Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62441 , 6 pages
10.12677/ACM.2023.133496

脑肠轴作为中枢神经系统疾病治疗靶点的研究进展

安刚1*,宋慧敏2,崔昌萌2#

1济宁医学院临床医学院,山东 济宁

2济宁医学院附属医院神经外科监护室,山东 济宁

收稿日期:2023年2月13日;录用日期:2023年3月7日;发布日期:2023年3月14日

摘要

脑肠轴是由胃肠道与中枢神经系统之间双向的信息交流组成,在大脑情绪和认知中枢与外周肠道功能相互沟通、相互影响中发挥着重要作用。在脑肠轴中,肠道微生物具有媒介作用,肠道微生物群可以通过调节营养物质代谢和合成分泌神经递质等途径来影响大脑的发育和功能。同时脑肠轴也参与多种中枢神经系统疾病的发生发展,如创伤性脑损伤、脑血管疾病、胶质瘤、阿尔茨海默病、抑郁症等疾病。本文将对脑肠轴作为中枢神经系统疾病治疗靶点进行综述如下。

关键词

脑肠轴,中枢神经系统疾病,诊断和治疗

Research Progress of the Brain-Gut Axis as a Therapeutic Target for Central Nervous System Diseases

Gang An1*, Huimin Song2, Changmeng Cui2#

1Clinical Medical College of Jining Medical University, Jining Shandong

2Neurosurgery Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining Shandong

Received: Feb. 13th, 2023; accepted: Mar. 7th, 2023; published: Mar. 14th, 2023

ABSTRACT

The brain-gut axis is composed of two-way information exchange between the gastrointestinal tract and the central nervous system, and plays an important role in the communication and mutual influence between the emotional and cognitive center of the brain and the peripheral intestinal function. In the brain-gut axis, gut microbes play a mediating role, and gut microbiota can affect brain development and function by regulating nutrient metabolism and synthesizing and secreting neurotransmitters. At the same time, the brain-gut axis is also involved in the occurrence and development of various central nervous system diseases, such as traumatic brain injury, cerebrovascular disease, glioma, Alzheimer’s disease, depression and other diseases. In this paper, the brain-gut axis as a therapeutic target for central nervous system diseases is reviewed as follows.

Keywords:Brain-Gut Axis, Central Nervous System Disease, Diagnosis and Treatment

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

脑肠轴是由胃肠道与中枢神经系统之间双向的信息交流组成,其组成主要包括肠道微生物群及其代谢产物、肠神经系统、神经免疫系统和神经内分泌系统。肠道微生物群与大脑之间可能存在多种交流途径,包括肠脑神经网络、肠道免疫系统、肠道菌群生成的神经递质和神经调节因子以及肠粘膜屏障等。肠道微生物可能通过影响神经发育、调节神经递质传递等途径,在许多神经系统疾病的发生发展中产生重要作用 [1] 。

2. 脑肠轴在中枢神经系统疾病的作用

2.1. 脑肠轴对创伤性颅脑损伤的作用

创伤性颅脑损伤(traumatic brain injury, TBI)是导致全球45岁以下人群残疾和死亡的主要原因 [2] 。Li等 [3] 研究发现,在TBI小鼠胃内给予丁酸梭菌可明显增加紧密连接蛋白的表达,进而降低血脑屏障通透性,减少脑水肿和神经细胞死亡的风险。TBI可破坏肠道屏障功能,提高内毒素(如脂蛋白和脂多糖)的循环水平,而内毒素能够进一步激活大脑的星形胶质细胞并触发神经炎症,导致病变恶化 [4] 。MA等 [5] 研究发现,向TBI小鼠胃内补充嗜酸乳杆菌可降低小鼠炎症细胞因子的表达,避免星形胶质细胞的过度增生,从而缓解TBI导致的神经功能障碍。Elise等 [6] 研究发现,肠道来源的柠檬酸杆菌不仅明显增加TBI小鼠的病变范围,还提高了星形胶质细胞的反应水平,最终加重了脑损伤和神经炎症。以上说明肠道菌群对于调节胶质细胞正常功能非常重要,但肠道菌群影响胶质细胞具体作用机制仍需继续研究。TBI后,小胶质细胞的适度活化对神经功能的恢复具有重要作用 [7] 。在肠道无菌小鼠TBI模型中补充短链脂肪酸(short-chain fatty acid, SCFA)可以维持小胶质细胞的正常活化,从而提高了TBI后神经功能的修复水平 [8] 。这说明肠道微生物的代谢物短链脂肪酸对小胶质细胞的正常活化和TBI后神经功能的修复具有促进作用,但其作用机制仍需进一步研究。

因此,脑肠轴通过影响肠道菌群为改善TBI神经功能提供了新的可能方法。

2.2. 脑肠轴对缺血性脑卒中的作用

缺血性脑卒中是一个全球性的健康问题,可导致受影响区域脑实质受损,严重时可导致患者痴呆或死亡 [9] 。肠道微生物群可影响缺血性脑卒中的发生进展和预后。Benakis等 [10] 发现抗生素处理过的小鼠肠道菌群发生了改变,而肠道生态失调通过改变树突细胞活性可以增加调节性T细胞和减少IL-17 + γδT细胞的数量,最终减轻了小鼠缺血性脑损伤的严重程度。有研究表明,调节性T细胞通过限制脑中炎症反应在缺血性脑卒中发生后发挥着神经保护作用。而Dong等 [11] 研究证明,γδT细胞在大脑中动脉闭塞后会迅速浸润到病灶区域,通过释放IL-17A加重血脑屏障损伤,最终不利于缺血性脑卒中的恢复。因此,了解肠道免疫炎症反应可能为缺血性脑卒中的治疗提供了新的可能途径。

缺血性脑卒中发生后,患者可能出现各种并发症。这些并发症(如胃肠道出血,心血管事件等)严重时可导致进行性神经功能损害和病人死亡率增加。有研究表明,肠道微生物群在缺血性脑卒中并发症中发挥着重要作用 [9] 。Arash等 [12] 研究显示,在首次缺血性脑卒中患者中,肠道微生物群依赖性代谢产物三甲胺N-氧化物(trimethylamine N-oxide, TMAO)水平升高与心血管事件的发生风险增加呈剂量依赖性关系。而TMAO可通过增加组织因子表达和活性来促进动脉粥样硬化的血栓形成,这可能是缺血性脑卒中患者心血管事件发生风险增加的潜在原因 [13] 。有研究表明,肠道微生物群会影响缺血性脑卒中小鼠的预后 [14] 。Singh等 [15] 在无菌、再定植无菌和无特定病原体小鼠中诱导发生缺血性脑卒中时,通过诱导后5天梗死体积的定量发现,完全缺乏肠道菌群的无菌小鼠脑损伤区域扩大,而再定植无菌小鼠和正常喂养的无特定病原体小鼠预后有所改观。然后,Spychala等 [16] 研究不同年龄小鼠肠道微生物群在缺血性脑卒中的作用,发现不同年龄阶段的受体小鼠接受幼年供体小鼠粪便微生物移植时,其行为测试表现如神经缺陷评分和运动能力有所提高,最终降低50%死亡率。

总之,肠道菌群对缺血性脑卒中既有促进作用,又会产生不利影响。而粪便微生物移植作为一种微生物靶向疗法,有可能会促进缺血性脑卒中患者的恢复。

2.3. 脑肠轴对胶质瘤的作用

胶质瘤是中枢神经系统最常见的恶性肿瘤。肠道微生物群与胶质瘤之间有密切联系。肠道微生物群可产生芳烃受体(aryl hydrocarbon receptor, AHR)等与胶质瘤密切相关的肠脑神经信号,AHR可通过多种途径影响脑胶质瘤的进展。

芳烃受体(AHR)在胶质瘤中大量表达。AHR既可以被胶质瘤自身代谢合成的犬尿氨酸激活,也可以被饮食、肠道微生物、新陈代谢和环境产生的小分子所激活,并且AHR的高表达往往提示胶质瘤患者预后不佳 [17] 。肠道共生细菌可以将食物中的色氨酸转化为AHR配体,与胶质瘤的AHR结合并诱导其产生相关作用,如调节T细胞和树突状细胞(dendritic cell, DC)的分化和功能 [18] ,通过促进趋化因子受体CCR2的表达来募集肿瘤相关巨噬细胞(tumor-associated macrophage, TAM)。而DC和TAM在胶质瘤的免疫反应中发挥重要作用。AHR信号传导通路会抑制肿瘤相关巨噬细胞、嗜中性粒细胞、T细胞等多种免疫细胞的功能,例如,TAM中AHR通过驱动CD39表达来抑制CD8+ T细胞功能,从而导致胶质瘤生长、发展和治疗过程中免疫微环境的抑制性改变,亦会造成胶质瘤恶化、转移等不良后果 [19] 。总之,AHR是肠道微生物群影响胶质瘤发展的关键因素。

Anoctamin1 (ANO1)是一种钙激活的氯离子通道,其在胃肠道介导上皮细胞发挥液体分泌、平滑肌收缩等生理功能,对肠道内环境具有关键调控作用。ANO1既和肠道内环境相关,又对胶质母细胞瘤有调节作用。有研究发现,ANO1功能异常可能会对正常的肠道内环境产生影响 [20] ,例如,ANO1功能异常与肠易激综合征等功能性胃肠道疾病紧密相关。ANO1在胶质母细胞瘤(glioblastoma multiforme, GBM)等肿瘤疾病中过表达,且ANO1的过表达增强了胶质母细胞瘤干细胞中表皮生长因子受体变体III (EGFRvIII)和相关干细胞因子(如NOTCH1、nestin和SOX2)自我更新、侵袭活性和表达的能力,从而促进胶质母细胞瘤的细胞增殖、迁移和侵袭等过程 [21] 。因此,ANO1可能是连接胶质瘤和肠道内环境的一种重要途径。

2.4. 脑肠轴对阿尔兹海默病的作用

阿尔茨海默病(Alzheimer’s disease, AD)是在记忆、认知等方面存在严重缺陷的神经退行性疾病。近年来研究发现肠道菌群及其代谢产物与阿尔茨海默病有着密切联系,肠道菌群紊乱可促进阿尔茨海默病的发生发展。

研究表明,AD患者肠道短链脂肪酸含量明显降低 [22] 。而SCFA是结肠微生物在碳水化合物和蛋白质分解代谢过程中产生的主要代谢物,其在调节细胞生长和分化、营养结肠粘膜、维持肠道菌群平衡等方面发挥重要作用 [23] 。SCFA可经肠道进入血液循环,并借助单羧酸转运蛋白穿过血脑屏障,在脑组织中发挥重要作用 [24] 。

组蛋白去乙酰化是阿尔茨海默病等神经退行性疾病的特征。组蛋白可通过乙酰转移酶乙酰化,而组蛋白脱乙酰基酶可使组蛋白去乙酰化 [25] 。SCFA中丁酸钠是一种常见的HDAC抑制剂,有研究发现用丁酸钠治疗可改善衰老以及p25介导的神经元丢失和记忆功能;Megan等 [26] 还发现丁酸钠可增加组蛋白乙酰化水平,阻止神经细胞死亡并增加AD小鼠学习相关基因的表达。SCFA是调节小胶质细胞活化和功能的重要物质,对于调节神经免疫反应可能具有益处,对AD同样具有重要作用。Daniel等 [27] 研究发现,在缺乏SCFA受体FFAR2的无菌小鼠中,Mapk8、Fcgr2β、Ly86和Hif1α等与小胶质细胞活化相关的基因表达水平下降,这导致了小胶质细胞成熟、分化和功能缺陷。而给予无菌小鼠补充SCFA后,小胶质细胞形态测量显示其细胞体积、正常数量的节段得到一定程度的恢复。因此,缺乏SCFA或肠道微生物失调可能会导致神经免疫缺陷。而且小胶质细胞对于清除AD中淀粉样蛋白β (Aβ)沉积物非常重要 [28] ,通过肠道微生物或SCFA可能会改善小胶质细胞的活化缺陷,从而缓解AD。

综上,肠道代谢产物短链脂肪酸可以在某种程度上延缓阿尔茨海默病的发展,并有治疗阿尔茨海默病的潜力,或许可以与阿尔茨海默病的治疗药物联合使用。

2.5. 脑肠轴对抑郁症的作用

抑郁症是一种常见的精神障碍疾病,并且是自杀的高危因素。肠道菌群可通过脑肠轴影响大脑功能,与抑郁症的发病进展紧密相关。目前,抗抑郁药物具有副作用并且对部分患者疗效较差 [29] 。因此,人们开始更多关注调节肠道菌群平衡的治疗方法。益生菌被定义为一种活的微生物,当摄入足够量时,其会对患有抑郁症等精神疾病的患者产生健康益处。其中精神益生菌能够在改善行为和情绪方面发挥作用,不仅有利于胃肠道,还可能对整个脑肠轴发挥积极作用 [30] 。有研究表明,给予慢性应激小鼠补充精神益生菌有助于改善其大脑可塑性异常、海马神经发生减少,表明精神益生菌可能有利于治疗焦虑和抑郁症等压力相关疾病 [31] 。Wallace等人临床盲选抑郁症患者,随机将患者分为两组,分别给予16周的安慰剂(对照组)和含有瑞士乳杆菌和长双歧杆菌的精神益生菌补充剂(治疗组)治疗,通过临床量表和问卷调查来评估精神益生菌对抑郁症的影响,结果表明精神益生菌能够缓解抑郁症状并提高患者的认知能力 [32] 。但是,益生菌发挥功效可能受到两方面的限制。一方面是能被用作益生菌的数量较少,已知的益生菌只有乳酸杆菌、双歧杆菌等少量细菌;另一方面肠道菌群紊乱会影响益生菌发挥功效。

3. 总结与展望

综上所述,脑肠轴与中枢神经系统的生理功能和疾病密切相关。脑肠轴从一个新的角度对中枢神经系统疾病进行解释,有助于研究发病机制,为诊断和治疗神经系统疾病提供新的方法,也为我们更好地了解肠道微生物的功能并发挥其价值提供了可能方案,但具体生物学机制需要进一步深入研究。

基金项目

国家自然科学基金资助项目(81901954)。

文章引用

安 刚,宋慧敏,崔昌萌. 脑肠轴作为中枢神经系统疾病治疗靶点的研究进展
Research Progress of the Brain-Gut Axis as a Therapeutic Target for Central Nervous System Diseases[J]. 临床医学进展, 2023, 13(03): 3475-3480. https://doi.org/10.12677/ACM.2023.133496

参考文献

  1. 1. Socała, K., Doboszewska, U., Szopa, A., Serefko, A., Włodarczyk, M., Zielińska, A., Poleszak, E., Fichna, J. and Wlaź, P. (2021) The Role of Microbiota-Gut-Brain Axis in Neuropsychiatric and Neurological Disorders. Pharmacological Research, 172, Article ID: 105840. https://doi.org/10.1016/j.phrs.2021.105840

  2. 2. Liu, X., Zhao, Z., Ji, R., Zhu, J., Sui, Q.-Q., Knight, G.E., Burnstock, G., He, C., Yuan, H. and Xiang, Z. (2017) Inhibition of P2X7 Receptors Im-proves Outcomes after Traumatic Brain Injury in Rats. Purinergic Signalling, 13, 529-544. https://doi.org/10.1007/s11302-017-9579-y

  3. 3. Li, H., Sun, J., Du, J., Wang, F., Fang, R., Yu, C., Xiong, J., Chen, W., Lu, Z. and Liu, J. (2018) Clostridium butyricum Exerts a Neuroprotective Effect in a Mouse Model of Traumatic Brain Injury via the Gut-Brain Axis. Neurogastroenterology & Motility, 30, e13260. https://doi.org/10.1111/nmo.13260

  4. 4. Zhao, Y.F., Wei, D.N. and Tang, Y. (2021) Gut Microbiota Regulate Astrocytic Functions in the Brain: Possible Therapeutic Consequences. Current Neuropharmacology, 19, 1354-1366. https://doi.org/10.2174/1570159X19666210215123239

  5. 5. Ma, Y., Liu, T., Fu, J., Fu, S., Hu, C., Sun, B., Fan, X. and Zhu, J. (2019) Lactobacillus acidophilus Exerts Neuroprotective Effects in Mice with Traumatic Brain Injury. The Journal of Nutrition, 149, 1543-1552. https://doi.org/10.1093/jn/nxz105

  6. 6. Ma, E.L., Smith, A.D., Desai, N., Cheung, L., Hanscom, M., Stoica, B.A., Loane, D.J., Shea-Donohue, T. and Faden, A.I. (2017) Bidirectional Brain-Gut Interactions and Chronic Pathological Changes after Traumatic Brain Injury in Mice. Brain, Behavior, and Immunity, 66, 56-69. https://doi.org/10.1016/j.bbi.2017.06.018

  7. 7. Mossad, O. and Erny, D. (2020) The Microbiota-Microglia Axis in Central Nervous System Disorders. Brain Pathology, 30, 1159-1177. https://doi.org/10.1111/bpa.12908

  8. 8. Karve, I.P., Taylor, J.M. and Crack, P.J. (2016) The Contribution of Astrocytes and Microglia to Traumatic Brain Injury. British Journal of Pharmacology, 173, 692-702. https://doi.org/10.1111/bph.13125

  9. 9. Pluta, R., Januszewski, S. and Czuczwar, S.J. (2021) The Role of Gut Microbiota in an Ischemic Stroke. International Journal of Molecular Sciences, 22, Article No. 915. https://doi.org/10.3390/ijms22020915

  10. 10. Benakis, C., Brea, D., Caballero, S., Faraco, G., Moore, J., Murphy, M., Sita, G., Racchumi, G., Ling, L., Pamer, E.G., Iadecola, C. and Anrather, J. (2016) Commensal Microbiota Affects Ischemic Stroke Outcome by Regulating Intestinal γδ T Cells. Nature Medicine, 22, 516-523. https://doi.org/10.1038/nm.4068

  11. 11. Dong, X., Zhang, X., Li, C., Chen, J., Xia, S., Bao, X., Ge, J., Cao, X. and Xu, Y. (2022) γδ T Cells Aggravate Blood-Brain-Barrier Injury via IL-17A in Experimental Ischemic Stroke. Neurosci-ence Letters, 776, Article ID: 136563. https://doi.org/10.1016/j.neulet.2022.136563

  12. 12. Haghikia, A., Li, X.S., Liman, T.G., Bledau, N., Schmidt, D., Zimmermann, F., Kränkel, N., Widera, C., Sonnenschein, K., Haghikia, A., Weissenborn, K., Fraccarollo, D., Heimesaat, M.M., Bauersachs, J., Wang, Z., Zhu, W., Bavendiek, U., Hazen, S.L., Endres, M. and Landmesser, U. (2018) Gut Microbiota-Dependent Trimethylamine N-Oxide Predicts Risk of Cardiovascular Events in Patients with Stroke and Is Related to Proinflammatory Monocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 2225-2235. https://doi.org/10.1161/ATVBAHA.118.311023

  13. 13. Cheng, X., Qiu, X., Liu, Y., Yuan, C. and Yang, X. (2019) Trimethylamine N-Oxide Promotes Tissue Factor Expression and Activity in Vascular Endothelial Cells: A New Link Between Trimethylamine N-Oxide and Atherosclerotic Thrombosis. Thrombosis Research, 177, 110-116. https://doi.org/10.1016/j.thromres.2019.02.028

  14. 14. Peh, A., O’Donnell, J.A., Broughton, B.R.S. and Marques, F.Z. (2022) Gut Microbiota and Their Metabolites in Stroke: A Double-Edged Sword. Stroke, 53, 1788-1801. https://doi.org/10.1161/STROKEAHA.121.036800

  15. 15. Singh, V., Sadler, R., Heindl, S., Llovera, G., Roth, S., Benakis, C. and Liesz, A. (2018) TThe Gut Microbiome Primes a Cerebroprotective Immune Response after Stroke. Journal of Cerebral Blood Flow & Metabolism, 38, 1293-1298. https://doi.org/10.1177/0271678X18780130

  16. 16. Spychala, M.S., Venna, V.R., Jandzinski, M., Doran, S.J., Durgan, D.J., Ganesh, B.P., Ajami, N.J., Putluri, N., Graf, J., Bryan, R.M. and McCullough, L.D. (2018) Age-Related Changes in the Gut Microbiota Influence Systemic Inflammation and Stroke Outcome. Annals of Neurology, 84, 23-36. https://doi.org/10.1002/ana.25250

  17. 17. Zaragoza-Ojeda, M., Apatiga-Vega, E. and Arenas-Huertero, F. (2021) Role of Aryl Hydrocarbon Receptor in Central Nervous System Tumors: Biological and Therapeutic Implications (Re-view). Oncology Letters, 21, Article No. 460. https://doi.org/10.3892/ol.2021.12721

  18. 18. Gutiérrez-Vázquez, C. and Quintana, F.J. (2018) Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity, 48, 19-33. https://doi.org/10.1016/j.immuni.2017.12.012

  19. 19. Takenaka, M.C., Gabriely, G., Rothhammer, V., Mascanfroni, I.D., Wheeler, M.A., Chao, C.C., Gutiérrez-Vázquez, C., Kenison, J., Tjon, E.C., Barroso, A., Vandeventer, T., de Lima, K.A., Rothweiler, S., Mayo, L., Ghannam, S., Zandee, S., Healy, L., Sherr, D., Farez, M.F., Prat, A., et al. (2019) Control of Tumor-Associated Macrophages and T Cells in Glioblastoma via AHR and CD39. Nature Neuroscience, 22, 729-740. https://doi.org/10.1038/s41593-019-0370-y

  20. 20. Mazzone, A., Gibbons, S.J., Eisenman, S.T., Strege, P.R., Zheng, T., D’Amato, M., Ordog, T., Fernandez-Zapico, M.E. and Farrugia, G. (2019) Direct Repression of Anoctamin 1 (ANO1) Gene Transcription by Gli Proteins. The FASEB Journal, 33, 6632-6642. https://doi.org/10.1096/fj.201802373R

  21. 21. Kim, H.-J., Kim, J.-Y., Jung, C.-W., Lee, Y.-S., An, J.-Y., Kim, E.H., Kim, K.-H., Lee, S.P., Park, J.-Y. and Park, M.-J. (2021) ANO1 Regulates the Maintenance of Stemness in Glioblastoma Stem Cells by Stabilizing EGFRvIII. Oncogene, 40, 1490-1502. https://doi.org/10.1038/s41388-020-01612-5

  22. 22. Zhuang, Z.-Q., Shen, L.-L., Li, W.-W., Fu, X., Zeng, F., Gui, L., Lü, Y., Cai, M., Zhu, C., Tan, Y.-L., Zheng, P., Li, H.-Y., Zhu, J., Zhou, H.-D., Bu, X.-L. and Wang, Y.-J. (2018) Gut Microbiota Is Altered in Patients with Alzheimer’s Disease. Journal of Alzheimer’s Disease, 63, 1337-1346. https://doi.org/10.3233/JAD-180176

  23. 23. Macfarlane, G.T. and Macfarlane, S. (2012) Bacteria, Colonic Fermen-tation, and Gastrointestinal Health. Journal of AOAC International, 95, 50-60. https://doi.org/10.5740/jaoacint.SGE_Macfarlane

  24. 24. Vijay, N. and Morris, M.E. (2014) Role of Monocarboxylate Transporters in Drug Delivery to the Brain. Current Pharmaceutical Design, 20, 1487-1498. https://doi.org/10.2174/13816128113199990462

  25. 25. Govindarajan, N., Agis-Balboa, R.C., Walter, J., Sananbenesi, F. and Fischer, A. (2011) Sodium Butyrate Improves Memory Function in an Alzheimer’s Disease Mouse Model When Administered at an Advanced Stage of Disease Progression. Journal of Alzheimer’s Disease, 26, 187-197. https://doi.org/10.3233/JAD-2011-110080

  26. 26. Bourassa, M.W., Alim, I., Bultman, S.J. and Ratan, R.R. (2016) Butyrate, Neuroepigenetics and the Gut Microbiome: Can a High Fiber Diet Improve Brain Health? Neuroscience Letters, 625, 56-63. https://doi.org/10.1016/j.neulet.2016.02.009

  27. 27. Erny, D., Hrabě de Angelis, A.L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., Schwierzeck, V., Utermöhlen, O., Chun, E., Garrett, W.S., McCoy, K.D., Diefenbach, A., Staeheli, P., Stecher, B., Amit, I. and Prinz, M. (2015) Host Microbiota Constantly Control Maturation and Function of Microglia in the CNS. Nature Neuroscience, 18, 965-977. https://doi.org/10.1038/nn.4030

  28. 28. Doens, D. and Fernández, P.L. (2014) Microglia Receptors and Their Im-plications in the Response to Amyloid β for Alzheimer’s Disease Pathogenesis. Journal of Neuroinflammation, 11, Ar-ticle No. 48. https://doi.org/10.1186/1742-2094-11-48

  29. 29. Cryan, J.F. and Slattery, D.A. (2007) Animal Models of Mood Disorders: Recent Developments. Current Opinion in Psychiatry, 20, 1-7. https://doi.org/10.1097/YCO.0b013e3280117733

  30. 30. 陶伟伟, 董宇, 刘立, 肖东, 吴浩然, 吴颢昕, 陈刚, 狄留庆, 王汉卿. 基于“脑-肠”轴的肠道菌群影响抑郁症研究进展[J]. 南京中医药大学学报, 2019, 35(2): 234-240. https://doi.org/10.14148/j.issn.1672-0482.2019.0234

  31. 31. Ait-Belgnaoui, A., Colom, A., Braniste, V., Ramalho, L., Marrot, A., Cartier, C., Houdeau, E., Theodorou, V. and Tompkins, T. (2014) Probiotic Gut Effect Prevents the Chronic Psychological Stress-Induced Brain Activity Abnormality in Mice. Neurogastroenterology & Motility, 26, 510-520. https://doi.org/10.1111/nmo.12295

  32. 32. Wallace, C.J.K., Foster, J.A., Soares, C.N. and Milev, R.V. (2020) The Effects of Probiotics on Symptoms of Depression: Protocol for a Double-Blind Randomized Place-bo-Controlled Trial. Neuropsychobiology, 79, 108-116. https://doi.org/10.1159/000496406

  33. NOTES

    *第一作者。

    #通讯作者。

期刊菜单