Journal of Water Resources Research
Vol. 03  No. 06 ( 2014 ), Article ID: 14480 , 11 pages
10.12677/JWRR.2014.36063

Watt-Level Dual-Wavelength Q-Switched Mode-Locked All-Solid-State Tm:LuAG Laser

Chen Chen1,2, Weijun Ling1*, Rui Sun1,2, Qiang Xu2, Yani Zhang3, Mingxia Zhang1, Zhen Yuan1

1Institute of Laser Technology, Tianshui Normal University, Tianshui Gansu

2Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji Shaanxi

3School of Arts and Sciences, Shaanxi University of Science & Technology, Xi’an Shaanxi

Received: Dec. 6th, 2019; accepted: Dec. 19th, 2019; published: Dec. 26th, 2019

ABSTRACT

Employing double-walled carbon nanotube (DWCNT) by vertical growth method as a saturable absorber, we demonstrate a high-power and dual-wavelength passively Q-switched mode-locked (QML) operation of an all-solid-state Tm:Lu3Al5O12 (Tm:LuAG) laser, and the wavelength is 2016 nm and 2032 nm. In this experiment, the laser is pumped by laser diode (LD), and when the pump power is greater than 6.52 W, the laser enters into a stable Q-switched mode-locked operation state by using 5% output coupler. When the pump power reaches 20 W, the Q-switched mode-locking output power is 1092 mW, the slope efficiency is 6.11%, the repetition frequency is 106.4 MHz, the corresponding single pulse energy is 10.26 nJ. Furthermore, the modulation depth is close to 100%.

Keywords:Tm:LuAG Laser, DWCNT Saturable Absorber, Q-Switched Mode-Locked, Dual-Wavelength

全固态Tm:LuAG双波长瓦级调Q锁模激光器

陈晨1,2,令维军1*,孙锐1,2,许强2,张亚妮3,张明霞1,袁振1

1天水师范学院激光技术研究所,甘肃 天水

2宝鸡文理学院物理与光电技术学院,陕西 宝鸡

3陕西科技大学文理学院,陕西 西安

收稿日期:2019年12月6日;录用日期:2019年12月19日;发布日期:2019年12月26日

摘 要

以垂直生长法自制的双壁碳纳米管(Double wall carbon nanotube, DWCNT)作为可饱和吸收体,在全固态Tm:Lu3Al5O12 (Tm:LuAG)激光器中实现了高功率双波长的调Q锁模运转,输出波长分别为2016 nm和2032 nm。以激光二极管(Laser diode, LD)为抽运源,选用5%的输出镜,当泵浦功率大于6.52 W,激光运转进入稳定调Q锁模状态。增加泵浦功率到20 W时,对应调Q锁模运转下的输出功率为1092 mW,斜效率为6.11%,重复频率为106.4 MHz,调制深度接近100%。

关键词 :Tm:LuAG激光器,DWCNT可饱和吸收体,调Q锁模,双波长

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

目前2 μm超快激光在分子光谱学、激光医疗和材料加工等领域有着广泛的应用,引起了广大学者的极大兴趣 [1]。其中2 μm双波长同步锁模的高功率激光器通过差频技术能够产生相干太赫兹辐射 [2] [3],不仅如此,还在差分雷达、光通信以及远程空间探测等方面应用十分广泛 [4]。更为重要的是将2 μm波段激光用作泵浦源,使用光学参量技术能够得到3~5 μm波段激光,其在光电对抗和红外制导领域有着举足轻重的地位。通常采用被动锁模技术来实现超短激光脉冲,主要因为该技术有着成本低廉、结构简易和效率较高的优点。自从SESAM (Semiconductor saturable absorber mirror, SESAM)于1992年首次在全固态的Nd:YLF激光器中作为锁模启动原件开始 [5],SESAM锁模技术就被确定为超短激光脉冲产生的革命性技术。目前该技术在2 μm超短激光脉冲中的应用也十分广泛 [6] [7]。然而,SESAMs存在制造复杂、工作带宽较窄以及成本较高等问题 [8],导致探索新型宽带可饱和吸收体显得非常必要。

碳纳米管材料的吸收光谱范围从500 nm到2500 nm,还具有杰出的导电和传热机能 [9],更为重要的是其制作过程简便、成本较低。碳纳米管可以分为单壁碳纳米管(Single-walled Carbon nanotubes,SWCNTs)和多壁碳纳米管(Multi-walled Carbon nanotubes,MWCNTs)。双壁碳纳米管为最简单的多壁碳纳米管,拥有超快回复时间、高损伤阈值和优异的化学稳定性 [10] [11]。山东大学首次在Tm:YAP激光器中使用DWCNT可饱和吸收体实现了41 ps的锁模运行,并且最高输出功率为375 mW [12]。去年本课题组在Tm, Ho:LLF激光器中采用DWCNT可饱和吸收体实现了低阈值调Q锁模运转,并且输出功率为234 mW [13]。

YAG材料具有稳定的结构,较好的导电和光学特性 [14] [15],在2 μm波段激光中已经被证明为出色的增益介质 [16] [17]。由于Tm3+和Y3+之间存在明显的质量差异,导致在Tm3+高掺杂情况下,YAG表现出明显的水解 [18],而Tm3+和Lu3+的质量相差较小,因此LuAG作为2 μm激光增益介质的热性能更加均匀 [19]。除此之外,LuAG材料比常规的YAG材料更加的坚固,拥有更高的损伤阈值 [20]。目前,山东大学使用SESAM在Tm:LuAG激光器中得到最大输出功率为1.21 W的超短激光脉冲输出 [21],这是目前在2 μm锁模固体激光器中得到的最大输出功率。不久之后,山东大学在此基础上得到脉冲宽度短至13.6 ps的激光输出 [22]。本课题组通过以钛蓝宝石为泵浦源,分别在DWCNT [23] 、氧化石墨烯 [24] 和MoS2 [25] 可饱和吸收体中得到调Q锁模运转。本次实验采用激光二极管为泵浦源,其具有结构简易、电–光转换效率高、光束质量好和成本低等特点,成为当前激光技术发展的主要方向之一 [26]。

本文通过传统的X型腔,以输出为790 nm的LD为抽运源,在Tm:LuAG激光器中加入双壁碳纳米管可饱和吸收体,实现了高功率双波长的调Q锁模运行。在5%输出镜下获得最大输出功率为1092 mW的调Q锁模激光输出,输出波长分别为2016 nm和2032 nm,重复频率为106.4 MHz,单脉冲能量为10.26 nJ,调制深度接近于100%。

2. 实验装置

LD抽运的Tm:LuAG被动调Q锁模激光器的实验装置如图1所示(实验装置图通过Solidworks软件绘制而成),采用X型折叠腔能够获得较高的腔内强度,有利于锁模脉冲的产生。LD的工作波长为790 nm,最高输出功率为30 W,纤芯的直径为105 μm。实验中采用掺杂铥离子(Tm3+)浓度为5%以及尺寸为3 mm × 3 mm × 5 mm 的Tm:LuAG材料为增益介质。使用过程中需要沿着它的布儒斯特角进行切割,并对两个通光面进行抛光处理。为了降低激光晶体在实验过程中的热透镜效应,需要对其进行冷却处理。首先将晶体用铟箔包裹,其次把它安装在紫铜冷却片中,最后采用恒温水循环冷却系统冷却夹在紫铜冷却片内的晶体,恒温水的温度稳定在11℃左右。

Figure 1. Experimental device schematic

图1. 实验装置原理图

通过聚焦系统L对LD抽运源进行聚焦,L的聚焦倍率为1:0.8,透过率为95%,工作距离为49.2 mm,外径大小为37.5 mm。在激光谐振腔中M1和M2分别表示为曲率半径为75 mm和100 mm的平凹镜,其对790 nm波段的抽运光高透,而对1800~2100 nm波段的振荡光高反。选取平凹反射镜M3的曲率半径为100 mm,其对1800~2100 nm波长激光反射率大于99.9%,主要作用将激光脉冲聚焦到平面高反镜(M4)上。M4对1800~2050 nm波段反射率大于99.9%的平面高反镜。OC为输出耦合镜(Output Coupler,OC),通过公式(1)谐振腔最佳透过率与泵浦功率之间的关系 [27],其中 σ 为晶体发射截面, τ f 为发射寿命, λ p 为泵浦光波长, P i n 为泵浦功率, α P 吸收系数,L为晶体长度, δ 0 为腔内损耗, W P ¯ 为平均泵浦光斑半径, W O 为振荡光斑半径。通过Matlab模拟公式(1)得到图2,从图中可以看出在泵浦功率为20 W时,谐振腔的最佳透过率T约为0.046。因此,考虑到光学玻璃镀膜在加工中的实际情况,所以选取透过率分别为0.03和0.05的输出镜进行对比实验。

T = 4 σ τ f λ P P i n [ 1 exp ( 1 α p L ) ] × δ 0 π h c ( W P ¯ 2 + W O 2 ) δ 0 (1)

Figure 2. Optimal cavity transmittance versus pump power

图2. 谐振腔最佳透过率随泵浦功率变化图

实验中DWCNT可饱和吸收体放置于M3焦点附近。利用ABCD矩阵模拟激光腔内振荡光斑,可以计算出晶体中最小光腰半径为55.5 μm以及DNCNT可饱和吸收体表面光斑约为193.7 μm,启动锁模时,可饱和吸收体上表面功率密度约为41.22 μJ/cm2

3. 实验结果分析与讨论

按照上述光路图进行设计。当激光腔内未插入DWCNT可饱和吸收体,进行连续光运转。相应的输出功率与泵浦功率曲线如图3所示。在3%和5%输出镜下的出光阈值分别为0.715 W和0.938 W,相对应的斜效率分别是10.15%和10.83%,最高输出功率为1860 mW和2078 mW。

Figure 3. The average output power versus the pump power in CW

图3. 连续光输出功率随泵浦功率变化图

为了启动锁模,将透射式的DWCNT-SA嵌入腔中,输出曲线如图4所示。首先选用3%的输出镜,与连续光相比,出光阈值增加到1.31 W。当泵浦光功率高于5.05 W时,激光进入稳定调Q锁模状态:泵浦光功率增加到20 W时,最高输出功率为1028 mw,斜效率为5.77%。在5%输出耦合镜下的出光阈值为1.98 W,当泵浦功率高于6.52 W时,激光进入稳定调Q锁模运转,最高功率为1092 mW,斜效率为6.11%。通过实验数据可知,发现在5%输出镜下的输出功率和斜效率较高,而3%输出镜拥有更低的锁模启动阈值,所以可以根据不同的需求来选取合适的输出镜。本实验中主要使用3%输出镜来进行研究。

Figure 4. The average output power of mode locking versus the pump power

图4. 锁模输出功率随泵浦功率变化图

本实验的调Q锁模脉冲光谱通过(AvaSpec-NIR256-2.5 TEC)分析仪来获得,如图5所示,中心波长在2016 nm和2032 nm。

图6为锁模脉冲序列图。本实验通过快速光电二极管(ET-500)连接的数字示波器(RIGOL,DS4034)来测量脉冲序列。图中调Q锁模脉冲序列的扫描时间分别为100 µs和10 ns,调Q锁模脉冲的调制深度接近于100%,重复频率为106.4 MHz,与1.3 m的腔长锁模脉冲理论相对应。

Figure 5. The emission spectrum of the mode locking laser

图5. 锁模光谱图

Figure 6. Mode-locked pulse trains

图6. 锁模脉冲序列

4. 结论

综上所述,本文采用垂直生长法生长的DWCNT为可饱和吸收体。利用该吸收体,在Tm:LuAG全固态激光器中实现了高功率双波长的调Q锁模运转。在5%的输出镜下,连续光最高输出功率为2078 mW,斜效率为10.83%。将DWCNT可饱和吸收体放入腔内,激光进入稳定的调Q锁模状态的阈值功率为6.52 W。当泵功率达到20 W时,在中心波长为2016 nm和2032 nm处得到1092 mW最大输出功率,斜效率为6.11%,重复频率和平均单脉冲能量分别为106.4 MHz和10.26 nJ。实验表明DWCNT可以作为2 μm固体激光器的被动调Q锁模器件。LD泵浦有着成本低廉的优点,在工业生产中的运用非常广泛。后期我们将提高泵浦功率,改善可饱和吸收体的质量,优化谐振腔的参数,争取在获得调Q锁模的条件下实现高功率的连续锁模运转。

基金项目

国家自然科学基金(批准号:11774257,61564008,11647008,11504416)、陕西省国际科技合作与交流项目(2018KW-016)、宝鸡市重大科技专项计划项目(2015CXNL-1-3)、天水市科技支撑计划自然科学基金项目(2018-FZJHK-3392)、天水师范学院研究生创新引导项目(TYCX1901)。

文章引用

洪兴骏,郭生练,郭家力,侯雨坤,王 乐,陈 晨,令维军,孙 锐,许 强,张亚妮,张明霞,袁 振. 全固态Tm:LuAG双波长瓦级调Q锁模激光器
Watt-Level Dual-Wavelength Q-Switched Mode-Locked All-Solid-State Tm:LuAG Laser[J]. 光电子, 2019, 09(04): 214-220. https://doi.org/10.12677/OE.2019.94030

参考文献

  1. 1. 闵屾, 刘健. 鄱阳湖区域极端降水异常的特征及成因[J]. 湖泊科学, 2011, 23(3): 435-444. MIN Shen, LIU Jian. Characteristics and causes of the extreme precipitation anomaly in Lake Poyang area. Journal of Lake Sciences, 2011, 23(3): 435-444. (in Chinese)

  2. 2. 雒征, 郭家力. 鄱阳湖流域降水极值指标时空分布变化规律研究[A]. 梯级水库群洪水资源调控与经济运行学术研讨会论文集[C]. 北京: 中国水利水电出版社, 2012. LUO Zheng, GUO Jiali. Spatio-temporal variation of extreme precipitation indices in the Poyang Lake Basin. Proceeding of the Flood Water Resources Control and Economic Operation. Beijing: China WaterPower Press. (in Chinese)

  3. 3. ZHANG, Q., XIAO, M., LI, J., et al. Topography-based spatial patterns of precipitation extremes in the Poyang Lake basin, China: Changing properties and causes. Journal of Hydrology, 2014, 512: 229-239.

  4. 4. MOSS, R., EDMONDS, J., HIBBARD, K., et al. The next generation of scenarios for climate change research and assessment. Nature, 2009, 463: 747-756.

  5. 5. 范丽军, 符淙斌, 陈德亮. 统计降尺度法对未来区域气候变化情景预估的研究进展[J]. 地球科学进展, 2005, 20(3): 320-329. FAN Lijun, FU Congbin and CHEN Deliang. Review on creating future climate change scenarios by statistical down-scaling techniques. Advances in Earth Science, 2005, 20(3): 320-329. (in Chinese)

  6. 6. WILBY, R. L., DAWSON, C. W. and BARROW, E. M. SDSM—A decision support tool for the assessment of regional climate change impacts. En-vironmental Modeling and Software, 2002, 17(2): 145-157.

  7. 7. STOCKER, T. F., QIN, D., PLATTNER, G. K., et al. Climate change 2013. The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change-Abstract for Decision-Maker. [Groupe d’experts intergouvernemental sur l’evolution du climat/Intergovernmental Panel on Climate Change-IPCC, C/O World Meteorological Organization, 7bis Avenue de la Paix, CP 2300 CH-1211 Geneva 2 (Swit-zerland), 2013.]

  8. 8. 高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述[J]. 地球科学进展, 2014, 29(5): 577-589. GAO Tao, XIE Li’an. Study on progress of the trends and physical causes of extreme precipitation in China during the last 50 years. Advances in Earth Science, 2014, 29(5): 577-589. (in Chinese)

  9. 9. KATZ, R. W., BROWN, B. G. Ex-treme events in a changing climate: Variability is more important than averages. Climatic Change, 1992, 21(3): 289-302.

  10. 10. XU, Y., XU, C., GAO, X., et al. Projected changes in temperature and precipitation extremes over the Yangtze River Basin of China in the 21st century. Quaternary International, 2009, 208(1): 44-52.

  11. 11. YANG, T., HAO, X., SHAO, Q., et al. Multi-model ensemble projections in temperature and precipitation extremes of the Tibetan Plateau in the 21st century. Global and Planetary Change, 2012, 80-81: 1-13.

  12. 12. GUO, J., GUO, S., LI, Y., et al. Spatial and temporal variation of extreme precipitation indices in the Yangtze River basin, China. Stochastic Environmental Research and Risk Assessment, 2013, 27(2): 459-475.

  13. 13. TAYLOR, K. E., STOUFFER, R. J. and MEEHL, G. A. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 2012, 93(4): 485-498.

  14. 14. 吴昊旻, 黄安宁, 何清, 等. 10个CMIP5模式预估中亚地区未来50a降水时空变化特征[J]. 干旱区地理, 2013, 36(4): 669-679. WU Haomin, HUANG Anning, HE Qing, et al. Projection of the spatial and temporal variation characteristics of pre-cipitation over central Asia of 10 CMIP5 models in the next 50 years. Arid Land Geography, 2013, 36(4): 669-679. (in Chinese)

  15. 15. KUMAR, S., MERWADE, V., KINTER III, J. L., et al. Evaluation of temperature and precipitation trends and long- term persistence in CMIP5 twentieth-century climate simulations. Journal of Climate, 2013, 26(12): 4168-4185.

  16. 16. ZHAO, T. B., CHEN, L. and MA, Z. G. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models. Chinese Science Bulletin, 2014, 59: 412-429.

  17. 17. 陈威霖, 江志红, 黄强. 基于统计降尺度模型的江淮流域极端气候的模拟与预估[J]. 大气科学学报, 2012, 35(5): 578-590. CHEN Weilin, JIANG Zhihong and HUANG Qiang. Projection and simulation of climate extremes over the Yangtze and Huaihe River basins based on a statistical downscaling model. Transactions of Atmospheric Sciences, 2012, 35(5): 578-590. (in Chinese)

  18. 18. YANG, T., LI, H., WANG, W., et al. Statistical downscaling of extreme daily precipitation, evaporation, and temperature and construction of future scenarios. Hydrological Processes, 2012, 26(23): 3510-3523.

  19. 19. DEGEFIE, D. T., FLEISCHER, E., KLEMM, O., et al. Climate extremes in South Western Siberia: Past and future. Stochastic Environmental Research and Risk Assessment, 2014, 28: 1-13.

  20. 20. 胡宜昌, 董文杰, 何勇. 21世纪初极端天气气候事件研究进展[J]. 地球科学进展, 2007, 22(10): 1066-1075. HU Yichang, DONG Wenjie and HE Yong. Progress of the study of extreme weather and climate events at the beginning of the twenty first century. Advances in Earth Science, 2007, 22(10): 1066-1075. (in Chinese)

  21. 21. QIAN, W., LIN, X. Regional trends in recent precipitation indices in China. Meteorology and Atmospheric Physics, 2005, 90(3-4): 193-207.

  22. 22. Ebrahim-Zadeh, M. and Vodopyanov, K. (2016) Mid-Infrared Coherent Sources and Applications: Introduction. Journal of the Optical Society of America B, 33, MIC1. https://doi.org/10.1364/JOSAB.33.00MIC1

  23. 23. Majkić, A., Zgonik, M., Petelin, A., Jazbinšek, M., Ruiz, B., Medrano, C. and Günter, P. (2014) Terahertz Source at 9.4 THz Based on a Dual-Wavelength Infrared Laser and Quasi-Phase Matching in Organic Crystals OH1. Applied Physics Letters, 105, Article ID: 141115. https://doi.org/10.1063/1.4897639

  24. 24. Chang, J.H., Wang, T.T., Zhang, C., Ge, Y.X. and Tao, Z.H. (2013) Compact and Tunable mid-ir Light Source Based on a Dual-Wavelength Fiber Laser. Chinese Physics Letters, 30, Article ID: 114206. https://doi.org/10.1088/0256-307X/30/11/114206

  25. 25. Walsh, B.M. (2009) Review of Tm and Ho Materials; Spec-troscopy and Lasers. Laser Physics, 19, 855. https://doi.org/10.1134/S1054660X09040446

  26. 26. Keller, U., Miller, D.A.B., Boyd, G.D., Chiu, T.H. and Asom, M.T. (1992) Solid-State Low-Loss Intracavity Saturable Absorber for Nd:YLF Lasers: An Antiresonant Semiconductor Fabry-Perot Saturable Absorber. Optics Letters, 17, 505-507. https://doi.org/10.1364/OL.17.000505

  27. 27. Ling, W.J., Xia, T., Dong, Z., You, L.F., Zhang, M.X., Zuo, Y.Y, Li, K. Liu, Q. and Lu, F.P. (2019) Passively Mode-Locked Tm, Ho: LLF Laser at 1895 nm. Journal of Optics, 48, 209-213. https://doi.org/10.1007/s12596-019-00528-y

  28. 28. 杜涛, 熊立华, 江聪. 渭河流域降雨时间序列非一致性频率分析[J]. 干旱区地理, 2014, 37(3): 468-479. DU Tao, XIONG Lihua and JIANG Cong. Nonstationary frequency analysis of rainfall time series in Weihe River Basin. Arid Land Geography, 2014, 37(3): 468-479. (in Chinese)

  29. 29. 任玉玉, 任国玉. 1960-2008年江西省极端降水变化趋势[J]. 气候与环境研究, 2010, 15(4): 462-469. REN Yuyu, REN Guoyu. Variation tendency of the extreme precipitation in Jiangxi Province during 1960-2008. Climatic and Environmental Research, 15(4): 462-469. (in Chinese)

  30. 30. Wang, Y.C., Xie, G.Q., Xu, X.D., Di, J.Q., Qin, Z.P., Suomalainen, S., Guina, M., Härkönen, A., Agnesi, A., Griebner, U., Mateos, X., Loiko, P. and Petrov, V. (2015) SESAM Mode-Locked Tm:CALGO Laser at 2 µm. Optical Materials Express, 6, 131. https://doi.org/10.1364/OME.6.000131

  31. 31. Kong, L.C., Xie, G.Q., Yuan, P., Qian, L.J., Wang, S.X., Yu, H.H. and Zhang, H.J. (2015) Passive Q-Switching and Q-Switched Mode-Locking Operations of 2 μm Tm: CLNGG Laser with MoS2 Saturable Absorber Mirror. Photonics Research, 3, A47-A50. https://doi.org/10.1364/PRJ.3.000A47

  32. 32. Iijima, S. and Ichihashi, T. (1993) Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature, 363, 603. https://doi.org/10.1038/363603a0

  33. 33. Hasan, T., Sun, Z., Tan, P., Popa, D., Flahaut, E., Kelleher, E.J. and Privitera, G. (2014) Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation. ACS Nano, 8, 4836-4847. https://doi.org/10.1021/nn500767b

  34. 34. Yang, Q., Wang, Y.G., Liu, D.H., Liu, J., Zheng, L.H., Su, L.B. and Xu, J. (2011) Dual-Wavelength Mode-Locked Yb: LuYSiO5 Laser with a Double-Walled Carbon Nanotube Saturable Absorber. Laser Physics Letters, 9, 135. https://doi.org/10.1002/lapl.201110111

  35. 35. Qu, Z.S., Wang, Y.G., Liu, J., Zheng, L.H., Su, L.B. and Xu, J. (2012) Passively Mode-Locked 2-μm Tm: YAP Laser with a Double-Wall Carbon Nanotube Absorber. Chinese Physics B, 21, Article ID: 064211. https://doi.org/10.1088/1674-1056/21/6/064211

  36. 36. Ling, W.J., Xia, T., Dong, Z., Zhang, M.X., Zuo, Y.Y., Li, K., Lu, F.P., Liu, Q., Zhao, X.L. and Wang, Y.G. (2018) Low Threshold 1895 nm Mode-Locked Laser Based on Double Wall Carbon Nanotubes. Acta Optica Sinica, 38, Article ID: 0614001. https://doi.org/10.3788/AOS201838.0614001

  37. 37. Kmetec, J.D., Kubo, T.S., Kane, T.J. and Grund, C.J. (1994) Laser Performance of Diode-Pumped Thulium-Doped Y3Al5O12, (Y, Lu)3Al5O12, and Lu3Al5O12 Crystals. Optics Letters, 19, 186-188. https://doi.org/10.1364/OL.19.000186

  38. 38. Stoneman, R.C. and Esterowitz, L. (1990) Efficient, Broadly Tunable, Laser-Pumped Tm:YAG and Tm:YSGG CW Lasers. Optics Letters, 15, 486-488. https://doi.org/10.1364/OL.15.000486

  39. 39. Yang, K.J., Bromberger, H., Ruf, H., Schäfer, H., Neuhaus, J., Dekorsy, T., Grimm, C.V.B., Helm, M., Biermann, K. and Künzel, H. (2010). Passively Mode-Locked Tm, Ho: YAG Laser at 2 µm Based on Saturable Absorption of Intersubband Transitions in Quantum Wells. Optics Express, 18, 6537-6544. https://doi.org/10.1364/OE.18.006537

  40. 40. Ma, J., Xie, G.Q., Zhang, J., Yuan, P., Tang, D.Y. and Qian, L.J. (2014) Passively Mode-Locked Tm: YAG Ceramic Laser Based on Graphene. IEEE Journal of Selected Topics in Quantum Electronics, 21, 50-55. https://doi.org/10.1109/JSTQE.2014.2361785

  41. 41. Koopmann, P., Lamrini, S., Scholle, K., Fuhrberg, P., Petermann, K. and Huber, G. (2011) Efficient Diode-Pumped Laser Operation of Tm:Lu2O3 around 2 μm. Optics Letters, 36, 948-950. https://doi.org/10.1364/OL.36.000948

  42. 42. Schmidt, A., Koopmann, P., Huber, G., Fuhrberg, P., Choi, S.Y., Yeom, D.I., Rotermund, F., Petrov, V. and Griebner, U. (2012) 175 fs Tm: Lu2O3 Laser at 2.07 μm Mode-Locked Using Sin-gle-Walled Carbon Nanotubes. Optics Express, 20, 5313-5318. https://doi.org/10.1364/OE.20.005313

  43. 43. Beil, K., Fredrich-Thornton, S.T., Tellkamp, F., Peters, R., Kränkel, C., Petermann, K. and Huber, G. (2010) Thermal and Laser Properties of Yb: LuAG for kW Thin Disk Lasers. Optics Express, 18, 20712-20722. https://doi.org/10.1364/OE.18.020712

  44. 44. Feng, T., Yang, K., Zhao, J., Zhao, S., Qiao, W., Li, T., Dekorsy, T., He, J., Zheng, L., Wang, Q., Xu, X., Su, L. and Xu, J. (2015) 1.21 W Passively Mode-Locked Tm: LuAG Laser. Optics Express, 23, 11819-11825. https://doi.org/10.1364/OE.23.011819

  45. 45. Yang, K.J., Luan, C., Zhao, S.Z., Feng, T.L., He, J.L., Dekorsy, T., Mircea, G. and Zheng, L.H. (2017) Diode-Pumped Mode-Locked Tm: LuAG 2 µm Laser Based on GaSb-SESAM. In: The European Conference on Lasers and Electro-Optics, Optical Society of America, Washington DC, CAP 27. https://doi.org/10.1109/CLEOE-EQEC.2017.8086322

  46. 46. 孙锐, 陈晨, 令维军, 等. 2017 nm和2029 nm双波长Tm:LuAG调Q锁模激光器[J]. 光学学报, 2019, 39(12): 1214003.

  47. 47. 孙锐, 陈晨, 令维军, 等. 基于氧化石墨烯的瓦级调Q锁模Tm:LuAG激光器[J]. 物理学报, 2019, 68(10): 127-132.

  48. 48. 令维军, 孙锐, 陈晨, 等. 基于反射式MoS2可饱和吸收体调Q锁模Tm:LuAG激光器[J]. 中国激光, 2019, 46(8): 248-253.

  49. 49. Hecht, J. (2010) A Short History of Laser Development. Applied Optics, 49, F99-F122. https://doi.org/10.1364/AO.49.000F99

  50. 50. 李斌. 二极管泵浦Nd:YVO4固体激光器谐振腔及耦合系统的研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2013.

  51. NOTES

    *通讯作者。

期刊菜单