Botanical Research
Vol. 09  No. 03 ( 2020 ), Article ID: 35730 , 9 pages
10.12677/BR.2020.93026

Research Progress in Anabolic Control Mechanisms of Plant Carotenoids

Yuanyuan Wu, Yufeng Yu, Yihui Wang

Zhejiang Normal University, Jinhua Zhejiang

Received: Apr. 7th, 2020; accepted: May 18th, 2020; published: May 25th, 2020

ABSTRACT

Carotenoids are a kind of natural functional pigments. The anabolic regulation of carotenoids in plants is a complex process regulated by many levels and factors. This article describes that the transcriptional level, environmental factors, plastid development, and hormones regulate the accumulation of carotenoids in plants.

Keywords:Plant, Carotenoids, Anabolism, Regulatory Mechanism

植物类胡萝卜素合成代谢调控机制研究进展

吴园园,于玉凤,王怡惠

浙江师范大学,浙江 金华

收稿日期:2020年4月7日;录用日期:2020年5月18日;发布日期:2020年5月25日

摘 要

类胡萝卜素是一种天然的功能性色素,植物中类胡萝卜素合成代谢调控是个复杂的过程,受多层次、多水平因素的调控;本文阐述了转录水平、环境因子、质体发育和激素对植物积累类胡萝卜素的调控机制。

关键词 :植物,类胡萝卜素,合成代谢,调控机制

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

类胡萝卜素是由异戊二烯为单元组成的萜类化合物,是一种天然的黄色、橙红色或红色亲脂分子。在植物中,类胡萝卜素参与光合作用及多种逆境生理调节。类胡萝卜素是光系统原件的组成成分,在天线复合物中,收集可见光谱中蓝色区域范围内的光波,并且随后将能量传递到叶绿素 [1]。在植物细胞中,类胡萝卜素在高温和强光下,能通过控制能量的消耗和清除自由基来避免蛋白和叶绿素受到损伤,因此类胡萝卜素能够增强植物对热和光胁迫的耐受性 [2] [3]。

类胡萝卜素对人体的健康也起着重要的作用。α、β、γ-胡萝卜素和β-隐黄质等具有较高的维生素A原活性,是人体合成维生素A的前体,能够有效地预防夜盲症、肠胃疾病、麻疹和提高抵抗力 [4] [5]。番茄红素和虾青素等具有极强得的氧化性能够猝灭活性氧、清除人体自由基和有效地预防心血管疾病和多种癌症 [6] [7]。

尽管植物类胡萝卜素代谢途径中的酶和基因已被广泛研究,但是类胡萝卜素积累的调控机制尚未阐明 [8]。本文重点综述了近年来有关环境因子、质体发育、激素、转录因子和类胡萝卜素合成代谢途径相关基因的表达对植物类胡萝卜素合成代谢的影响,从多方面了解植物类胡萝卜素积累的调控机制。

2. 转录水平的调控

2.1. 类胡萝卜素合成代谢途径相关基因的表达调控

近年来,人们对类胡萝卜素的生物合成途径进行了广泛研究,并且已经在许多植物中鉴定了大部分催化生物合成步骤的酶基因 [1] [9]。在植物中,类胡萝卜素的积累是类胡萝卜素生物合成途径中酶基因紧密协调表达的结果,改变类胡萝卜素生物合成途径中酶基因的表达能够有效地调控类胡萝卜素的代谢 [10]。其中,对八氢番茄红素合成酶基因(PSY)、八氢番茄红素脱氢酶基因(PDS)、番茄红素β-环化酶基因(LCYb)和番茄红素ε-环化酶基因(LCYe)研究较多。Zhang等 [11] 将柑橘(Citrus reticulata)的PSY基因转入金桔中,结果显示果实中番茄红素的积累量显著增多。Zhang等 [11] 将柑橘(Citrus reticulata)的PSY基因转入金桔中,超表达柑橘PSY基因能显著地增强转基因金桔果实中番茄红素的积累。Fraser等 [12] 超表达番茄(Solanum lycopersicum)的PSY1,可使转基因番茄成熟果实中总类胡萝卜素含量增加了3.5倍,其中八氢番茄红素、六氢番茄红素、番茄红素和β-胡萝卜素的含量显著高于野生型番茄。Maass等 [13] 在拟南芥(Arabidopsis thaliana)种子的愈伤组织中超表达PSY,发现转基因拟南芥种子愈伤组织中类胡萝卜素总含量增加了10倍并改变了其转基因愈伤组织中类胡萝卜素各组分含量的变化;野生型拟南芥种子愈伤组织中主要积累的是叶黄素,而转基因种子愈伤组织中主要积累的则是β-胡萝卜素,其次是叶黄素。程珍霞等 [14] 将秋橄榄(Elaeagnus umbellate)的PDS基因在番茄中超表达,发现转基因番茄成熟果实中番茄红素的含量较野生型上升了2倍。在柑橘果实成熟过程中LCYb的表达对果实中类胡萝卜素的积累具有显著地影响,LCYb的高水平表达能够促使番茄红素向β使分支途径代谢,而LCYb表达的下降能够促进果实番茄红素的积累 [15] [16]。Zeng等 [17] 利用RNAi技术抑制小麦(Triticum aestivum)中LCYb的表达,发现转基因小麦籽粒中β-胡萝卜素和叶黄素含量下降,而番茄红素的含量与野生型相比显著上升。Diretto等 [18] 利用RNAi技术特异地沉默马铃薯(Solanum tuberosum)块茎中LCYe的表达,发现转基因马铃薯块茎中总类胡萝卜素含量上升的2.5倍,其中β-胡萝卜素含量增加了14倍。在油菜(Brassica napus)种子中,沉默LCYe的表达导致其总类胡萝卜素含量增加了2.6到41.7倍,其中叶黄素含量增加了1.9到22倍 [19]。综上,通过调控类胡萝卜素合成代谢途径中关键基因表达,可以调控植物组织中不同类型的类胡萝卜素的积累。

2.2. 转录因子的调控

近年来,一些转录因子通过调控类胡萝卜素代谢途径中相关基因的表达从而调控植物中类胡萝卜素的合成代谢均已被报道。RIN (Ripening inhibitor)是MADS-box家族转录调控因子的成员,在植物中调控营养生长、开花时间和花的发育等过程中发挥重要的作用 [20]。在番茄果实组织中,RIN通过与番茄PSY1的启动子相互作用来调节类胡萝卜素积累 [21]。STAY-GREEN1 (SGR1)编码的SGR1蛋白质在番茄叶片和果实中叶绿素降解调节中其关键作用。研究发现番茄中SGR1与PSY1能直接相互作用以抑制PSY1在果实成熟过程中的活性来抑制番茄红素与β-胡萝卜素的积累 [22]。RAP2.2属于AP2/ERF (APETALA2/Ethylene-responsive factor)转录因子基因家族,是一种植物体内响应于乙烯的转录因子,在拟南芥中RAP2.2能特异地结合在PSY和PDS的启动子上抑制PSY和PDS的表达,从而减少类胡萝卜素的积累 [23]。在拟南芥发育过程中,PIF1 (Phytochrome interacting factor 1)能够直接与PSY的启动子中G-box顺式作用元件结合以抑制PSY的表达,从而调控类胡萝卜素的合成代谢 [24]。在番茄中PIF1a能够与PSY1基因启动子中PBE-box顺式作用元件相结合,从而抑制PSY1的表达,抑制类胡萝卜素的合成 [25]。最近,邓秀新院士课题组从柑橘中分离获得了一个调控LCYb基因的转录因子MADS6,该转录因子可以直接调控LCYb1、PSY、PDS和CCD1等基因表达,协同正调控类胡萝卜素代谢,而且MADS6还参与其他代谢途径调控,进而引导代谢流特异进入类胡萝卜素代谢通路 [26] (见图1)。

Figure 1. The anabolic pathway of carotenoids in plants (Reference Liu et al. and Lu et al. [26] [27]) PSY, Phytoene synthase; RIN, Ripening inhibitor; PDS, Phytoene desaturase; ZDS, Zeta-carotenedesaturase; PIF, Phytochrome interacting factor; LYC, Lycopene cyclase gene

图1. 植物类胡萝卜素合成代谢途径(参考Liu等和Lu等 [26] [27])。PSY,八氢番茄红素合成酶;RIN,成熟抑制剂;PDS,八氢番茄红素脱氢酶;ZDS,胡萝卜素脱氢酶;PIF,植物色素互作因子;LCY,番茄红素环化酶基因

3. 环境因子的调控

3.1. 光的调控

光是影响植物发育和类胡萝卜素合成代谢的重要环境因子 [28]。Ma等 [29] 用红光的LED处理离体培养的柑橘果皮,发现LED红光能够增强PSY、PDS、ZDS、LCYb1、LCYb2、β-胡萝卜素羟化酶基因(HYb)和玉米黄质环化酶基因(ZEP)的表达并且提高了柑橘果皮中β-隐黄质的含量。Llorente等 [2] 将绿熟期的番茄果实分成两半后,分别用红光/远红光比例的不同的光波处理,发现红光/远红光比例高的处理组番茄果实中番茄红素和β-胡萝卜素的含量极显著高于红光/远红光比例低的处理组番茄果实。光刺激类胡萝卜素的生物合成,并调节质体结构的发展,以适应这些光保护色素。其中,高比例红光/远红光更加刺激类胡萝卜素的生物合成。

Zhang等 [30] 分别用以不同光强的LED蓝光为光源体外培养温州蜜柑(Citrus unshiu)和甜橙(Citrus sinensis)的果囊组织,以100 μmolm−2∙s−1 LED蓝光为光源离体培养4周后,温州蜜柑中总类胡萝卜素含量显著提高,其中β-隐黄质含量上升最为明显;而甜橙中总类胡萝卜素含量极显著提高;以50 μmolm−2∙s−1 LED蓝光为光源能够显著促使温州蜜柑和甜橙果囊组织中类胡萝卜素的含量均极显著上升。

3.2. 温度的调控

温度对类胡萝卜素的积累尤为重要,温度在18℃~26℃时番茄红素合成活性最高,而温度低于10℃或高于30℃时,植物中番茄红素的合成受到抑制 [31]。低温处理成熟的番茄果实,PSY、PDS、ZDS的表达受到抑制,从而使番茄合成和积累水平下降 [32]。崔彤彤等 [33] 用不同的温度恒温培养龙眼(Dimocarpus longan)胚性愈组织,培养温度为20℃、30℃和35℃的龙眼胚性愈组织中类胡萝卜素含量均高于培养温度为25℃的龙眼胚性愈组织;随着培养温度得的升高龙眼胚性愈组织中类胡萝卜素含量呈先上升后下降趋势。Yang等 [34] 分别用不同温度恒温培养烟草,发现培养温度为18.5℃的烟草叶片中类胡萝卜素的含量在0~60 d显著高于培养温度为23.5℃的烟草叶片;而培养温度为28.5℃的烟草叶片中类胡萝卜素含量在0~60 d显著低于培养温度为23.5℃的烟草叶片。

3.3. CO2的调控

Zhang等 [35] 研究发现CO2的富集能够显著增加番茄果实发育过程中番茄红素、β-胡萝卜素和总类胡萝卜素的含量,其中红果期番茄红素、β-胡萝卜素和总类胡萝卜素的含量最高。张朋等 [36] 对高浓度CO2环境下大豆叶片中类胡萝卜素含量进行分析,发现CO2浓度的升高能够促进大豆叶片类胡萝卜素的积累。张志朋 [37] 对大棚番茄进行CO2施肥,经施肥后番茄果实成熟各个阶段的番茄红素、β-胡萝卜素和总类胡萝卜素含量均显著高于对照组。Dhami等 [38] 用高浓度(800 ppm) CO2培养拟南芥,与对照组相比高浓度培养的拟南芥嫩叶中总类胡萝卜素含量上升了20%,其中叶黄素、β-胡萝卜素、紫罗黄素和新黄质含量显著上升。

4. 质体发育的调控

在植物细胞中质体是类胡萝卜素生物合成和储存的场所,质体分别以多种形式存在,分别为前质体、淀粉体、黄化体、白色体、叶绿体和有色体等,除了前质体,其他形态的质体均有合成和贮存类胡萝卜素的能力 [8]。质体的发育是调控类胡萝卜素积累的重要因素,番茄高色素突变体hp1、hp2和hp3的果实细胞中发现质体体积的增加为类胡萝卜素积累提供更大的贮存空间从而促进类胡萝卜素的积累 [39]。Sauret-Gueto等 [40] 用膦胺霉素筛选得到拟南芥叶绿体缺陷突变体rif10,发现叶绿体发育的缺陷抑制了突变体rif10中叶黄素、β-胡萝卜素、紫罗黄素和新黄质的积累。

在植物中,类胡萝卜素合成和贮存的场所主要在叶绿体和有色体中,其中有色体的发育对调控类胡萝卜素的合成代谢和贮存起着至关重要的作用 [41] [42]。

OR (ORANGE)蛋白是PSY的主要转录后调控因子,在转录后水平调控PSY蛋白的丰度从而调控类胡萝卜素的合成代谢,并且OR能够调控调控白色体和叶绿体向有色体分化从而调控类胡萝卜素的积累 [43] [44]。Lu等 [45] 利用图位克隆的方法从花椰菜(Brassica oleracea)中成功克隆了OR的突变基因即OR中插入了一个长末端重复序列反转录转座子,并将OR突变基因转化到野生型花椰菜中,发现OR的突变能够促进转基因花椰菜中有色体的形成从而促进β-胡萝卜素含量积累。Li等 [46] 将花椰菜OR基因转化马铃薯块茎,长期冷藏期间转基因马铃薯块茎总类胡萝卜素含量持续上升,在储存5个月后总类胡萝卜素含量上升了10倍。由此可见促进质体的发育有利于植物中类胡萝卜素的合成与积累。

5. 激素的调控

5.1. 乙烯的调控

乙烯(ET)在植物果实成熟过程中和类胡萝卜素积累中起着重要的作用,抑制果实内ET的合成能够阻碍果实的成熟和番茄红素的积累 [47]。在番茄果实中抑制ACS2 (ACC SYNTHASE 2)基因的表达以减少果实中ET的合成,从而导致转基因番茄果实的成熟受到了抑制和转基因番茄果实中的番茄红素含量明显下降 [48]。近年来,有关通过调控ET合成从而间接调控类胡萝卜素积累的转录因子均被报道,RIN是一个在ET调控果实成熟过程中重要的调控因子,能直接与ACS2和ACS4 (ACC SYNTHASE 4)基因的启动子结合,从而调控ET的合成从而调控类胡萝卜素的代谢 [21]。FUL1/TDR4 (FRUITFULL 1)和TAGL1 (Tomato AGAMOUS-LIKE 1)已被证实在果实成熟过程中能够促进ET的合成从而促进类胡萝卜素的积累 [49]。Chung等 [50] 通过RNAi技术抑制番茄中AP2a (APETALA2)基因的表达从而使得果实ET含量上升和类胡萝卜素含量下降,这暗示着AP2a可能通过乙烯合成途径或者独立于ET合成的其他途径调控番茄果实中类胡萝卜素的积累。

5.2. 脱落酸的调控

脱落酸(ABA)是植物重要激素之一,其合成前体是新黄质和堇菜黄质。调控ABA的合成能够有效地调节植物中类胡萝卜素底地合成;Sun等 [51] 特异性地抑制番茄果实中ABA生物合成关键酶基因NCED1的表达,NCED1表达的下降抑制了果实ABA的合成和番茄红素、β-胡萝卜素的积累。

外源ABA的处理能够有效地改变植物中类胡萝卜素地组成和含量。邓昌哲等 [52] 利用不同浓度的外源ABA处理木薯(Manihot esculenta),证实20 mg/L浓度的ABA能够显著地促进木薯叶片中β-胡萝卜素的积累和LCY-b的表达,而10和80 mg/L浓度的ABA抑制了木薯叶片中β-胡萝卜素的积累。凌亚杰等 [53] 用浓度为25 mg/L的ABA处理绿熟期的草莓(Fragaria ananassa),处理后0~4 d类胡萝卜素含量显著高于对照组。

5.3. 生长素的调控

在番茄果实成熟前中期,生长素(IAA)能够显著地影响类胡萝卜素地积累。运用外源IAA处理绿熟期的樱桃番茄,能够显著地影响果实类胡萝卜素地积累,在外源IAA处理后的0到20天期间,经处理的番茄果实中番茄红素显著低于对照组,而在处理后25天处理组的番茄红素含量与对照组相比并无明显差异;而外源IAA处理使得处理组番茄果实中β-胡萝卜素的积累推迟,但是在处理后25天处理组番茄果实中β-胡萝卜素含量显著高于对照组 [54]。Su等 [55] 运用生长素拮抗剂PCIB处理绿熟期番茄,96 h后的处理组番茄果实中番茄红素和β-胡萝卜素含量均显著上升(p < 0.05) (见图2)。

Figure 2. Hormone, chromosome development, CO2, and light regulation during plant accumulation of carotenoids (Reference Liu et al. [27]). ET, Ethylene; ABA, Abscisic acid; IAA, Indoleacetic acid; OR, Orange

图2. 激素、有色体发育、CO2和光照在植物积累类胡萝卜素中的调控作用(参考Liu等 [27])。ET,乙烯;ABA,脱落酸;IAA,生长素;OR,甜橙

6. 展望

类胡萝卜素是一类天然的功能性色素,广泛存在于高等植物、光合微生物和真菌中。类胡萝卜素种类繁多,目前已从自然界发现750余种 [56]。类胡萝卜素在植物中捕获光能、清除氧自由基、增强植物对热和光胁迫的耐受性,在人体中能够猝灭活性氧、清除人体自由基和麻疹等疾病。由于类胡萝卜素的功能的多样性,类胡萝卜素具有巨大的商业价值 [56]。据美通社报道,全球类胡萝卜素市场年复合增长率为3.9%,预计在2019年能够达到将达到近18亿美元 [56]。人体自身不能合成类胡萝卜素,必须从饮食中摄取;在植物中,类胡萝卜素的合成代谢是一个复杂的过程,受多层次、多水平因素的调控 [57];因此了解植物中类胡萝卜素合成代谢调控的机制对调控植物类胡萝卜素的积累具有十分重要的意义。

近年来,植物类胡萝卜素合成代谢途径相关基因相继被克隆及其功能相继被鉴定,为通过基因工程手段调控植物类胡萝卜素合成代谢相关基因的表达从而调控植物类胡萝卜素积累提供理论基础 [56]。然而对于植物中类胡萝卜素合成相关基因的表达机理并不清楚,利用基因工程提高某一器官类胡萝卜素的积累具有较大的盲目性;特定基因表达的变化引起植物中类胡萝卜素含量和组成的改变对植物生长发育的影响还不太清楚 [58]。因此今后还需进一步阐明植物类胡萝卜素合成代谢调控机制。

总之,在植物中类胡萝卜素合成代谢调控是个复杂的过程,受多层次、多水平因素的调控;对植物类胡萝卜素合成代谢调控机制进行深入研究有利于提高人们对其机理的认识,为进一步利用基因工程的手段调控类胡萝卜素的积累提供理论基础。

文章引用

吴园园,于玉凤,王怡惠. 植物类胡萝卜素合成代谢调控机制研究进展
Research Progress in Anabolic Control Mechanisms of Plant Carotenoids[J]. 植物学研究, 2020, 09(03): 217-225. https://doi.org/10.12677/BR.2020.93026

参考文献

  1. 1. Nisar, N., Li, L., Lu, S., et al. (2015) Carotenoid Metabolism in Plants. Molecular Plant, 8, 68-82. https://doi.org/10.1016/j.molp.2014.12.007

  2. 2. Llorente, B., Martinez-Garcia, J.F., Stange, C., et al. (2017) Il-luminating Colors: Regulation of Carotenoid Biosynthesis and Accumulation by Light. Current Opinion in Plant Bi-ology, 37, 49-55. https://doi.org/10.1016/j.pbi.2017.03.011

  3. 3. DellaPenna, D. and Pogson, B.J. (2006) Vitamin Synthesis in Plants: Tocopherols and Carotenoids. Annual Review of Plant Biology, 57, 711-738. https://doi.org/10.1146/annurev.arplant.56.032604.144301

  4. 4. Silva, J.S., Chaves, G.V., Stenzel, A.P., et al. (2017) Improvement of Anthropometric and Biochemical, but Not of Vitamin A, Status in Adolescents Who Undergo Roux-en-Y Gastric Bypass: A 1-Year Follow up Study. Surgery for Obesity and Related Diseases, 13, 227-233. https://doi.org/10.1016/j.soard.2016.09.002

  5. 5. Sandmann, G. (2015) Carotenoids of Biotechnological Importance. Advances in Biochemical Engineering/Biotechnology, 148, 449-467. https://doi.org/10.1007/10_2014_277

  6. 6. Fassett, R.G. and Coombes, J.S. (2012) Astaxanthin in Cardiovascular Health and Disease. Molecules, 17, 2030-2048. https://doi.org/10.3390/molecules17022030

  7. 7. Mordente, A., Guantario, B., Meucci, E., et al. (2011) Lycopene and Cardiovascular Diseases: An Update. Current Medicinal Chemistry, 18, 1146-1163. https://doi.org/10.2174/092986711795029717

  8. 8. Sun, T., Yuan, H., Cao, H., et al. (2018) Carotenoid Metabol-ism in Plants: The Role of Plastids. Molecular Plant, 11, 58-74. https://doi.org/10.1016/j.molp.2017.09.010

  9. 9. Moise, A.R., Al-Babili, S. and Wurtzel, E.T. (2014) Mechanistic Aspects of Carotenoid Biosynthesis. Chemical Reviews, 114, 164-193. https://doi.org/10.1021/cr400106y

  10. 10. Yuan, H., Zhang, J., Nageswaran, D., et al. (2015) Carotenoid Metabolism and Regulation in Horticultural Crops. Horticulture Research, 2, Article No.: 15036. https://doi.org/10.1038/hortres.2015.36

  11. 11. Zhang, J., Tao, N., Xu, Q., et al. (2009) Functional Characterization of Citrus PSY Gene in Hongkong Kumquat (Fortunella hindsii Swingle). Plant Cell Reports, 28, 1737-1746. https://doi.org/10.1007/s00299-009-0774-3

  12. 12. Fraser, P.D., Enfissi, E.M., Halket, J.M., et al. (2007) Manipula-tion of Phytoene Levels in Tomato Fruit: Effects on Isoprenoids, Plastids, and Intermediary Metabolism. Plant Cell, 19, 3194-3211. https://doi.org/10.1105/tpc.106.049817

  13. 13. Maass, D., Arango, J., Wust, F., et al. (2009) Carotenoid Crystal Formation in Arabidopsis and Carrot Roots Caused by Increased Phytoene Synthase Protein Levels. PLoS One, 4, e6373. https://doi.org/10.1371/journal.pone.0006373

  14. 14. 程珍霞, 胡海涛, 杨莉, 等. 超表达牛奶子EutPDS提高番茄果实番茄红素含量[J]. 林业科学, 2017, 53(1): 62-69.

  15. 15. Lu, S., Zhang, Y., Zheng, X., et al. (2016) Molecular Characterization, Critical Amino Acid Identification, and Promoter Analysis of a Lycopene β-Cyclase Gene from Citrus. Tree Genetics and Genomes, 12, 106. https://doi.org/10.1007/s11295-016-1066-z

  16. 16. Zhang, L., Ma, G., Shirai, Y., et al. (2012) Expression and Func-tional Analysis of Two Lycopene Beta-Cyclases from Citrus Fruits. Planta, 236, 1315-1325. https://doi.org/10.1007/s00425-012-1690-2

  17. 17. Zeng, J., Wang, C., Chen, X., et al. (2015) The Lycopene Be-ta-Cyclase Plays a Significant Role in Provitamin A Biosynthesis in Wheat Endosperm. BMC Plant Biology, 15, 112. https://doi.org/10.1186/s12870-015-0514-5

  18. 18. Diretto, G., Tavazza, R., Welsch, R., et al. (2006) Metabolic En-gineering of Potato Tuber Carotenoids through Tuber-Specific Silencing of Lycopene Epsilon Cyclase. BMC Plant Bi-ology, 6, 13. https://doi.org/10.1186/1471-2229-6-13

  19. 19. Yu, B., Lydiate, D.J., Young, L.W., et al. (2008) Enhancing the Carotenoid Content of Brassica napus Seeds by Downregulating Lycopene Epsilon Cyclase. Transgenic Research, 17, 573-585. https://doi.org/10.1007/s11248-007-9131-x

  20. 20. Ng, M. and Yanofsky, M.F. (2001) Function and Evolution of the Plant MADS-Box Gene Family. Nature Reviews Genetics, 2, 186-195. https://doi.org/10.1038/35056041

  21. 21. Martel, C., Vrebalov, J., Tafelmeyer, P., et al. (2011) The Tomato MADS-Box Transcription Factor RIPENING INHIBITOR Interacts with Promoters Involved in Numerous Ripening Processes in a COLORLESS NONRIPENING-Dependent Manner. Plant Physiology, 157, 1568-1579. https://doi.org/10.1104/pp.111.181107

  22. 22. Luo, Z., Zhang, J., Li, J., et al. (2013) A STAY-GREEN Protein SlSGR1 Regulates Lycopene and Beta-Carotene Accumulation by Interacting Directly with SlPSY1 during Ripening Processes in Tomato. New Phytologist, 198, 442-452. https://doi.org/10.1111/nph.12175

  23. 23. Hinz, M., Wilson, I.W., Yang, J., et al. (2010) Arabidopsis RAP2.2: An Ethylene Response Transcription Factor That Is Important for Hypoxia Survival. Plant Physiology, 153, 757-772. https://doi.org/10.1104/pp.110.155077

  24. 24. Toledo-Ortiz, G., Huq, E. and Rodriguez-Concepcion, M. (2010) Di-rect Regulation of Phytoene Synthase Gene Expression and Carotenoid Biosynthesis by Phytochrome-Interacting Fac-tors. Proceedings of the National Academy of Sciences of the United States of America, 107, 11626-11631. https://doi.org/10.1073/pnas.0914428107

  25. 25. Llorente, B., D’Andrea, L., Ruiz-Sola, M.A., et al. (2016) Tomato Fruit Carotenoid Biosynthesis Is Adjusted to Actual Ripening Progression by a Light-Dependent Mechanism. Plant Journal, 85, 107-119. https://doi.org/10.1111/tpj.13094

  26. 26. Lu, S., Zhang, Y., Zhu, K., et al. (2018) The Citrus Transcription Factor CsMADS6 Modulates Carotenoid Metabolism by Directly Regulating Carotenogenic Genes. Plant Physiology, 176, 2657-2676. https://doi.org/10.1104/pp.17.01830

  27. 27. Liu, L., Shao, Z., Zhang, M., et al. (2015) Regulation of Carotenoid Metabolism in Tomato. Molecular Plant, 8, 28-39. https://doi.org/10.1016/j.molp.2014.11.006

  28. 28. Pizarro, L. and Stange, C. (2009) Light-Dependent Regulation of Carotenoid Biosynthesis in Plants. Ciencia e Investigación Agraria, 36, 143-162. https://doi.org/10.4067/S0718-16202009000200001

  29. 29. Ma, G., Zhang, L., Kato, M., et al. (2012) Effect of Blue and Red LED Light Irradiation on Beta-Cryptoxanthin Accumulation in the Flavedo of Citrus Fruits. Journal of Agricultural and Food Chemistry, 60, 197-201. https://doi.org/10.1021/jf203364m

  30. 30. Zhang, L., Ma, G., Yamawaki, K., et al. (2015) Effect of Blue LED Light Intensity on Carotenoid Accumulation in Citrus Juice Sacs. Journal of Plant Physiology, 188, 58-63. https://doi.org/10.1016/j.jplph.2015.09.006

  31. 31. Robertson, G.H., Mahoney, N.E., Goodman, N., et al. (1995) Regulation of Lycopene Formation in Cell Suspension Culture of VFNT Tomato (Lycopersicon esculentum) by CPTA, Growth Regulators, Sucrose, and Temperature. Journal of Experimental Botany, 46, 13-23. https://doi.org/10.1093/jxb/46.6.667

  32. 32. 刘雪静, 王艳, 刘童光, 等. 低温对番茄果实转色关键酶的影响[J]. 中国瓜菜, 2015, 28(1): 19-22.

  33. 33. 崔彤彤. 温度与SA对龙眼培养细胞类黄酮和类胡萝卜素的影响[D]: [硕士学位论文]. 福州: 福建农林大学, 2017.

  34. 34. Yang, L.Y., Yang, S.L., Li, J.Y., et al. (2018) Effects of Different Growth Temperatures on Growth, Development, and Plastid Pigments Metabolism of Tobacco (Nicotiana tabacum L.) Plants. Botanical Studies, 59, Article No.: 5. https://doi.org/10.1186/s40529-018-0221-2

  35. 35. Zhang, Z., Liu, L., Zhang, M., et al. (2014) Effect of Carbon Dioxide Enrichment on Health-Promoting Compounds and Organoleptic Properties of Tomato Fruits Grown in Greenhouse. Food Chemistry, 153, 157-163. https://doi.org/10.1016/j.foodchem.2013.12.052

  36. 36. 张朋, 张文会, 苗秀莲, 等. CO2浓度倍增对大豆生长及光合作用的影响[J]. 大豆科学, 2010(1): 64-67.

  37. 37. 张志明. 二氧化碳施肥对番茄果实品质的影响[D]: [硕士学位论文]. 杭州: 浙江大学, 2012.

  38. 38. Dhami, N., Tissue, D.T. and Cazzonelli, C.I. (2018) Leaf-Age Dependent Re-sponse of Carotenoid Accumulation to Elevated CO2 in Arabidopsis. Archives of Biochemistry and Biophysics, 647, 67-75. https://doi.org/10.1016/j.abb.2018.03.034

  39. 39. Levin, I., de Vos, C.H.R., Tadmor, Y., et al. (2006) High Pigment Tomato Mutants—More than Just Lycopene (a Review). Israel Journal of Plant Sciences, 54, 179-190. https://doi.org/10.1560/IJPS_54_3_179

  40. 40. Sauret-Gueto, S., Botella-Pavia, P., Flores-Perez, U., et al. (2006) Plastid Cues Posttranscriptionally Regulate the Accumulation of Key Enzymes of the Methylerythritol Phosphate Pathway in Arabidopsis. Plant Physiology, 141, 75-84. https://doi.org/10.1104/pp.106.079855

  41. 41. Schweiggert, R.M. and Carle, R. (2017) Carotenoid Deposition in Plant and Animal Foods and Its Impact on Bioavailability. Critical Reviews in Food Science and Nutrition, 57, 1807-1830.

  42. 42. Li, L., Yuan, H., Zeng, Y., et al. (2016) Plastids and Carotenoid Accumulation. Subcellular Bioche-mistry, 79, 273-293. https://doi.org/10.1007/978-3-319-39126-7_10

  43. 43. Chayut, N., Yuan, H., Ohali, S., et al. (2017) Distinct Me-chanisms of the ORANGE Protein in Controlling Carotenoid Flux. Plant Physiology, 173, 376-389. https://doi.org/10.1104/pp.16.01256

  44. 44. Yuan, H., Owsiany, K., Sheeja, T.E., et al. (2015) A Single Amino Acid Substitution in an ORANGEp Promotes Carotenoid Overaccumulation in Arabidopsis. Plant Physiology, 169, 421-431. https://doi.org/10.1104/pp.15.00971

  45. 45. Lu, S., Van Eck, J., Zhou, X., et al. (2006) The Cauliflower Or Gene Encodes a DnaJ Cysteine-Rich Domain-Containing Protein That Mediates High Levels of Beta-Carotene Accumulation. Plant Cell, 18, 3594-3605. https://doi.org/10.1105/tpc.106.046417

  46. 46. Li, L., Yang, Y., Xu, Q., et al. (2012) The Or Gene Enhances Carote-noid Accumulation and Stability during Post-Harvest Storage of Potato Tubers. Molecular Plant, 5, 339-352. https://doi.org/10.1093/mp/ssr099

  47. 47. Gao, H.Y., Zhu, B.Z., Zhu, H.L., et al. (2007) Effect of Suppression of Ethylene Biosynthesis on Flavor Products in Tomato Fruits. Russian Journal of Plant Physiology, 54, 80-88. https://doi.org/10.1134/S1021443707010128

  48. 48. Gao, H., Zhu, H., Shao, Y., et al. (2008) Lycopene Accumula-tion Affects the Biosynthesis of Some Carotenoid-Related Volatiles Independent of Ethylene in Tomato. Journal of Integrative Plant Biology, 50, 991-996. https://doi.org/10.1111/j.1744-7909.2008.00685.x

  49. 49. Vrebalov, J., Pan, I.L., Arroyo, A.J., et al. (2009) Fleshy Fruit Expansion and Ripening Are Regulated by the Tomato SHATTERPROOF Gene TAGL1. Plant Cell, 21, 3041-3062. https://doi.org/10.1105/tpc.109.066936

  50. 50. Chung, M.Y., Vrebalov, J., Alba, R., et al. (2010) A Tomato (Solanum lycopersicum) APETALA2/ERF Gene, SlAP2a, Is a Negative Regulator of Fruit Ripening. Plant Journal, 64, 936-947. https://doi.org/10.1111/j.1365-313X.2010.04384.x

  51. 51. Sun, L., Yuan, B., Zhang, M., et al. (2012) Fruit-Specific RNAi-Mediated Suppression of SlNCED1 Increases Both Lycopene and Beta-Carotene Contents in Tomato Fruit. Journal of Experimental Botany, 63, 3097-3108. https://doi.org/10.1093/jxb/ers026

  52. 52. 邓昌哲, 秦于玲, 李开绵, 等. 外源ABA对木薯叶片β-胡萝卜素合成通路相关基因表达的影响[J]. 热带作物学报, 2017, 38(4): 667-672.

  53. 53. 凌亚杰, 杨子, 莫琴, 等. 外源蔗糖和ABA对草莓生物活性物质及抗氧化能力的影响[J]. 基因组学与应用生物学, 2019(4): 1712-1718.

  54. 54. 李家寅. 生长素及生长素–乙烯互作调控番茄果实成熟的效应与机理[D]: [博士学位论文]. 杭州: 浙江大学, 2017.

  55. 55. Su, L., Diretto, G., Purgatto, E., et al. (2015) Carotenoid Accumulation during Tomato Fruit Ripening Is Modulated by the Auxin-Ethylene Balance. BMC Plant Biology, 15, 114. https://doi.org/10.1186/s12870-015-0495-4

  56. 56. Rosas-Saavedra, C. and Stange, C. (2016) Biosynthesis of Caro-tenoids in Plants: Enzymes and Color. Subcellular Biochemistry, 79, 35-69. https://doi.org/10.1007/978-3-319-39126-7_2

  57. 57. Lu, S. and Li, L. (2008) Carotenoid Metabolism: Biosynthesis, Regulation, and Beyond. Journal of Integrative Plant Biology, 50, 778-785. https://doi.org/10.1111/j.1744-7909.2008.00708.x

  58. 58. 朱运钦, 乔改梅, 王志强. 植物类胡萝卜素代谢调控的研究进展[J]. 分子植物育种, 2016(2): 471-474.

期刊菜单