﻿ 氢同位素分离柱的循环冷却数学模型 Mathematical Model of Hydrogen Isotope Separation Column in Circulating Cooling Condition

Nuclear Science and Technology
Vol.05 No.03(2017), Article ID:21513,7 pages
10.12677/NST.2017.53022

Mathematical Model of Hydrogen Isotope Separation Column in Circulating Cooling Condition

Xiangbo li, Shilin Hu, Yi Kang, Hailin Bai

China Institute of Atomic Energy, Beijing

Received: Jul. 10th, 2017; accepted: Jul. 23rd, 2017; published: Jul. 26th, 2017

ABSTRACT

Based on the classic Newton’s law of cooling and combined with the mathematical methods such as differential equation, iterative method, least square method and linear fitting analysis, a new mathematical model is established. The mathematical model can be used to analyze the cooling curve of hydrogen isotope separation column which was cooled by both natural ventilation cooling and circulating cooling, predict the required cooling time and guide the selection of cooling conditions.

Keywords:Cooling Mathematical Model, Newton’s Law of Cooling, Iterative Method

1. 引言

2. 实验装置

3. 自然冷却条件下的冷却模型

Table 1. Experimental instruments

Figure 1. Flowchart of circulating cooling simulation experiment

Figure 2. Temperature curve of separating column under natural cooling conditions

Figure 3. Linear fitting results under natural cooling conditions

4. 循环冷却条件作用下的冷却模型

(1) 冷却气温度= 环境温度

(2) 冷却气温度环境温度

Figure 4. Temperature curve of separating column under circulating cooling conditions

Figure 5. First linear fitting results under circulating cooling conditions

Figure 6. Fourth linear fitting results under circulating cooling conditions

Table 2. Results of each linear fitting

5. 总结

Mathematical Model of Hydrogen Isotope Separation Column in Circulating Cooling Condition[J]. 核科学与技术, 2017, 05(03): 170-176. http://dx.doi.org/10.12677/NST.2017.53022

1. 1. 蒋国强, 罗德礼, 陆光达, 孙灵霞. 氚和氚的工程技术[M]. 北京: 国防工业出版社, 2007.

2. 2. 彭述明, 王和义. 氚化学与工艺学[M]. 北京: 国防工业出版社, 2015.

3. 3. 霍尔曼J.P., 等. 传热学[M]. 北京: 人民教育出版社, 1979.

4. 4. 过增元. 热流体学[M]. 北京: 清华大学出版社, 1992.

5. 5. 菲赫金哥尔茨. 微积分学教程[M]. 北京: 高等教育出版社, 2006.