)i的比值较低;大于108 Ma形成的玄武岩有高的εNd(t)和中等(87Sr/86Sr)i,大部分位于古生代金伯利岩和橄榄岩中。而小于108 Ma的早白垩世玄武岩表现出亏损的同位素组成,大部分落在新生代玄武岩所在的范围 [46]。

总结了华北克拉通东部玄武岩的地球化学转变,大于108 Ma的碱性玄武岩的特征是富集大离子亲石元素,亏损高场强元素,除了集宁玄武岩外,所有大于108 Ma碱性玄武岩和所有的早白垩世亚碱性玄武岩Nb含量较低;而小于108 Ma白垩纪碱性玄武岩有高且可变的高场强元素,低的大离子亲石元素。HFSE含量和Nb/Zr比值与小于108 Ma碱性玄武岩与Ba、Th、Pb/Zr和Ba/Zr呈正相关关系,显示部分熔融趋势,没有板块俯冲作用的主要贡献;而大于108 Ma的碱性玄武岩在原始地幔归一化蛛网中表现为Ba、Pb、Sr、La (LILE、LREE)正异常,Nb、Ta、Zr、Hf (HFSE)负异常,与岛弧玄武岩相似;然而小于108 Ma白垩纪玄武岩具有与OIB相似的分布模式,仅有微弱的Ba、Pb、Sr正异常。此外,这两种玄武岩在华北克拉通的分布位置也不同。大于108 Ma的碱性玄武岩分布广泛,甚至在NCC的内部也有分布,小于108 Ma的白垩纪碱性玄武岩仅出现在靠近郯庐断裂带的有限地区。

5. 对华北克拉通破坏的影响

尽管华北克拉通的破坏已经达成了共识,岩石圈减薄的深部过程一直是争论的焦点,而且对于岩石圈减薄的机制也一直没有达成共识。拆沉模型显示榴辉岩的下地壳在侏罗纪时期由于密度高于橄榄岩而被拆沉进入对流地幔 [47] [48]。早白垩世玄武岩与高镁埃达克岩的形成与再循环的榴辉岩下地壳有关 [34]。同时,岩石圈地幔和下地壳的拆沉作用也导致软流圈上涌,软流圈上涌可能直接与下地壳接触,导致中国东部10 Ma (131~117 Ma)范围内的大规模地壳熔融 [14]。这种模型不能解释为什么岩石圈地幔来源的岩浆持续时间长(180~90 Ma),为什么拆沉之后没有大量软流圈来源的岩浆 [49] [50]。

热侵蚀模型认为岩石圈地幔成因的岩浆作用持续时间为180~90 Ma,对应的是一个较长时间的熔体–岩石反应过程,使岩石圈地幔由难熔岩石圈地幔转变为富集岩石圈地幔 [50] [51]。此外,最近也只在少数90~40 Ma玄武岩中确认了上、下洋地壳的再循环,以支持岩石圈的长期减薄的过程,因为如果岩石圈已经很薄,可熔的再循环地壳可能经历很大程度的熔融并引起巨大的岩浆活动 [52]。该模型也不能解释下陆壳来源的岩浆先于大规模玄武岩岩浆活动发生的原因。大洋俯冲的模式提供了岩石圈减薄的动态触发机制,不仅可以解释华北克拉通白垩纪埃达克岩和a型花岗岩的空间分布和同位素特征 [49],也提供一种可能的方式来调和上述问题。大洋平俯冲作用对NCC破坏的影响体现在两个方面:通过连续的流体/熔体注入降低岩石圈地幔的黏度;通过平俯冲作用对岩石圈地幔施加区域性的侧向力 [49] [53]。这种大量的流体/熔体注入和交代作用使早白垩世古老岩石圈地幔水化并富集,例如,大于108 Ma碱性玄武岩是由富水古老岩石圈地幔部分熔融形成的。同时,平俯冲不仅可以侧向侵蚀上覆克拉通岩石圈(俯冲侵蚀),也可以对东亚大陆边缘古老岩石圈地幔初始阶段的增厚和拆沉施加横向力。这可以很好地解释为什么在华北克拉通中,白垩纪埃达克质岩石比玄武岩岩浆作用更早出现。

地幔岩石圈组成的时间演化也与我们的平俯冲模式相一致。玄武岩和地幔捕虏体的存在,使我们有可能探讨古老难熔岩石圈地幔是如何在早白垩世富集,然后以同位素组成演化为新生代的富集岩石圈地幔。奥陶纪金伯利岩中的石榴石和尖晶石橄榄岩捕虏体具有可变的87Sr/86Sr (t = 125 Ma) (0.7045~0.7199)和εNd(t)从−2到−9。同时,金伯利岩中存在着较低的ɛNd(t)(−21)和中等的(87Sr/86Sr)i(0.705923)的辉石岩捕虏体表明了古老岩石圈地幔的不均一性。因此,大108 Ma碱性玄武岩可以用岩石圈地幔不均一性来解释。但高LILE和LREE含量的玄武岩并非由难熔的古岩石圈地幔部分熔融形成。以济宁玄武岩为例,负值εNd(t)表明其主要贡献来自古老的岩石圈地幔,但LILE和LREE含量低于其他大于108 Ma碱性玄武岩,由于较少的地壳成分再循环。从理论上讲,克拉通边缘所有俯冲碰撞事件所引起的地壳物质再循环可能有助于形成LILE和LREE富集的岩石圈地幔。流体活动元素向北西减小和碱性玄武岩和亚碱性玄武岩在空间上分布共同说明交代的岩石圈地幔在很大程度上受到古太平洋板块向西俯冲的控制。

地球化学特征对比研究大于108 Ma和小于108 Ma白垩纪玄武岩反映了一个深部过程的转变,即与平俯冲有关的岩石圈水化作用和侧向侵蚀和与软流圈上涌有关的热侵蚀和熔岩反应。在108 Ma左右,随着板块的不断回撤和洋中脊的向北移动,大洋岩石圈不再是一个物理屏障,受扰动的非岩石圈可以直接与残存的老的岩石圈地幔相互作用。相对于早白垩世山东半岛板片窗的小体积熔体,上涌软流圈的减压熔融产生了大量亏损同位素的熔体。软流圈的熔融注入逐渐稀释/冲淡了上覆岩石圈地幔的俯冲信号,并可能通过熔体–岩石反应将其转化为年轻而富集的岩石圈地幔。

6. 结论

本文通过总结前人白垩纪玄武岩的地球化学的数据,主要得到以下结论:

1) 华北克拉通大陆玄武岩的主要地球化学和同位素转变发生108 Ma,源区由交代岩石圈地幔转变为软流圈。早白垩世华北克拉通岩石圈地幔中普遍存在交代作用。

2) 华北克拉通自东向西的交代程度减小,表明古太平洋板块向西俯冲可能是NCC白垩纪玄武岩活动的主要原因。小于108 Ma白垩纪玄武岩具有类似OIB的地球化学特征,但相对于典型OIB略有富集流体活动性元素(Ba、Pb和Sr)。而主要来源大于108 Ma白垩纪碱性玄武岩属于软流圈,但软流圈衍生的熔体可能受到残余交代岩石圈地幔中不同比例的俯冲富集成分的混染。

3) 伊扎那吉板块与太平洋板块之间扩张脊的俯冲与白垩纪岩浆作用和地球动力学演化密切相关。NCC的破坏可能是水化作用、俯冲侵蚀和热化学侵蚀共同作用的结果,但一级动力触发可能是太平洋板块与伊扎那吉板块之间的大洋平面俯冲和随后的板块回撤。

4) 本文总结前人对于白垩纪玄武岩成因的观点,重点分析了在108 Ma前后白垩纪玄武岩地球化学特征转变的原因及过程,揭示其在大陆岩石圈演化中的意义。

文章引用

郭喜慧. 华北克拉通东部白垩纪玄武岩的成因及源区变化:Sr-Nd-Pb同位素的证据
Genesis and Source Area Variations of Cretaceous Basalts in Eastern North China Craton: Evidence of Sr-Nd-Pb Isotopes[J]. 地球科学前沿, 2022, 12(08): 1117-1126. https://doi.org/10.12677/AG.2022.128108

参考文献

  1. 1. Griffin, W.L., Andi, Z., O’Reilly, S.Y. and Ryan, C.G. (1998) Phanerozoic Evolution of the Lithosphere beneath the Sino-Korean Craton. In: Flower, M.J., Chung, S.L., Lo, C.H. and Lee, T.Y., Eds., Mantle Dynamics and Plate Interactions in East Asia, American Geophysical Union, Geodynamic Series, Washington DC, 107-126. https://doi.org/10.1029/GD027p0107

  2. 2. Zhao, G. and Zhai, M. (2013) Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23, 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016

  3. 3. Wu, F.Y., Yang, J.H., Xu, Y.G., Wilde, S.A. and Walker, R.J. (2019) Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47, 173-195. https://doi.org/10.1146/annurev-earth-053018-060342

  4. 4. Wu, F.Y., Xu, Y.G., Zhu, R.X. and Zhang, G.W. (2014) Thinning and Destruction of the Cratonic Lithosphere: A Global Perspective. Science China Earth Sciences, 57, 2878-2890. https://doi.org/10.1007/s11430-014-4995-0

  5. 5. Liu, J., Cai, R., Pearson, D.G. and Scott, J.M. (2019) Thinning and Destruction of the Lithospheric Mantle Root beneath the North China Craton: A Review. Earth-Science Reviews, 196, Article ID: 102873. https://doi.org/10.1016/j.earscirev.2019.05.017

  6. 6. Zhu, R. and Xu, Y. (2019) The Subduction of the West Pacific Plate and the Destruction of the North China Craton. Science China Earth Sciences, 62, 1340-1350. https://doi.org/10.1007/s11430-018-9356-y

  7. 7. Windley, B.F., Maruyama, S. and Xiao, W.J. (2010) Delamination/Thinning of Subcontinental Lithospheric Mantle under Eastern China: The Role of Water and Multiple Subduction. American Journal of Science, 310, 1250-1293. https://doi.org/10.2475/10.2010.03

  8. 8. Zhu, R.X., Fan, H.R., Li, J.W., Meng, Q.R., Li, S.R. and Zeng, Q.D. (2015) Decratonic Gold Deposits. Science China Earth Sciences, 58, 1523-1537. https://doi.org/10.1007/s11430-015-5139-x

  9. 9. Xu, Y.G. (2001) Thermo-Tectonic Destruction of the Archaean Lithospheric Keel beneath the Sino-Korean Craton in China: Evidence, Timing and Mechanism. Physics and Chemistry of the Earth, Parts A, 26, 747-757. https://doi.org/10.1016/S1464-1895(01)00124-7

  10. 10. Niu, Y. (2005) Generation and Evolution of Basaltic Magmas: Some Basic Concepts and a New View on the Origin of Mesozoic-Cenozoic Basaltic Volcanism in Eastern China. Geological Journal of China Universities, 11, 9-46.

  11. 11. Zhang, J.J., Zheng, Y.F. and Zhao, Z.F. (2009) Geochemical Evidence for Interaction between Oceanic Crust and Lithospheric Mantle in the Origin of Cenozoic Continental Basalts in East-Central China. Lithos, 110, 305-326. https://doi.org/10.1016/j.lithos.2009.01.006

  12. 12. Zheng, Y.F. and Wu, F.Y. (2009) Growth and Reworking of Cratonic Lithosphere. Chinese Science Bulletin, 54, 3347-3353. https://doi.org/10.1007/s11434-009-0458-y

  13. 13. Ma, Q. and Xu, Y.G. (2021) Magmatic Perspective on Subduction of Paleo-Pacific Plate and Initiation of Big Mantle Wedge in East Asia. Earth-Science Reviews, 213, Article ID: 103473. https://doi.org/10.1016/j.earscirev.2020.103473

  14. 14. Wu, F.Y., Lin, J.Q., Wilde, S.A., Zhang, X.O. and Yang, J.H. (2005) Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233, 103-119. https://doi.org/10.1016/j.epsl.2005.02.019

  15. 15. Zhang, S.H., Zhao, Y., Davis, G.A., Ye, H. and Wu, F. (2014) Temporal and Spatial Variations of Mesozoic Magmatism and Deformation in the North China Craton: Implications for Lithospheric Thinning and Decratonization. Earth-Science Reviews, 131, 49-87. https://doi.org/10.1016/j.earscirev.2013.12.004

  16. 16. Hofmann, A.W. (2014) Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. In: Holland, H.D. and Turekian, K.K., Eds., Treatise on Geochemistry, Second Edition, Elsevier, Oxford, 67-101. https://doi.org/10.1016/B978-0-08-095975-7.00203-5

  17. 17. Chen, C.Y., Frey, F.A., Garcia, M.O., Dalrymple, G.B. and Hart, S.R. (1991) The Tholeiite to Alkalic Basalt Transition at Haleakala Volcano, Maui, Hawaii. Contributions to Mineralogy and Petrology, 106, 183-200. https://doi.org/10.1007/BF00306433

  18. 18. Chen, P.J., Dong, Z.M. and Zhen, S.N. (1998) An Exceptionally Well Preserved Dinosaur from the Yixian Formation of China. Nature, 391, 147-152. https://doi.org/10.1038/34356

  19. 19. Xiao, W.J., Windley, B.F., Hao, J. and Zhai, M.G. (2003) Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22, Article No. 1069. https://doi.org/10.1029/2002TC001484

  20. 20. Wei, W., Xu, J., Zhao, D. and Shi, Y. (2012) East Asia Mantle Tomography: New Insight into Plate Subduction and Intraplate Volcanism. Journal of Asian Earth Sciences, 60, 88-103. https://doi.org/10.1016/j.jseaes.2012.08.001

  21. 21. Li, S.-G., Yang, W., Ke, S., Meng, X., Tian, H., Xu, L., He, Y., Huang, J., Wang, X.-C., Xia, Q., Sun, W., Yang, X., Ren, Z.-Y., Wei, H., Liu, Y., Meng, F. and Yan, J. (2017) Deep Carbon Cycles Con-strained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China. National Science Review, 4, 111-120. https://doi.org/10.1093/nsr/nww070

  22. 22. Li, S. and Wang, Y. (2018) Formation Time of the Big Mantle Wedge beneath Eastern China and a New Lithospheric Thinning Mechanism of the North China Craton—Geodynamic Effects of Deep Recycled Carbon. Science China Earth Sciences, 61, 853-868. https://doi.org/10.1007/s11430-017-9217-7

  23. 23. Xu, Y.G., Ma, J.L., Huang, X.L., Iizuka, Y., Chung, S.L., Wang, Y.B. and Wu, X.Y. (2004) Early Cretaceous Gabbroic Complexfrom Yinan, Shandong Province. Petrogenesis and Mantle Domains beneath the North China Craton. International Journal of Earth Sciences, 93, 1025-1041. https://doi.org/10.1007/s00531-004-0430-7

  24. 24. Huang, X.L., Zhong, J.-W. and Xu, Y.-G. (2012) Two Tales of the Continental Lithospheric Mantle Prior to the Destruction of the North China Craton: Insights from Early Cretaceous Mafic Intrusions in Western Shandong, East China. Geochimica et Cosmochimica Acta, 96, 193-214. https://doi.org/10.1016/j.gca.2012.08.014

  25. 25. Yang, D.B., Xu, W.L., Pei, F.P., Yang, C.H. and Wang, Q.H. (2012) Spatial Extent of the Influence of the Deeply Subducted South China Block on the Southeastern North China Block: Constraints from Sr-Nd-Pb Isotopes in Mesozoic Mafic Igneous Rocks. Lithos, 136-139, 246-260. https://doi.org/10.1016/j.lithos.2011.06.004

  26. 26. Dai, F.-Q., Zhao, Z.-F., Zheng, Y.-F. and Sun, G.-C. (2019) The Geochemical Nature of Mantle Sources for Two Types of Cretaceous Basaltic Rocks from Luxi and Jiaodong in East-Central China. Lithos, 344-345, 409-424. https://doi.org/10.1016/j.lithos.2019.07.007

  27. 27. Liu, C.Q., Xie, G.H. and Masuda, A. (1995) Geochemistry of Cenozoic Basalts from Eastern China Sr, Nd and Ce Isotopic Compositions. Geochemistry, 24, 203-213. (In Chinese).

  28. 28. Barry, T.L. and Kent, R.W. (1998) Cenozoic Magmatism in Mongolia and the Origin of Central and East Asian Basalts. In: Flower, M.F.J., Chung, S.L. and Lo, C.H., et al., Eds., Mantle Dynamics and Plate Interactions in East Asia, American Geophysical Union, Washington DC, 347-364. https://doi.org/10.1029/GD027p0347

  29. 29. Anders, E. and Grevesse, N. (1989) Abundances of the Elements: Meteoritic and Solar. Geochimica et Cosmochimica Acta, 53, 197-214. https://doi.org/10.1016/0016-7037(89)90286-X

  30. 30. 张宏福, 郑建平. 华北中生代玄武岩的地球化学特征与岩石成因: 以辽宁阜新为例[J]. 科学通报, 2003, 48(6): 603-609.

  31. 31. Falloon, T.J., Green, D.H., Harton, C.J., et al. (1988) Anhydrous Partial Melting of a Fertile and Depleted Peridotite from 2 to 30 kb and Application to Basalt Petrogenesis. Journal of Petrology, 29, 1257-1282. https://doi.org/10.1093/petrology/29.6.1257

  32. 32. DePaolo, D.J. and Daley, E.E. (2000) Neodymium Isotopes in Basalts of the Southwest Basin and Range and the Lithospheric Thinning during Continental Extension. Chemical Geology, 169, 157-185. https://doi.org/10.1016/S0009-2541(00)00261-8

  33. 33. Mallmann, G. and O’Neill, H.S.C. (2013) Calibration of an Empirical Thermometer and Oxybarometer Based on the Partitioning of Sc, Y and V between Olivine and Silicate Melt. Journal of Petrology, 54, 933-949. https://doi.org/10.1093/petrology/egt001

  34. 34. Gao, S., Rudnick, R.L., Xu, W.L., Yuan, H.L., Liu, Y.S., Walker, R.J., Puchtel, I.S., Liu, X., Huang, H., Wang, X.R., Yang, J., et al. (2008) Recycling Deep Cratonic Lithosphere and Generation of Intraplate Magmatism in the North China Craton. Earth and Planetary Science Letters, 270, 41-53. https://doi.org/10.1016/j.epsl.2008.03.008

  35. 35. Geng, X.L., Foleyc, S.F., Liu, Y.S., Wang, Z.C., Hu, Z.C. and Zhou, L. (2019) Thermal-Chemical Conditions of the North China Mesozoic Lithospheric Mantle and Implication for the Lithospheric Thinning of Cratons. Earth and Planetary Science Letters, 516, 1-11. https://doi.org/10.1016/j.epsl.2019.03.012

  36. 36. Hong, L.B., Zhang, Y.H., Xu, Y.G., Ren, Z.Y., Yan, W., Ma, Q., Ma, L. and Xie, W. (2017) Hyrousorthopyroxene-Rich Pyroxenite Source of the Xinkailing High Magnesium Andesites, Western Liaoning: Implications for the Subduction-Modified Lithospheric Mantle and the Destruction Mechanism of the North China Craton. Lithos, 282-283, 10-22. https://doi.org/10.1016/j.lithos.2017.02.014

  37. 37. Balta, J.B., Asimow, P.D. and Mosenfelder, J.L. (2011) Manganese Partitioning during Hydrous Melting of Peridotite. Geochimica et Cosmochimica Acta, 75, 5819-583. https://doi.org/10.1016/j.gca.2011.05.026

  38. 38. Li, C.S. and Ripley, E.M. (2010) The Relative Effects of Composition and Temperature on Olivine-Liquid Ni Partitioning: Statistical Deconvolution and Implications for Petrologic Modeling. Chemical Geology, 275, 99-104. https://doi.org/10.1016/j.chemgeo.2010.05.001

  39. 39. Matzen, A.K., Wood, B.J., Baker, M.B. and Stolper, E.M. (2017) The Roles of Pyroxenite and Peridotite in the Mantle Sources of Oceanic Basalts. Nature Geoscience, 10, 530-553. https://doi.org/10.1038/ngeo2968

  40. 40. Chu, Z.Y., Wu, F.Y., Walker, R.J., Rudnick, R.L., Pitcher, L., Puchtel, I.S., Yang, Y.H. and Wilde, S.A. (2009) Temporal Evolution of the Lithospheric Mantle beneath the Eastern North China Craton. Journal of Petrology, 50, 1857-1898. https://doi.org/10.1093/petrology/egp055

  41. 41. Karato, S.-I. (2011) Water Distribution across the Mantle Transition Zone and Its Implications for Global Material Circulation. Earth and Planetary Science Letters, 301, 413-423. https://doi.org/10.1016/j.epsl.2010.11.038

  42. 42. Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T., Matveev, S., Mather, K., Silversmit, G., Schmitz, S., Vekemans, B. and Vincze, L. (2014) Hydrous Mantle Transition Zone Indicated by Ringwoodite Included within Diamond. Nature, 507, 221-224. https://doi.org/10.1038/nature13080

  43. 43. Wang, X.J., Chen, L.H., Hofmann, A.W., Mao, F.G., Liu, J.Q., Zhong, Y., Xie, L.W. and Yang, Y.H. (2017) Mantle Transition Zone-Derived EM1 Component beneath NE China: Geochemical Evidence from Cenozoic Potassic Basalts. Earth and Planetary Science Letters, 465, 16-28. https://doi.org/10.1016/j.epsl.2017.02.028

  44. 44. Foley, S.F., Prelevic, D., Rehfeldt, T. and Jacob, D.E. (2013) Minor and Trace Elements in Olivines as Probes into Early Igneous and Mantle Melting Processes. Earth and Planetary Science Letters, 363, 181-191. https://doi.org/10.1016/j.epsl.2012.11.025

  45. 45. Hong, L.B., Kuang, Y.S., et al. (2020) Oxidized Late Mesozoic Subcontinental Lithospheric Mantle beneath the Eastern North China Craton: A Clue to Understanding Cratonic Destruction. Gondwana Research, 81, 230-239. https://doi.org/10.1016/j.gr.2019.11.012

  46. 46. Wu, K., Ling, M.-X., Sun, W.D., Guo, J. and Zhang, C.-C. (2017) Major Transition of Continental Basalts in the Early Cretaceous: Implications for the Destruction of the North China Craton. Chemical Geology, 470, 93-106. https://doi.org/10.1016/j.chemgeo.2017.08.025

  47. 47. Gao, S., Rudnick, R.L., Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Ling, W.L., Ayers, J., Wang, X.C. and Wang, Q.H. (2004) Recycling Lower Continental Crust in the North Chinacraton. Nature, 432, 892-897. https://doi.org/10.1038/nature03162

  48. 48. Gao, S., Rudnick, R.L., Carlson, R.W., McDonough, W.F. and Liu, Y.S. (2002) Re-Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198, 307-322. https://doi.org/10.1016/S0012-821X(02)00489-2

  49. 49. Ling, M.X., et al. (2013) Destruction of the North China Craton Induced by Ridge Sub-Ductions. The Journal of Geology, 121, 197-213. https://doi.org/10.1086/669248

  50. 50. Menzies, M.A., Xu, Y.G., Zhang, H.F. and Fan, W.M. (2007) Integration of Geology, Geophysics and Geochemistry: A Key to Understanding the North China Craton. Lithos, 96, 1-21. https://doi.org/10.1016/j.lithos.2006.09.008

  51. 51. Xu, Y.-G. and Bodinier, J.-L. (2004) Contrasting Enrichments in High- and Low-Temperature Mantle Xenoliths from Nushan, Eastern China: Results of a Single Metasomatic Event during Lithospheric Accretion. Journal of Petrology, 45, 321-341. https://doi.org/10.1093/petrology/egg098

  52. 52. Xu, Y.G. (2014) Recycled Oceanic Crust in the Source of 90-40 Ma Basalts in North and Northeast China: Evidence, Provenance and Significance. Geochimica et Cosmochimica Acta, 143, 49-67. https://doi.org/10.1016/j.gca.2014.04.045

  53. 53. Xia, Q.K., Liu, J., Liu, S.C., Kovács, I., Feng, M. and Dang, L. (2013) High Water Content in Mesozoic Primitive Basalts of the North China Craton and Implications on the Destruction of Cratonic Mantle Lithosphere. Earth and Planetary Science Letters, 361, 85-89. https://doi.org/10.1016/j.epsl.2012.11.024

期刊菜单