Hans Journal of Ophthalmology
Vol. 09  No. 03 ( 2020 ), Article ID: 37621 , 9 pages
10.12677/HJO.2020.93029

息肉状脉络膜血管病变多光谱眼底成像 与眼底血管造影对比观察

陈青山1,甘润1,姚雪1,李志1,郑磊1,冬雪川2*

1暨南大学附属深圳市眼科院,深圳市眼病研究所,广东 深圳

2深圳市新产业眼科新技术有限公司,广东 深圳

收稿日期:2020年8月26日;录用日期:2020年9月9日;发布日期:2020年9月16日

摘要

目的:对比观察多光谱眼底成像(Multispectral imaging, MSI)与吲哚菁绿脉络膜血管造影(ICGA)对息肉状脉络膜血管病变(Polypoidal choroidal vasculopathy, PCV)的成像特征和检出率差异比较。方法:回顾性临床病例研究。经临床确诊的PCV患者33例38眼纳入研究,所有患者均行最佳矫正视力(BCVA),共焦激光眼底照相(SLO),无赤光照相(red-free),红外照相(infra-red),光学相干断层扫描(OCT),吲哚青绿血管造影(ICGA)与MSI检查。结果:硬性渗出的检出比率在MSI 550,600,620 nm波长段显著高于ICG造影(c2=11.5; p = 0.012)。MSI各波长与无赤光照相(red-free)、红外照相、ICGA比较,浆液性视网膜色素上皮脱离(SPED)与浆液血液性色素上皮脱离(SHPED)检出率无显著性差异(c2 = 4.67, p = 0.603)。视网膜下出血(SRH)采用MSI680 nm、780 nm、810 nm、850 nm波长与ICGA比较,检出率无显著性差异(c2 = 3.61, p = 0.799)。MSI680 nm、780 nm、810 nm、850 nm四种波长与ICGA对于脉络膜异常血管网(BVN)和脉络膜息肉(Polyps)的检出率差异有显著性意义(c2 = 10.0; p = 0.040; c2=27.96; p = 0.000)。结论:MSI可清晰显示PCV特征性SPED,SHPED,SRH图像特征,MSI可做为PCV诊断有益的影像补充。

关键词

脉络膜疾病,多光谱成像,息肉状脉络膜血管病变,吲哚青绿血管造影

Comparison of Multispectral Imaging and Indocyanine Green Angiography for Detection of Polypoidal Choroidal Vasculopathy

Qingshan Chen1, Run Gan1, Xue Yao1, Zhi Li1, Lei Zheng1, Xuechuan Dong2*

1Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen Guangdong

2Shenzhen New Industries Material of Ophthalmology Co., Ltd., Shenzhen Guangdong

Received: Aug. 26th, 2020; accepted: Sep. 9th, 2020; published: Sep. 16th, 2020

ABSTRACT

Objective: To compare the imaging characteristics and detection of various types lesions in polypoidal choroidal vasculopathy (PCV) with Multispectral Imaging (MSI) and indocyanine green angiography (ICGA). Methods: Retrospective cases series observational study. Total of 38 eyes among 33 patients with diagnosed PCV were enrolled in the study. All patients underwent BCVA, color fundus photography (CFP), ICGA, optical coherence tomography (OCT) and MSI. Results: The detection rate of MSI 550, 580, 620 nm wavelength was more than ICGA. There was significant difference between two methods (c2 = 11.5; p = 0.012). The detection rate of serous pigmental epithelium detachment (SPED) and serous hemorrhage pigmental epithelium detachment (SHPED), subretinal hemorrhage (SRH) on MSI all wavelength and 680 - 850 nm wavelength were consistent with red free, infra-red photography and ICGA. There was no significant difference between two methods (c2 = 4.67, 3.61; p = 0.603, 0.799). Branch vessel net (BVN) and polyps signal in PCV patiets were better detected at ICGA (c2 = 10.0; p = 0.040; c2 = 27.96; p = 0.000). Conclusion: MSI may clearly showed imaging characteristics of SPRD, SHPED, SRH for PCV, which has good consistency with ICGA and be used to provide more information for diagnosis.

Keywords:Choroidal Disease, Multispectral Imaging, Polypoidal Choroidal Vasculopathy, Indocyanine Green Angiography

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

息肉状脉络膜血管病变(PCV)是一种以异常的脉络膜内层血管网(branch vessel net, BVN)末端息肉状改变为特征的黄斑疾病 [1]。临床表现以黄斑区或黄斑区外桔红色病灶,浆液性或血液性的色素上皮脱离为特征 [2]。ICG血管造影可较好显示脉络膜息肉状病灶并有助于BVN的成像而成为PCV诊断“金标准” [3]。但ICG血管造影属于有创检查,存在药物过敏与药物短缺的风险,故非侵入性影像检查越来越受到重视。临床研究发现OCTB扫描成像可检测到PCV特征性的“拇指征”样RPE脱离,RPE与Bruch氏膜之间的双层征(double line sign, DLS),血管OCT可清晰显示PCV中BVN [4] [5]。OCT与OCTA作为非侵入性检查被逐渐广泛地应用于PCV的诊断与随访,但仍需要ICGA作为诊断的主要方法。MSI是利用多个单色LED光源投射到视网膜与脉络膜的不同组织,实现超宽光谱,逐层,正面(EN face)成像的一种新眼底成像技术。可实现对浅层视网膜,深层视网膜,RPE以及脉络膜的非造影直接成像 [6]。目前有采用MSI580 nm波长观察视网膜分支静脉阻塞与糖尿病黄斑水肿,710 nm以上红外波长观察特发性葡萄膜大脑膜炎(VKH)与中心性浆液性视网膜脉络膜病变的临床研究报告 [7] [8] [9],但尚未见MSI对PCV诊断的临床研究报告。我们利用MSI检查一组PCV患者并与ICGA检查对比分析,现将结果报道如下。

2. 对象与方法

2.1. 一般资料

回顾性病例研究。本研究通过暨南大学深圳眼科医院伦理委员会批准,遵循赫尔辛基宣言,并获得患者书面知情同意。2019年3月至2020年1月经我院眼底病专科门诊确诊的PCV33例38眼纳入研究,其中男性22例,女性11例;年龄41~76岁,平均(63.70 ± 8.14)岁。PCV的诊断标准:1) ICG造影显示脉络膜异常血管网,异常脉络膜血管末端出现单个或多个的高荧光结节样或囊袋状病灶 [3] [4]。2) OCT观察到高耸的拇指状PED伴“双层征”。

2.2. 检查项目

所有患者均进行最佳矫正视力(BCVA)、共焦激光眼底成像(SLO)、FFA、ICGA、OCT和OCTA与MSI的检查。视力采用国际标准对数视力表检查,FFA,ICGA,OCT采用Spectralis HRA + OCT (海德堡公司,德国)进行检查,OCTA采用Cirrus HD OCT-5000 (蔡司公司,德国)血管成像模式进行检查。研究纳入标准:ICG造影6分钟内见单个或多个脉络膜高荧光灶,伴有或不伴有脉络膜异常血管网样高荧光,OCT扫描见“拇指状PED”与RPE层双线症 [10]。排除标准:排除年龄相关黄斑变性,成人卵黄样黄斑变性,特发性脉络膜新生血管。

MSI采用C2000多光谱眼底成像系统(深圳新产业眼科新技术有限公司)检查,通过多个单色LED投射到眼底视网膜和脉络膜组织,一次性闪烁扫描获得550 nm,600 nm,620 nm,680 nm,780 nm,810 nm,850 nm波长的图像。由三名眼底病医师盲法阅片分析PCV患者视网膜下硬性渗出(HEX),浆液性色素上皮脱离(SPED),视网膜下出血(SRH),浆液血液性色素上皮脱离(SHPED),脉络膜异常血管网(BVN)及脉络膜息肉样病灶(polyps)的MSI图像特征。结果有争议时采用多数的意见,并与SLO,red-free,红外成像(Infra-red) ICG结果比较。

2.3. 统计学分析方法

采用SPSS17.0 (SPSS, Chicago, IL)统计学软件对研究数据进行分析。PCV患者MSI图像的不同典型图像特征HEX,SPED,SRH,SHPED,BVN及polyps的检出比率采用计量资料的Pearson c2检验,以p < 0.05为差异有统计学意义。

3. 结果

33例38眼PCV患者最具特征的HEX,SPED,SRH,SHPED,BVN及polyps的MSI与ICG造影检出眼数比率比较(表1)。

Table 1. Comparison of characteristic eye number of PCV patients detected by MSI and ICG

表1. MSI与ICG造影检出PCV患者眼底图像特征眼数比较

其中HEX的检出比率MSI在550 nm,580 nm,620 nm波段显著高于ICGA,两者结果比较差异有显著性意义(c2 = 11.5; p = 0.012) (图1)。对于SPED,SHPED两种体征的检出率,MSI的各波长与ICGA、red-free、AF比较无显著性差异(c2 = 4.67, p = 0.603) (图2图3)。SRH两种体征的检出率,MSI的680 nm红光波长与780 nm,810 nm,850 nm红外光四种波长与ICGA比较,结果无显著性差异(c2 = 3.61, p = 0.799) (图4图5)。BVN与Polyps两种检查的检出率通过MSI 680 nm红光波长,780 nm,810 nm,850 nm红外光波长与ICG造影比较,结果差异有显著性意义(c2 = 10.0; p = 0.040; c2 = 27.96; p = 0.000),表明ICG造影对PCV患者BVN的检出率较高,尤其对脉络膜息肉病灶的检查率有独到优势(图5图6图7)。但三名眼底病医生综合分析最具特征的SPED,SRH,SHPED,BVN及polyps的MSI图像特征来诊断PCV并与ICG造影进行对照,两种检查的诊断一致性比较,结果没有显著性差异(c2 = 2.85, p = 0.583) (图8图9)。

Figure 1. MSI550 nm imagine clearly showed macular subretinal hard exudate of PCV patient

图1. MSI550 nm清晰显示PCV患者黄斑区视网膜下硬性渗出

Figure 2. MSI780 nm imagine clearly showed macular serous pigmental epithelium detachment (SPED) of PCV patient

图2. MSI780 nm清晰显示PCV右眼黄斑区SPED

Figure 3. ICG clearly showed macular SPED of PCV patient (green line). Morphologic imagine was same as MSI780 nm scanning. Difference of area was associated with two instruments magnification

图3. ICG造影清晰显示PCV黄斑区SPED (绿线),形态与MSI780 nm图像一致,面积差异与两种设备的图像放大率有关

Figure 4. MSI810 nm imagine showed hyporeflection and distinctive border of subretinal serous hemorrhage pigmental epithelium detachment

图4. MSI810 nm显示PCV视网膜下SHPED呈弱反射特征,边界清楚

Figure 5. ICG indistinctive showed SHPED border of PCV patient. Difference of Bleeding area VS MSI810 nm was associated with two instruments magnification. ICG clear showed polyps characteristics

图5. ICG造影显示PCV视网膜下SHPED边界比较模糊,出血面积与MSI810 nm差异与两种设备的图像放大率有关,但ICG造影清晰显示特征性息肉病灶

Figure 6. MSI780 nm imagine distinguished branch vessel net (BVN) beside SPED of PCV patient (blue arrow)

图6. MSI780 nm辨认出PCV患者SPED旁BVN (蓝色箭头)

Figure 7. ICG could distinguish BVN beside SPED more clear than MSI780 nmn imagine

图7. MSI780 nm辨认出PCV患者SPED旁BVN清晰度比较ICG造影低

Figure 8. Detection rates of BVN, POLYPS, SHPED and SPED detected by four wavelengths of MSI 680 to 850 nm and IGC

图8. MSI680至850 nm四种波长与IGC检查BVN、POLYPS、SHPED、SPED检出比率

Figure 9. Comparison of MSI 550 to 850 nm and IGC in PCV patients

图9. MSI550至850 nm各波长与IGC检查PCV患者图像特征检出眼数比较

4. 讨论

EVERST研究提出ICG造影是PCV的诊断“金标准”,原因是ICG可显示大多数PCV患者的Polyps与BVN病变 [11],而眼底彩色照相,FFA不能明确显示Polyps与BVN。FFA与ICG造影属于有创检查,存在注射造影剂过敏风险,有报道FFA过敏性休克占到FFA检查患者的0.83% [12]。随着技术的发展进步,无论是视网膜疾病或是脉络膜疾病,多模式,分层次的影像检查替代传统血管造影已经成为趋势,OCTA可实现对PCV患者BVN的清晰成像,但对Polyps的确诊率只有42%左右,而且脉络膜血管的结构分辨率仍有待提高 [13],临床中PCV诊断还是要根据ICG的检查结果进行分析。

MSI技术利用多种波长的单色LED光源分别投射入眼底组织,采集因各组织吸收光谱的差异而反射的信号,以冠状面(EN face)图像形式呈现 [14]。MSI光谱(550~850 nm)可以对视网膜进行逐层、正面成像,实现对视网膜、脉络膜的非侵入直接成像。绿光(550~600 nm)主要显示浅层视网膜病变,黄光(680 nm)主要显示中层和深层视网膜结构及视网膜色素上皮层变病变。由于PCV主要是累及RPE,Bruch膜及脉络膜的病症,故MSI 550 nm,580 nm,620 nm的绿光与黄光波长作用不大,而710 nm以上长波长的的红光,红外光可穿透RPE层显示RPE与脉络膜病变,故我们采用780 nm,810 nm,850 nm红外光三种波长检查PCV患者浆液性PED与浆液血液性PED。由于视网膜下出血病灶含有更多的血红蛋白对550 nm,600 nm有吸收峰值,而810 nm,850 nm波长吸收较少,在MSI图像中SRH与浆液血液性PED出血病灶显示强反射,浆液性PED呈弱反射。本研究结果证实红光与红外光谱成像对浆液与浆液血液性PED检出率与ICGA比较,结果没有显著性差异(c2 = 4.67, p = 0.603)。这与ZHOU等报告用810 nm波长对中心性浆液性视网膜脉络膜病变的浆液性视网膜色素上皮脱离检出率相似 [15]。本组PCV患者BVN和Polyps通过680 nm红光与780 nm,810 nm,850 nm红外光四种波长检查的检出率与ICGA比较,结果差异有显著性意义(c2 = 10.0; p = 0.040, c2 = 27.96; p = 0.000),表明ICG造影对PCV患者BVN的检出率较高,(图5图6图7),ICG造影对BVN及polyps检查仍有不可替代的优势。但三名眼底病医生综合分析PCV的SPED,SRH,SHPED,BVN及polyps的MSI图像特征来诊断PCV并与ICG造影进行对照,两种检查的诊断一致性比较,结果没有显著性差异。

本研究表明,PCV在MSI上的主要特征为浆液性浆液与浆液血液性PED,SRH等RPE与脉络膜层的异常改变。虽然绿光(550~600 nm)可清晰视网膜渗出,前膜、玻璃体黄斑牵拉、视网膜神经纤维层等 [16],而PCV主要为RPE和脉络膜层病变,故应用价值不大。本研究发现MSI 680~850 nm红光与红外光对SPED平均检出率为96.5%,SRH92.30%,SHPED87.50%,根据这三项图像特征,通过MSI诊断PCV与ICG比较有较好的一致性,表明MSI对PCV的诊断有一定应用价值。

在使用MSI对PCV诊断及鉴别时需要注意以下两点。1) 当RPE脱离不明显时可造成MSI诊断PCV的漏诊,本研究800 nm波长检查3只眼漏诊均因为少量浆液,色素上皮层隆起度很低,故MSI在诊断PCV时应结合OCT检查能减少因显示不佳而导致的漏诊。2) 分析图像时应从浅至深逐层分析,以便了解病变所在层次,红光和红外光图像显示RPE与脉络膜改变更好更清晰。但由于MSI无法像ICG一样动态观察BVN与Polyps的吲哚青绿染料充盈,染料渗漏与积存,则导致MSI对这两种图像特征的分辨率不高。因此目前对于PCV诊断ICG仍具有不可取代的价值。但ICG为有创检查且耗时较长,为减少造影过程中可能出现的并发症,缩短检查时间,降低医疗费用,对于具有典型PCV特征的患者,或造影禁忌者可行MSI检查。该检查快速、无创,且与ICG有较好的一致性,同时也可以作为PCV的筛查手段。

由于本研究样本量小,对BVN与Polyps图像分辨率有限,尚有待进行前瞻性、更大样本量、长期随访的PCV病例研究探索MSI的应用价值。其次,MSI的解读不同于以往的眼底图像,还需进一步累积经验,同时还需结合其他无创影像检查如OCT,OCTA,炫彩眼底成像等多模式检查来综合诊断PCV。

利益冲突

本研究所有作者均声明不存在任何利益冲突。

基金项目

深圳市科技研发资金—深科技创新[2019]33号(项目编号JSGG20180507182010237)。

文章引用

陈青山,甘 润,姚 雪,李 志,郑 磊,冬雪川. 息肉状脉络膜血管病变多光谱眼底成像与眼底血管造影对比观察
Comparison of Multispectral Imaging and Indocyanine Green Angiography for Detection of Polypoidal Choroidal Vasculopathy[J]. 眼科学, 2020, 09(03): 215-223. https://doi.org/10.12677/HJO.2020.93029

参考文献

  1. 1. Yannuzzi, L.A., Sorenson, J., Spaide, R.F. and Lipson, B. (1990) Idiopathic Polypoidal Choroidal Vasculopathy (IPCV). Retina (Philadelphia, Pa.), 10, 1-8.
    https://doi.org/10.1097/00006982-199001010-00001

  2. 2. Wen, F., Chen, C., Wu, D., et al. (2004) Polypoidal Choroidal Vasculopathy in Elderly Chinese Patients. Graefes Archive for Clinical & Experimental Ophthalmology, 242, 625-629.
    https://doi.org/10.1007/s00417-003-0667-z

  3. 3. Cheung, C.M.G., Lai, T.Y., Ruamviboonsuk, P., et al. (2018) Polypoidal Choroidal Vasculopathy: Definition, Pathogenesis, Diagnosis, and Management. Ophthalmology, 85, 708-724.
    https://doi.org/10.1016/j.ophtha.2017.11.019

  4. 4. Koh, A.H.C., Chen, L.J., Chen, S.J., et al. (2013) Polypoidal Choroidal Vasculopathy: Evidence-Based Guidelines for Clinical Diagnosis and Treatment. Retina (Philadelphia, Pa.), 33, 686-716.
    https://doi.org/10.1097/IAE.0b013e3182852446

  5. 5. Inoue, M., Balaratnasingam, C. and Freund, K.B. (2015) Optical Coherence Tomography Angiogrphy of Polypolidal Choroidal Vasculopathy ad Polypoidal Choroidal Neovascularization. Retina, 35, 2265-2274.
    https://doi.org/10.1097/IAE.0000000000000777

  6. 6. 黎晓新. 多光谱眼底成像原理[M]//眼底病的多光谱诊断和筛查. 北京: 北京科技出版社, 2014: 1-16.

  7. 7. Xu, Y.P., Liu, X.X. and Cheng, L. (2015) A Light-Emitting Diode (LED)-Based Multispectral Imaging System in Evaluating Retinal Vein Occlusion. Lasers in Surgery & Medicine, 47, 549-558.
    https://doi.org/10.1002/lsm.22392

  8. 8. Huang, G., Peng, J., Ye, Z., et al. (2018) Multispectral Image Analysis in Vogt-Koyanagi-Harada Disease. Acta Ophthalmologica, 96, 411-419.
    https://doi.org/10.1111/aos.13606

  9. 9. Li, S., Huang, L., Bai, Y., et al. (2015) In Vivo Study of Retinal Transmission Function in Different Sections of the Choroidal Structure Using Multispectral Imaging. Investigative Opthalmology & Visual Science, 56, 3731-3742.
    https://doi.org/10.1167/iovs.14-15783

  10. 10. Koh, A.H., Chen, L.J., Chen, S.J., et al. (2013) Polypoidal Choroidal Vasculopathy: Evidence-Based Guide Lines for Diagnosis and Treatment. Retina, 33, 686-716.
    https://doi.org/10.1097/IAE.0b013e3182852446

  11. 11. Cheung, C.M.G., et al. (2014) Understanding Indocyanine Green Angiography in Polypolidal Choroidal Vasculopathy: The Group Experience with Digital Fundus Photography and Confocal Scanning Laser Ophthalmoscopy. Retina, 34, 2397-2406.
    https://doi.org/10.1097/IAE.0000000000000255

  12. 12. Ha, S.O., et al. (2013) Anaphylaxis Caused by Intravenous Fluorescein: Clinical Characteristics and Review of Literature. Internal & Emergency Medicine, 9, 325-330.
    https://doi.org/10.1007/s11739-013-1019-6

  13. 13. Wang, M., Zhou, Y. and Gao, S.S. (2016) Evaluating Polypoidal Choroidal Vasculopathy with Optical Coherence Tomography Angiography. Investigative Ophthalmology & Visual Science, 57, 526-532.
    https://doi.org/10.1167/iovs.15-18955

  14. 14. 柳林. 糖尿病性视网膜病变的早期诊断与药物治疗进展[J]. 中华老年多器官疾病杂志, 2015(1): 1-3.

  15. 15. Zhu, X., Cheng, Y., Pan, X., et al. (2017) Sensitivity and Specificity of Multispectral Imaging in Detecting Central Serous Chorioretinopathy. Lasers in Surgery & Medicine, 49, 498-505.
    https://doi.org/10.1002/lsm.22619

  16. 16. Calcagni, A., Gibson, J.M., Styles, I.B., et al. (2011) Multispectral Retinal Image Analysis: A Novel Non-Invasive Tool for Retinal Imaging. Eye, 25, 1562-1569.
    https://doi.org/10.1038/eye.2011.202

期刊菜单