Advances in Clinical Medicine
Vol. 12  No. 04 ( 2022 ), Article ID: 50601 , 7 pages
10.12677/ACM.2022.124442

钙卫蛋白在心血管领域的前沿概况

方晓欣1,陈晓锋2*

1浙江大学医学院,浙江 杭州

2浙江大学台州医院,浙江 台州

收稿日期:2022年3月20日;录用日期:2022年4月14日;发布日期:2022年4月22日

摘要

心血管疾病(Cardiovascular Diseases, CVDs)包括多种心脏和血管疾病,是全球范围内居民死亡的主要原因。在我国,心血管疾病发展形势日益严峻,不健康的生活方式导致发病年龄逐年下降,严重威胁国民生命健康与安全。探索心血管疾病病理生理学特点,寻找潜在靶向治疗药物,向我们提出重大挑战。钙卫蛋白(S100A8/S100A9)作为免疫细胞分泌的一种炎症细胞因子,是多种疾病诊断和随访的候选生物标志物以及炎症相关疾病治疗反应的预测指标,前期已有多项研究将钙卫蛋白与心血管疾病关联在一起,钙卫蛋白在心血管疾病发病机制中的作用越来越受到关注,本文旨在对钙卫蛋白在心血管领域的前沿概况作一综述。

关键词

钙卫蛋白,心血管领域,动脉粥样硬化,生物标志物,综述

Frontiers of Calprotectin in Cardiovascular Field

Xiaoxin Fang1, Xiaofeng Chen2*

1Zhejiang University School of Medicine, Hangzhou Zhejiang

2Taizhou Hospital of Zhejiang University School, Taizhou Zhejiang

Received: Mar. 20th, 2022; accepted: Apr. 14th, 2022; published: Apr. 22nd, 2022

ABSTRACT

Cardiovascular diseases (CVDs) include a variety of heart diseases and vascular diseases, which are the main cause of death among residents worldwide. In China, the burden of cardiovascular diseases is becoming increasingly serious. Unhealthy lifestyles lead to a decline in the age of onset over the years, which seriously threatens the national health and safety. Exploring the pathophysiological features of cardiovascular disease and finding potential targeted therapeutics presents us with significant challenges. Calprotectin (S100A8/S100A9), an inflammatory cytokine secreted by immune cells, is a candidate biomarker for the diagnosis and follow-up of a variety of diseases and a predictor of the treatment response of inflammation related diseases. Up to now, several previous studies have linked calprotectin to cardiovascular diseases, and the role of calprotectin in the pathogenesis of cardiovascular diseases has attracted an increasing of attention, the aim of this manuscript is to review the frontiers of calprotectin in cardiovascular field.

Keywords:Calprotectin, Cardiovascular Field, Atherosclerosis, Biomarker, Review

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

心血管疾病是影响心脏或血管的疾病的总称,主要包括冠心病(Coronary heart disease, CHD)、脑血管疾病(Cerebrovascular disease, CVD)和外周动脉疾病(Peripheral arterial disease, PAD),是发达国家和发展中国家的主要死亡原因。心血管疾病公认的危险因素有高血压、吸烟、高胆固醇、糖尿病、久坐生活方式、肥胖等,随着现代社会不断发展,全球范围内整体生活水平日渐提高,人类不良生活方式导致心血管疾病趋向年轻化。据统计,2019年全球有近5.23亿例病例,年死亡率高达1860万人 [1],预计到2030年,心血管疾病的年死亡率将达到2360万 [2]。心血管疾病最常见的病理生理学改变是动脉粥样硬化(Atherosclerosis, AS),了解动脉粥样硬化的病理生理学和从亚临床到明显疾病进展有关的分子事件促进了心血管疾病生物标志物的发展。动脉粥样硬化具有炎症效应,在心血管疾病的发病机制中起关键作用,可导致血液中炎症细胞因子和急性期反应物水平的升高 [3],部分能发挥直接反映心肌充血、炎症水平,心室重构作用的分子蛋白被列为心血管疾病生物标志物。当前应用最广泛的心血管疾病生物标志物是用于心力衰竭(Heart failure, HF)诊断和预后判断的钠尿肽和用于急性心肌梗死(Acute myocardial infarction, AMI)诊断的心肌肌钙蛋白 [4]。临床生物标志物已经逐渐发展成为一种指导疾病诊断的手段,显著提高CVDs诊断的敏感性和准确性。已知乳酸脱氢酶(Lactate dehydrogenase, LDH),肌酸激酶同工酶(Creatine kinase-MB, CK-MB),心肌肌球蛋白结合蛋白C (Myosin binding protein C, MYBPC)是急性冠脉综合征的重要生物标志物 [5],LDH联合CK-MB诊断是对CK-MB单独诊断急性心肌梗死的重要补充,能显著提高疾病诊断率。CRP是急性冠脉综合征患者的非特异性预后炎症生物标志物 [6]。除了脑钠肽(Brain natriuretic peptide, BNP)及氨基末端脑钠肽前体(N-terminal pro-brain natriuretic peptide, NT-proBNP),高敏心肌肌钙蛋白-I (High-sensitivity cardiac troponin-I, hs-cTnI)也是临床最常用的心力衰竭生物标志物之一。近年来,可溶性生长刺激表达基因2蛋白(Soluble growth stimulation expressed gene 2, sST2) [7]、半乳糖凝集素3 (Galectin 3, Gal-3)、生长分化因子15 (Growth differentiation factor-15, GDF-15) [4] 被视为新晋心力衰竭生物学诊断标志物,在心力衰竭患者的危险分层、预后评估中发挥重要作用,《中国心力衰竭诊断和治疗指南2018》专家共识也推荐联合sST2、Gal-3、GDF-15等多种生物标志物用来诊断心力衰竭 [8]。通过识别循环炎症生物标志物,促进预测和诊断高危患者心血管疾病风险成为可能,心血管疾病发病率和死亡率日渐增加,有必要开发新的心血管疾病诊断标志物。

钙卫蛋白是S100钙结合蛋白家族的成员 [9],能通过内源性危险相关分子模式(Danger-associated molecular pattern, DAMP)来放大先天免疫反应从而促进炎症 [10],通过细胞内外作用,参与多种炎症性疾病的发病机制,是多种炎症性疾病的潜在生物标志物。近年来,已有多项研究发现钙卫蛋白在心血管疾病传统风险因素、动脉粥样硬化 [11] [12]、急性冠脉综合征 [13]、心功能不全 [14] 等方面发挥重要作用,钙卫蛋白在心血管疾病发病机制中的作用越来越受到关注,本文就钙卫蛋白在心血管疾病中的研究进展作一综述。

2. 钙卫蛋白简介

钙卫蛋白(S100A8/A9),也称为髓系相关蛋白8/14 (MRP8/14),来自S100蛋白家族,S100蛋白是钙结合蛋白,1965年首次从牛脑中提取,因其在100%饱和硫酸铵中的溶解性而被命名为S100 [15],基因以簇的形式定位于染色体1q21,空间结构上存在两个钙结合EF手基序,中间通过铰链区连接,每一个EF手基序单体包含一个钙结合环,两侧分别是α-螺旋结构,形成螺旋–环–螺旋基序,头尾C’-端和N’-端分别由保守的疏水残基包围 [16]。

S100A8 (又称钙颗粒蛋白A或迁移抑制因子相关蛋白8;MRP-8)分子量为10.8 kDa,其结合伴侣S100A9 (钙颗粒蛋白B或MRP-14)分子量为13.2 kDa,在体内不同条件下可形成同源二聚体、异源二聚体、四聚体,通常以S100A8/S100A9异源二聚体(即钙卫蛋白)形式存在,尤其是Zn2+和Ca2+存在条件下,在细胞内参与调节微管重组、整合丝裂原活化蛋白激酶活性 [17]、花生四烯酸代谢和运输 [18] [19]、钙依赖性信号 [14] [20] 等。在细胞外,钙卫蛋白从活化或坏死的中性粒细胞、单核细胞和树突细胞 [21] 等免疫细胞中以组成型表达,约占中性粒细胞溶质蛋白的45%、单核细胞的1%,以颗粒形式储存,响应炎症、感染性刺激而释放 [22],作为先天免疫介质参与各种具有炎症成分疾病的发病机制 [23],是S100蛋白家族的内源性DAMP,放大先天免疫反应促进炎症 [10]。

人体循环S100A8/A9水平与血液中性粒细胞计数密切相关,中性粒细胞是全身S100A8/A9的主要来源,会因吸烟、肥胖、高血糖和血脂异常等传统心血管危险因素而增加 [24]。S100A8/A9是Toll样受体4 (Toll-like receptor 4, TLR4)和晚期糖基化终产物受体(Receptor for advanced glycation end products, RAGE)的内源性配体,已被证实可促进小鼠动脉粥样硬化形成 [25]。在人类中,S100A8/A9与冠状动脉、颈动脉粥样硬化程度以及易损斑块表型相关 [11]。S100A8/A9在心肌梗死后局部释放并放大与心肌缺血/再灌注损伤相关的炎症反应 [26]。S100A8/A9可能是心血管疾病潜在的生物标志物和治疗靶点。

3. 钙卫蛋白与心血管疾病传统风险因素

糖尿病、肥胖、吸烟和高脂血症是与血浆钙卫蛋白水平升高相关的传统心血管疾病风险因素。姚大春等人发现高血糖能诱导体外人内皮细胞和体内糖尿病小鼠主动脉内皮细胞产生活性氧(Reactive oxygen species, ROS),导致S100A8和RAGE过度表达 [27]。同样,高血糖会诱导中性粒细胞中的ROS表达导致S100A8/A9分泌增加,S100A8/A9与髓系祖细胞和巨噬细胞上的RAGE结合,刺激生长因子产生,加速骨髓生成并增加中性粒细胞和单核细胞释放到循环中,导致糖尿病小鼠血浆中的S100A8/A9浓度更高,循环白细胞数量增加,可以通过药理学降低全身葡萄糖水平或通过敲除RAGE受体来逆转 [28]。与非糖尿病患者相比,2型糖尿病或糖耐量受损患者S100A8/A9水平升高,与葡萄糖代谢受损的测量值,例如胰岛素抵抗、空腹血糖 [29] 和糖化血红蛋白 [24] 呈正相关。

体重指数是S100A8/A9浓度的独立决定因素。在非糖尿病患者中,肥胖者的血浆S100A8/A9高于非肥胖者,但在糖尿病受试者中无法观察到这种效应,这表明存在部分重叠的机制导致肥胖和糖尿病中S100A8/A9的产生增加。肥胖非糖尿病患者的体重减轻可导致S100A8/A9显著下降、胰岛素抵抗改善、血浆脂质下降。有趣的是,循环S100A8/A9水平的降低与血液白细胞计数降低无关,这表明肥胖与白细胞活化和S100A8/A9产生增加有关,而不是与白细胞增多有关 [29]。

中性粒细胞是循环S100A8/A9的主要来源,血液中性粒细胞计数与血浆S100A8/A9浓度密切相关 [24]。吸烟和高脂血症会刺激粒细胞生成和S100A8/A9的产生,吸烟是健康个体中性粒细胞增多的强烈刺激因素 [30],并且吸烟者的S100A8/A9水平升高 [24]。高脂血症通过增加粒细胞生成和增强中性粒细胞从骨髓的释放来刺激中性粒细胞 [31],LDL-C升高和HDL-C下降影响血浆S100A8/A9浓度,与BMI、吸烟和血糖控制无关 [24]。综上,一些心血管传统风险因素可直接通过吞噬细胞激活和S100A8/A9释放或通过刺激骨髓中的中性粒细胞和单核细胞产生间接增加全身S100A8/A9水平。

4. 钙卫蛋白与动脉粥样硬化

S100A8/A9是各种自身免疫和炎症疾病发病机制中的活性介质 [23],在心血管疾病中,S100A8/A9被认为通过增加动脉壁中中性粒细胞和单核细胞的募集和活化来加速动脉粥样硬化,中性粒细胞(循环S100A8/A9的主要来源)促动脉粥样硬化作用现在已经确立 [32],S100A8和S100A9存在于小鼠和人类的动脉粥样硬化斑块中已经被证实 [12]。TLR4和RAGE作为S100A8/A9的内源性受体具有致动脉粥样硬化作用。在缺乏TLR4或其受体蛋白MyD88的动脉粥样硬化小鼠中,斑块大小缩小 [33];在RAGE缺乏与高脂血症Apo E-/-小鼠的斑块进展延迟与血管炎症减弱有关 [34];糖尿病Apo E-/-小鼠血浆S100A8/A9水平升高,并出现更大的动脉粥样硬化病变;与高脂血症Apo E-/-小鼠相比,高脂血症Apo E-/-S100A9-/-双敲除小鼠的动脉粥样硬化病变更小,巨噬细胞浸润更低 [25]。更重要的是,S100A8/A9与动脉粥样硬化之间的联系得到临床研究的进一步支持,Nagareddy等人发现,血浆S100A8/A9与糖尿病患者冠状动脉疾病的严重程度呈正相关 [28] [35]。对人颈动脉斑块的免疫组织化学和生化分析表明,易破裂动脉粥样硬化斑块中S100A8和S100A9阳性巨噬细胞数量增加,易损病变中S100A8/A9的数量增加,特征是大脂质核心、强烈的巨噬细胞浸润、低胶原蛋白含量以及高浓度的炎性细胞因子和基质金属蛋白酶 [11]。钙卫蛋白与动脉粥样硬化的关系还需要进一步动物及临床研究来阐明机制。

5. 钙卫蛋白与急性冠脉综合征

急性冠脉综合征包括急性ST段抬高性心肌梗死、急性非ST段抬高性心肌梗死和不稳定型心绞痛 [36]。与稳定型心绞痛或经血管造影评估冠状动脉显示正常的人群相比,急性冠状动脉综合征患者缺血事件发生期间血浆S100A8/A9显着升高,在ST段抬高型心肌梗死患者中,与全身循环相比,S100A8/A9在冠状动脉闭塞部位显著增加。S100A8/A9可能从募集到损伤部位的活化单核细胞和中性粒细胞中释放 [37]。另外有研究证明,在心肌梗死患者中,血浆S100A8/A9水平在心肌损伤的经典标志物(如TNT或CK)之前升高,与患有不稳定型心绞痛的患者相比更高,与心肌肌钙蛋白相比,肌钙蛋白从坏死心肌细胞中急剧释放并在缺血性损伤后数小时内达到峰值,而S100A8/A9在3~5天后达到峰值,并在事件发生后持续数周升高 [38],钙卫蛋白可能是急性冠脉综合征潜在的生物标志物。

6. 钙卫蛋白与心功能不全

心功能不全是多种心血管疾病的终末阶段,5年存活率与恶性肿瘤相近。2007年中国心功能不全指南将心衰定义为由于任何原因的初始心肌损伤(如心肌梗死、心肌病、血流动力学负荷过重、炎症等),引起心肌结构和功能的变化,导致心室泵血和(或)充盈功能低下的临床综合征。其主要表现是呼吸困难、乏力和体液潴留 [39]。前期已有多项研究支持钙卫蛋白与心功能不全的发生、发展相关。Satoh等人发现,从心肌梗死患者中分离出的人类单核细胞对S100A8/A9诱导的TLR4上调敏感,并促进TNF-α和IL-6等炎性细胞因子的分泌,若单核细胞TLR4表达和血浆中炎性细胞因子的水平在急性事件后14天以上仍保持升高,将与心梗后心功能不全的发展相关 [40]。赵鹏等人的动物实验也证明,TLR4缺乏对冠状动脉局部缺血后心功能不全的发展具有保护作用 [41]。在冠状动脉闭塞的小鼠模型中,S100A8/A9与吞噬细胞上的RAGE结合可触发NF-κB激活、炎性细胞因子产生和增强的免疫细胞募集到心肌中,S100A8/A9放大与缺血/再灌注损伤相关的局部心肌炎症,促进心肌重塑和心功能不全的发展 [26]。

另外,脓毒症也会导致心肌功能障碍、心功能不全,从而导致低血压、灌注受损甚至死亡 [42]。Boyd等人发现,钙卫蛋白在内毒素相关心功能不全发挥独特作用,可能与心肌细胞表达多种Toll样受体(TLR),通过NF-κB信号传导引发心肌细胞收缩性降低 [43]。在后续实验中,Boyd团队观察到S100A8和S100A9不仅是具有免疫活性的趋化因子,而且是与心脏功能相关的重要分子,它们由心肌细胞响应炎症状况产生,在细胞内外与心肌细胞表达的RAGE相互作用,导致收缩性下降,心脏射血分数降低 [14]。

7. 结论与未来方向

本综述介绍的相关动物实验和临床研究表明,S100A8/A9似乎在先天免疫、心血管疾病传统风险因素和心血管疾病之间的复杂相互作用中发挥核心作用。活化的中性粒细胞和单核细胞是细胞外S100A8/A9的主要来源,糖尿病、血脂异常、肥胖和吸烟与循环钙卫蛋白水平升高有关 [24]。S100A8/A9似乎与动脉粥样硬化形成、斑块易损性和缺血后心肌损伤有关。作为生物标志物,S100A8/A9与颈动脉、冠状动脉疾病的程度相关 [11],在心肌缺血和坏死期间血浆中迅速增加 [37],目前需要进行强有力的前瞻性临床研究来探索S100A8/A9是否与人类心力衰竭的发病机制有关,以及心肌梗死前后血浆S100A8/A9水平是否与心脏功能丧失相关,钙卫蛋白作为心血管疾病临床生物标志物和治疗靶点具有广阔的潜力。

文章引用

方晓欣,陈晓锋. 钙卫蛋白在心血管领域的前沿概况
Frontiers of Calprotectin in Cardiovascular Field[J]. 临床医学进展, 2022, 12(04): 3066-3072. https://doi.org/10.12677/ACM.2022.124442

参考文献

  1. 1. Zhao, P., Wang, J., He, L., et al. (2009) Deficiency in TLR4 Signal Transduction Ameliorates Cardiac Injury and Cardiomyocyte Contractile Dysfunction during Ischemia. Journal of Cellular and Molecular Medicine, 13, 1513-1525. https://doi.org/10.1111/j.1582-4934.2009.00798.x

  2. 2. Singer, M., Deutschman, C.S., Seymour, C.W., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. https://doi.org/10.1001/jama.2016.0287

  3. 3. Roth, G.A., Mensah, G.A., Johnson, C.O., et al. (2020) Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study [Published Correction Appears in J Am Coll Cardiol. 2021 Apr 20; 77(15): 1958-1959]. Journal of the American College of Cardiology, 76, 2982-3021.

  4. 4. Alissa, E.M. and Ferns, G.A. (2011) Heavy Metal Poisoning and Cardiovascular Disease. Journal of Toxicology, 2011, Article ID: 870125. https://doi.org/10.1155/2011/870125

  5. 5. Hansson, G.K. (2005) Inflammation, Atherosclerosis, and Coronary Artery Disease. The New England Journal of Medicine, 352, 1685-1695. https://doi.org/10.1056/NEJMra043430

  6. 6. Lyngbakken, M.N., Myhre, P.L., Røsjø, H., et al. (2019) Novel Biomarkers of Cardiovascular Disease: Applications in Clinical Practice. Critical Reviews in Clinical Laboratory Sciences, 56, 33-60. https://doi.org/10.1080/10408363.2018.1525335

  7. 7. Cao, M., Luo, H., Li, D., et al. (2022) Research Advances on Circulating Long Noncoding RNAs as Biomarkers of Cardiovascular Diseases. International Journal of Cardiology, 353, 109-117. https://doi.org/10.1016/j.ijcard.2022.01.070

  8. 8. Yayan, J. (2013) Emerging Families of Biomarkers for Coronary Artery Disease: Inflammatory Mediators. Vascular Health and Risk Management, 9, 435-456. https://doi.org/10.2147/VHRM.S45704

  9. 9. Emdin, M., Aimo, A., Vergaro, G., et al. (2018) sST2 Predicts Outcome in Chronic Heart Failure Beyond NT-proBNP and High-Sensitivity Troponin T. Journal of the American College of Cardiology, 72, 2309-2320. https://doi.org/10.1016/j.jacc.2018.08.2165

  10. 10. 中华医学会心血管病学分会心力衰竭学组, 中国医师协会心力衰竭专业委员会, 中华心血管病杂志编辑委员会. 中国心力衰竭诊断和治疗指南2018 [J]. 中华心血管病杂志, 2018, 46(10): 760-789.

  11. 11. Averill, M.M., Kerkhoff, C. and Bornfeldt, K.E. (2012) S100A8 and S100A9 in Cardiovascular Biology and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 223-229. https://doi.org/10.1161/ATVBAHA.111.236927

  12. 12. Schiopu, A. and Cotoi, O.S. (2013) S100A8 and S100A9: DAMPs at the Crossroads between Innate Immunity, Traditional Risk Factors, and Cardiovascular Disease. Mediators of Inflammation, 2013, Article ID: 828354. https://doi.org/10.1155/2013/828354

  13. 13. Ionita, M.G., Vink, A., Dijke, I.E., et al. (2009) High Levels of Myeloid-Related Protein 14 in Human Atherosclerotic Plaques Correlate with the Characteristics of Rupture-Prone Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1220-1227. https://doi.org/10.1161/ATVBAHA.109.190314

  14. 14. McCormick, M.M., Rahimi, F., Bobryshev, Y.V., et al. (2005) S100A8 and S100A9 in Human Arterial Wall. Implications for Atherogenesis. Journal of Biological Chemistry, 280, 41521-41529. https://doi.org/10.1074/jbc.M509442200

  15. 15. Sreejit, G., Abdel-Latif, A., Athmanathan, B., et al. (2020) Neutrophil-Derived S100A8/A9 Amplify Granulopoiesis after Myocardial Infarction. Circulation, 141, 1080-1094. https://doi.org/10.1161/CIRCULATIONAHA.119.043833

  16. 16. Boyd, J.H., Kan, B., Roberts, H., et al. (2008) S100A8 and S100A9 Mediate Endotoxin-Induced Cardiomyocyte Dysfunction via the Receptor for Advanced Glycation End Products. Circulation Research, 102, 1239-1246. https://doi.org/10.1161/CIRCRESAHA.107.167544

  17. 17. Moore, B.W. (1965) A Soluble Protein Characteristic of the Nervous System. Biochemical and Biophysical Research Communications, 19, 739-744. https://doi.org/10.1016/0006-291X(65)90320-7

  18. 18. Gonzalez, L.L., Garrie, K. and Turner, M.D. (2020) Role of S100 Proteins in Health and Disease. Biochimica et Biophysica Acta: Molecular Cell Research, 1867, Article ID: 118677. https://doi.org/10.1016/j.bbamcr.2020.118677

  19. 19. Vogl, T., Ludwig, S., Goebeler, M., et al. (2004) MRP8 and MRP14 Control Microtubule Reorganization during Transendothelial Migration of Phagocytes. Blood, 104, 4260-4268. https://doi.org/10.1182/blood-2004-02-0446

  20. 20. Kerkhoff, C., Eue, I. and Sorg, C. (1999) The Regulatory Role of MRP8 (S100A8) and MRP14 (S100A9) in the Transendothelial Migration of Human Leukocytes. Pathobiology, 67, 230-232. https://doi.org/10.1159/000028098

  21. 21. Kerkhoff, C., Klempt, M., Kaever, V., et al. (1999) The Two Calcium-Binding Proteins, S100A8 and S100A9, Are Involved in the Metabolism of Arachidonic Acid in Human Neutrophils. Journal of Biological Chemistry, 274, 32672-32679. https://doi.org/10.1074/jbc.274.46.32672

  22. 22. Hobbs, J.A., May, R., Tanousis, K., et al. (2003) Myeloid Cell Function in MRP-14 (S100A9) Null Mice. Molecular and Cellular Biology, 23, 2564-2576. https://doi.org/10.1128/MCB.23.7.2564-2576.2003

  23. 23. Averill, M.M., Barnhart, S., Becker, L., et al. (2011) S100A9 Differentially Modifies Phenotypic States of Neutrophils, Macrophages, and Dendritic Cells: Implications for Atherosclerosis and Adipose Tissue Inflammation. Circulation, 123, 1216-1226. https://doi.org/10.1161/CIRCULATIONAHA.110.985523

  24. 24. Edgeworth, J., Gorman, M., Bennett, R., et al. (1991) Identification of p8,14 as a Highly Abundant Heterodimeric Calcium Binding Protein Complex of Myeloid Cells. Journal of Biological Chemistry, 266, 7706-7713. https://doi.org/10.1016/S0021-9258(20)89506-4

  25. 25. Ehrchen, J.M., Sunderkötter, C., Foell, D., et al. (2009) The Endogenous Toll-Like Receptor 4 Agonist S100A8/S100A9 (Calprotectin) as Innate Amplifier of Infection, Autoimmunity, and Cancer. Journal of Leukocyte Biology, 86, 557-566. https://doi.org/10.1189/jlb.1008647

  26. 26. Cotoi, O.S., Dunér, P., Ko, N., et al. (2014) Plasma S100A8/A9 Correlates with Blood Neutrophil Counts, Traditional Risk Factors, and Cardiovascular Disease in Middle-Aged Healthy Individuals. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 202-210. https://doi.org/10.1161/ATVBAHA.113.302432

  27. 27. Croce, K., Gao, H., Wang, Y., et al. (2009) Myeloid-Related Protein-8/14 Is Critical for the Biological Response to Vascular Injury. Circulation, 120, 427-436. https://doi.org/10.1161/CIRCULATIONAHA.108.814582

  28. 28. Volz, H.C., Laohachewin, D., Seidel, C., et al. (2012) S100A8/A9 Aggravates Post-Ischemic Heart Failure through Activation of RAGE-Dependent NF-κB Signaling. Basic Research in Cardiology, 107, 250. https://doi.org/10.1007/s00395-012-0250-z

  29. 29. Yao, D. and Brownlee, M. (2010) Hyperglycemia-Induced Reactive Oxygen Species Increase Expression of the Receptor for Advanced Glycation End Products (RAGE) and RAGE Ligands. Diabetes, 59, 249-255. https://doi.org/10.2337/db09-0801

  30. 30. Nagareddy, P.R., Murphy, A.J., Stirzaker, R.A., et al. (2013) Hyperglycemia Promotes Myelopoiesis and Impairs the Resolution of Atherosclerosis. Cell Metabolism, 17, 695-708. https://doi.org/10.1016/j.cmet.2013.04.001

  31. 31. Ortega, F.J., Sabater, M., Moreno-Navarrete, J.M., et al. (2012) Serum and Urinary Concentrations of Calprotectin as Markers of Insulin Resistance and Type 2 Diabetes. European Journal of Endocrinology, 167, 569-578. https://doi.org/10.1530/EJE-12-0374

  32. 32. Smith, M.R., Kinmonth, A.L., Luben, R.N., et al. (2003) Smoking Status and Differential White Cell Count in Men and Women in the EPIC-Norfolk Population. Atherosclerosis, 169, 331-337. https://doi.org/10.1016/S0021-9150(03)00200-4

  33. 33. Drechsler, M., Megens, R.T., van Zandvoort, M., et al. (2010) Hyperlipidemia-Triggered Neutrophilia Promotes Early Atherosclerosis. Circulation, 122, 1837-1845. https://doi.org/10.1161/CIRCULATIONAHA.110.961714

  34. 34. Soehnlein, O. (2012) Multiple Roles for Neutrophils in Atherosclerosis. Circulation Research, 110, 875-888. https://doi.org/10.1161/CIRCRESAHA.111.257535

  35. 35. Michelsen, K.S., Wong, M.H., Shah, P.K., et al. (2004) Lack of Toll-Like Receptor 4 or Myeloid Differentiation Factor 88 Reduces Atherosclerosis and Alters Plaque Phenotype in Mice Deficient in Apolipoprotein E. Proceedings of the National Academy of Sciences of the United States of America, 101, 10679-10684. https://doi.org/10.1073/pnas.0403249101

  36. 36. Harja, E., Bu, D.X., Hudson, B.I., et al. (2008) Vascular and Inflammatory Stresses Mediate Atherosclerosis via RAGE and Its Ligands in apoE-/-Mice. Journal of Clinical Investigation, 118, 183-194. https://doi.org/10.1172/JCI32703

  37. 37. Peng, W.H., Jian, W.X., Li, H.L., et al. (2011) Increased Serum Myeloid-Related Protein 8/14 Level Is Associated with Atherosclerosis in Type 2 Diabetic Patients. Cardiovascular Diabetology, 10, 41. https://doi.org/10.1186/1475-2840-10-41

  38. 38. 霍勇, 葛均波, 韩雅玲, 等. 急性冠状动脉综合征患者强化他汀治疗专家共识[J]. 中国介入心脏病学杂志, 2014, 22(1): 4-6.

  39. 39. Altwegg, L.A., Neidhart, M., Hersberger, M., et al. (2007) Myeloid-Related Protein 8/14 Complex Is Released by Monocytes and Granulocytes at the Site of Coronary Occlusion: A Novel, Early, and Sensitive Marker of Acute Coronary Syndromes. European Heart Journal, 28, 941-948. https://doi.org/10.1093/eurheartj/ehm078

  40. 40. Katashima, T., Naruko, T., Terasaki, F., et al. (2010) Enhanced Expression of the S100A8/A9 Complex in Acute Myocardial Infarction Patients. Circulation Journal, 74, 741-748. https://doi.org/10.1253/circj.CJ-09-0564

  41. 41. 王冬梅, 田芸. 慢性收缩性心力衰竭的新概念、新指南[J]. 中国循证心血管医学杂志, 2012, 4(1): 1-2.

  42. 42. Boyd, J.H., Mathur, S., Wang, Y., et al. (2006) Toll-Like Receptor Stimulation in Cardiomyoctes Decreases Contractility and Initiates an NF-kappaB Dependent Inflammatory Response. Cardiovascular Research, 72, 384-393. https://doi.org/10.1016/j.cardiores.2006.09.011

  43. 43. Satoh, M., Shimoda, Y., Maesawa, C., et al. (2006) Activated Toll-Like Receptor 4 in Monocytes Is Associated with Heart Failure after Acute Myocardial Infarction. International Journal of Cardiology, 109, 226-234. https://doi.org/10.1016/j.ijcard.2005.06.023

  44. NOTES

    *通讯作者。

期刊菜单