Advances in Clinical Medicine
Vol. 13  No. 08 ( 2023 ), Article ID: 70674 , 9 pages
10.12677/ACM.2023.1381803

脊柱术后手术部位感染相关因素及预防研究 进展

沈万熙1,张涛1,王玉琴2,马玉林3,郑峰3*

1青海大学研究生院,青海 西宁

2兰州大学第二医院心血管内科,甘肃 兰州

3青海省人民医院骨科,青海 西宁

收稿日期:2023年7月18日;录用日期:2023年8月9日;发布日期:2023年8月16日

摘要

现代脊柱手术技术的日益进步使得越来越多的脊柱病患得到了有效治疗,然而随着脊柱手术的广泛开展及相关操作复杂性的逐渐提升,包括手术部位感染(SSI)在内的诸多术后并发症已成为影响脊柱病患预后的重要因素。国内外现存文献中对SSI影响因素及预防的观点复杂多样,但部分观点仍存在争议且缺乏概括性。故本文拟从患者自身因素、手术操作及病原体特征等三个方面对脊柱术后SSI常见影响因素与预防措施做出系统阐述,旨在为临床诊疗提供可靠的依据和及时有效的预防措施,从而改善脊柱术后患者的生活质量。

关键词

脊柱手术,感染,危险因素,预防

Research Progress of Related Factors and Prevention of Surgical Site Infection after Spinal Surgery

Wanxi Shen1, Tao Zhang1, Yuqin Wang2, Yulin Ma3, Feng Zheng3*

1Graduate School of Qinghai University, Xining Qinghai

2Department of Cardiovascular Medicine, The Second Hospital of Lanzhou University, Lanzhou Gansu

3Department of Orthopedics, Qinghai Provincial People’s Hospital, Xining Qinghai

Received: Jul. 18th, 2023; accepted: Aug. 9th, 2023; published: Aug. 16th, 2023

ABSTRACT

With the development of modern spinal surgery techniques, more and more patients with spinal diseases have been effectively treated. However, with the increasing prevalence and complexity of spinal surgery, many postoperative complications, including surgical site infection (SSI), have become an important factor affecting the prognosis of patients with spinal diseases. Based on relevant literature, reports at home and abroad, this paper will systematically elaborate on the common influencing factors of SSI after spinal surgery and its preventive measures from three aspects, including the patient’s factors, surgical operation factors, and pathogen characteristics, to provide the reliable basis and timely and effective preventive measures for clinical diagnosis and treatment. It can improve the quality of life and relieve the pain of patients after spinal surgery.

Keywords:Spinal Operation, Infection, Risk Factors, Prevention

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

近年来外科技术的日益提升使得更多脊柱疾病患者得到了有效诊疗,但脊柱手术广泛开展的同时也导致了术后相应并发症的激增 [1] 。手术部位感染(surgical site infection, SSI)通常是指在无内植物植入术后30天内、有内植物植入术后1年内发生于手术部位的感染。作为脊柱术后最常见的并发症之一,SSI发病率约为0.7%~12% [2] 。SSI可导致内固定失败、脓毒血症等诸多并发症并增加二次手术概率,严重时甚至引起患者死亡。目前关于SSI相关因素及预防的报道逐渐增多,但部分观点仍存在争议且缺乏概括性,尽早识别相关因素并制订有效预防策略具有重大意义。本文通过患者相关因素、手术干预措施及微生物相关因素三大方面阐述脊柱术后SSI的常见相关因素及预防方案,以期有效降低感染率,改善患者术后生活质量。

2. 患者相关因素

2.1. 吸烟

吸烟被认为是危害健康的头号杀手之一,研究发现吸烟者发生切口感染、败血症及脓毒性休克的几率显著增加。郑立明等 [3] 在一项报告中指出,吸烟者颈椎术后伤口感染相对危险度增加约3.21倍。Thomsen等 [4] 研究表明,术前成功戒烟可使术后并发症下降近50%,可见吸烟是导致术后感染的关键因素 [5] 。香烟燃烧可释放大量一氧化碳和尼古丁等成分,其产生的毒性作用是导致高SSI风险的重要原因。过量一氧化碳可导致血氧饱和度下降并引起组织缺氧,而尼古丁可诱导细胞内过氧化氢积累并进一步激活线粒体凋亡途径 [6] ,最终在细胞水平上通过抑制乙二醛酶-1及驱动氢咪唑酮的积累/释放,影响成骨细胞的增殖和分化 [7] 。体外实验也证明香烟燃烧产生的其他化学物质还能诱导细胞自由基产生,通过脂质过氧化及DNA损伤作用导致细胞功能障碍,甚至诱导细胞凋亡和坏死 [8] 。因此应在择期术前及时向患者解释吸烟危害并指导患者戒烟。

2.2. 糖尿病

糖尿病(diabetes mellitus, DM)常与骨科手术后的不良预后紧密相关。Hikata等 [9] 在一项针对腰椎融合术的研究中指出,伴有DM者行腰椎手术时SSI发生风险增加5倍,且亚组分析显示SSI更易发生于糖化血红蛋白 ≥ 7.0%组。Kobayashi等 [10] 同样指出术前合并DM组因SSI行二次手术率明显升高。DM患者切口周围组织内的巨噬细胞中具有较高水平的白细胞介素-1等促炎性细胞因子,而转化生长因子-β等抗炎性细胞因子则处于较低水平 [11] 。该类巨噬细胞的持续活化将导致伤口修复所需的成纤维细胞和内皮细胞增殖迁移减少,最终使切口向慢性永久性炎症转化 [11] 。在小鼠实验中,DM组也同样表现出明显的切口延迟愈合、肉芽组织及血管生成减少趋势 [12] 。因此对于DM患者,术前控制糖化血红蛋白 < 7%具有重要意义。

2.3. 肥胖

肥胖与SSI发生之间确切机制仍有待充分阐明。现认为手术部位过多脂肪组织可影响术野暴露,增加手术复杂性与术中微生物定植风险,且较厚脂肪层相比肌肉组织血液供应更差,伤口闭合后死腔形成风险增加。另有学者指出抗生素在脂肪组织中渗透力较弱,局部组织浓度欠佳 [13] 。因此术前体重干预是降低脊柱术后SSI的重要措施,本文着重介绍脊柱外科常用肥胖衡量标准。

2.3.1. 体重指数

体重指数(body mass index,BMI)通过人体体重和身高两个角度获得相对客观的参数,是目前最常用的衡量人体肥胖程度以及判断是否健康的重要标准。Bono等 [14] 发现BMI ≥ 35 kg/m2时术后SSI和其他手术并发症显著增加。一项Meta分析报道称,在控制各种混杂因素后,BMI每增加5个单位将使术后SSI发病率增加21% [15] 。

2.3.2. 皮下脂肪厚度及皮下腰椎指数

由于BMI忽视了人体脂肪分布不均的影响,以其作为肥胖标准可能会影响结果准确性。因此有学者主张在脊柱手术中以手术部位皮下脂肪厚度(subcutaneous fat thickness, SFT)作为肥胖判定标准 [16] ,然而该方法仍未考虑棘突高度对手术疗效的影响。Shaw等 [17] 综合考虑脂肪分布的变异性,并提出了皮下腰椎指数(subcutaneous lumbar spine index, SLSI),该指数量化了SFT与棘突高度(spinous process height, SPH)之间的关系。SLSI增大预示着较厚的皮下脂肪或较短的棘突,常导致术中暴露困难、组织坏死率增加。

2.3.3. 椎旁肌脂肪浸润

椎旁肌(lumbar paraspinal muscles, LPM)是指包括多裂肌和竖脊肌等在内的椎旁肌群。随年龄变化,LPM常发生包括体积缩小和脂肪浸润增多在内的多种变化。大量的脂肪组织积聚在LPM和椎板之间,甚至取代肌肉正常结构时就会发生LPM脂肪浸润。Sang等 [18] 报道称当多裂肌脂肪浸润比 > 29.29%时,SSI发生风险显著增高。一项最新的列线图模型亦显示LPM脂肪浸润是预测腰椎融合术后1月内SSI风险的高效模型 [19] 。

2.4. 低白蛋白血症

白蛋白水平可以辅助临床医生了解患者在手术前后的营养状况。临床上将白蛋白 < 30 g/L定义为低白蛋白血症。Elsamadicy等 [20] 在对2196例患者的研究中表明,低白蛋白血症与脊柱后路减压融合患者的术后感染和其他并发症相关。值得一提的是,低白蛋白血症在肥胖患者中也很常见 [21] 。低蛋白血症导致的机体自身修复能力下降将直接影响到术后切口愈合。同时低蛋白血症还可引起切口水肿,造成血液回流障碍及切口供血不足,严重者甚至发生缺血缺氧性坏死。因此术前需及时检查患者白蛋白并给予相应纠正。

2.5. 硬膜外类固醇注射

硬膜外类固醇注射(lumbar epidural steroid injection, LESI)是一种常见的脊柱侵入性非手术干预方式,常用于缓解椎间盘突出、椎管狭窄等退行性疾病引起的腰背部疼痛或神经根压迫症状。其主要通过缓解神经根水肿和局部组织缺血并抑制炎症因子释放而发挥作用。LESI后SSI在临床诊疗中虽较少见,但目前仍有相关报道。Donnally等 [22] 研究表明在腰椎减压术前半年内行LESI注射会使患者更易发生术后感染。LESI引起感染的潜在机制可能与不规范操作导致的皮肤菌群直接接种相关。类固醇药物作为临床常用免疫抑制剂,还可破坏局部微环境,抑制机体对早期感染的免疫应答。因此使用LESI治疗时应充分权衡利弊并尽可能延长LESI与手术治疗间隔。

3. 手术相关因素

3.1. 术前及术中抗生素应用

术前预防性使用抗生素是降低术后SSI风险的有效手段。Petignat等 [23] 发现腰椎术前接受1.5 g头孢呋辛治疗时术后SSI率明显下降,且随着术前抗生素给药间隔延长,局部组织内抗生素血药浓度逐渐下降,感染风险随之增加。世界卫生组织建议在术前120分钟内给予抗生素,对半衰期较短的抗生素(如大多数头孢菌素等)建议在术前60分钟内给药。此外,当手术时长 > 4小时可于术中追加抗生素,保证组织血药浓度持续高于最小抑菌浓度 [24] 。近年来术中局部万古霉素应用已成为新兴的预防方案之一,然而该疗法可能导致细菌菌群发生变化,使得革兰阴性感染的情况增加 [25] 。因此万古霉素局部使用应仅限于感染风险较高的患者。

3.2. 术前消毒及术中冲洗

术区皮肤消毒的目的是最大程度地减少正常皮肤菌群引起的切口污染。目前碘剂、氯己定(chlorhexidine digluconate, CHG)和醇类化合物是临床最常用的消毒制剂。Ghobrial等 [26] 证明使用7.5%聚维酮碘溶液(povidone iodine, PV-I)和2%CHG消毒后均能明显抑制细菌生长且无显著差异。Mastrocola等 [27] 则认为CHG在减少细菌菌群方面具有明显优于PV-I的杀菌效果。然而以上实验均具有一定局限性,即局部消毒区域内细菌菌群数量并不能直接等同于SSI发生率。此外最近一项研究表明,222 nm紫外光可有效杀灭常见菌群且对人体相对安全 [28] ,该项新技术有望用于术前辅助皮肤消毒。

术中切口冲洗能明显减少切口沾染的微生物数量,可起到预防感染与促进骨折愈合的作用。多项研究证实PV-I冲洗对预防SSI发生具有积极作用。Carballo等 [29] 使用0.35% PV-I冲洗浸泡手术切口3分钟,证明PV-I冲洗可有效降低SSI。Lemans等 [30] 使用1.3 g/LPV-I溶液冲洗浸泡2分钟,证实该方法仅对预防浅层组织SSI的发生作用显著。然而也有研究指出,当暴露于0.35% PV-I溶液3分钟后成骨细胞耗氧率、细胞外酸化率和质子产生率均显著降低,即PV-I对人成骨细胞增殖代谢具有一定细胞毒性 [31] 。

3.3. 输血

输血是目前临床上纠正术中失血性休克的首选方案。输血不仅能引起溶血、肾功能损害等免疫反应,同时也可增加术后感染风险,引发SSI、败血症等一系列严重并发症。输血对于免疫系统的影响目前尚存争议。Remy等 [32] 认为临床使用血制品多包含少量白细胞,这些白细胞携带大量异体蛋白,可通过组织相容性复合物II与淋巴细胞结合,造成受血者T淋巴细胞抑制及免疫功能下降。Yoshida等 [33] 认为库存血可发生“贮积性病变”,即发生红细胞形态、代谢、氧亲和力等方面的改变。这种改变使得细胞因子等在储存过程中积累,最终促进炎症反应发生。由于输血带来的综合效应往往复杂多变,因此临床输血应结合血液成分、手术类型和受血者体质做出综合分析。

3.4. 双层无菌手套和无菌器械更换

无菌手套的应用可有效保护外科医生并降低SSI风险。Tanner等 [34] 指出双层手套可以显著减少内层手套穿孔次数,并且彩色指示手套有助于更早发现手套破裂。一项研究表明,术中常规使用两套单独的无菌器械,且在关闭切口前更换手套与无菌器械可显著降低SSI [35] 。然而无菌器械更换在多数情况下可能难以实现,但在手术过程中未使用的器械或内固定材料应尽量使用无菌单妥善覆盖,以尽可能减少其被空气中细菌污染风险。

3.5. 术后引流及引流时间

硬膜外血肿形成可对脊髓造成占位性损伤,且当血肿持续增大时还会因切口张力过大而引起切口愈合不良。引流管可通过排出硬膜外及筋膜间隙中渗出液,有效防止血肿形成,达到促进切口愈合的目的。但作为留置体内的异物,引流管也可成为感染的病灶来源并将病原体逆行性带入切口。Pennington等 [36] 指出引流管放置5.5天时患者发生SSI风险远高于放置3.5天。Rao等 [37] 在另一项大型研究中发现SSI组平均引流时间为5.1 ± 2天,对照组平均引流时间为3.4 ± 1天。综合来看,引流管留置 > 3天与SSI风险增加相关。因此应结合术中创伤程度及出血量等指标综合判断术后是否引流,对于必须引流者建议留置引流管不超过3日。

3.6. 术中温度

由于全身麻醉对体温调节中枢的抑制以及术中大面积的皮肤暴露,术中低体温对于脊柱手术患者来说并不罕见。研究发现麻醉期间体温过低会降低豚鼠对金黄色葡萄球菌感染的抵抗力,增加皮肤组织内活菌数量 [38] 。Seidelman等 [39] 指出与不使用任何加热系统相比,通过主动升温维持体温高于36℃可明显降低术后SSI风险。一项意大利医院空气变暖系统使用情况评估研究也指出,术中体温维持在预防SSI方面具有明显优势 [40] 。低体温引起感染的机制可能与低温刺激机体代谢增加并加重组织缺氧有关,另一方面低温导致血管收缩还可引起血流动力学改变。因此维持术中正常体温对降低脊柱术后SSI风险具有重要意义。

3.7. 负压伤口治疗

负压伤口治疗(negative-pressure wound therapy, NPWT)已成为一种越来越受欢迎的切口护理方法。 NPWT是一个由覆盖切口的开孔泡沫、气密粘合贴和维持负压的真空泵组成的封闭系统,该系统可通过间歇或连续的负压抽吸减少水肿渗出及细菌定植风险。一项Meta分析指出NPWT有助于预防脊柱手术SSI和总并发症的发生,并缩短骨科平均住院时长 [41] 。NPWT可通过负压收缩力促进切口边缘的逼近与微变形,达到增加局部血流量、加速肉芽组织形成、阻止慢性创面形成的效果。然而Norman等 [42] 认为与标准敷料治疗相比,接受NPWT治疗的患者可能会因负压作用而出现更多的皮肤水疱。总之NPWT是预防SSI的一种有前途的方法,根据患者特征和手术方式合理使用NPWT有助于降低SSI发病率。

4. 微生物相关因素

脊柱术后SSI通常由细菌引起,但在极少数情况下真菌和寄生虫也可致病。目前报道的SSI致病菌主要有葡萄球菌属、肠球菌属、假单胞菌属及厌氧菌属等内外源性微生物,其中金黄色葡萄球菌被认为是SSI最常见的病原体 [43] 。近年来越来越多证据表明,内源性感染可能是SSI的主要来源。内源性微生物可能通过以下方式导致宿主发生感染。

4.1. 直接污染

人体微生物组成因解剖部位而异,甚至在皮肤的不同区域也存在分布差异。研究发现颈部及上胸部脊柱SSI多以革兰氏阳性菌为主,而胸中部以下脊柱SSI中多以革兰氏阴性菌为主 [44] 。事实上手术等侵入性操作会破坏人体的正常解剖隔室,导致细菌从其正常定植部位被动移位到新的解剖隔室。在适宜的新环境中,静止细菌可以迅速繁殖并表达致病性,从而成为引起SSI的病原体。因此消毒冲洗等传统外科预防方法均是以预防直接污染为主。

4.2. 特洛伊木马假说

除了直接污染手术区域外,来自解剖上较远隔室的微生物也可能间接播种手术部位。“特洛伊木马假说”认为,定植在如鼻腔、口腔等远离手术部位的病原体可以侵入巨噬细胞等免疫细胞,并在重新进入体循环后迁移至切口部位 [45] 。这些免疫细胞在切口部位通过胞吐作用释放炎症因子及病原体,这可能是部分迟发型SSI发生的原因。“特洛伊木马假说”已被广泛用于解释阿尔茨海默病的发病机制,近年来关于其在SSI中的应用也逐渐增多。耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus, MRSA)术前去定植已成为一种基于“特洛伊木马假说”的新兴预防方法。然而关于MRSA鼻腔去定植预防SSI有效性的证据仍然存在矛盾,仍需在大型研究中进一步讨论 [46] [47] 。

4.3. 微生物组“激活”

另一种观点认为已经天然存在于手术部位的微生物也可能在经历刺激后从无毒力型转变为毒力型。常见的围手术期管理,如阿片类药物、麻醉剂或生理应激等均可能“激活”手术部位正常微生物中致病性的表达。吗啡给药已被证明可以诱导小鼠肠道生态失调,引发铜绿假单胞菌毒力变化和肠源性败血症 [48] 。术中提高吸入氧浓度曾被推荐为SSI常规预防措施,然而最近研究证明高氧会增加如金黄色葡萄球菌等需氧菌增殖风险,甚至引起SSI等病理性炎症 [49] 。

SSI发生时细菌可在局部组织表面形成生物膜,即由蛋白质、多糖和胞外DNA等构成的复杂保护性结构。由于氧气和营养成分难以透过生物膜,膜内微生物群落常处于低代谢状态,存活其中的细菌易躲避宿主免疫系统攻击和抗生素制剂的影响 [50] 。因此在SSI预防中,保持高浓度且持续的局部抗生素用药对于清除病原体至关重要。临床上应首选对金黄色葡萄球菌和表皮链球菌等常见菌株具有良好疗效的抗生素。第一代头孢菌素头孢唑啉具备易于给药、耐受性好、价格低廉等优势,因此常作为首选用药。然而临床经验表明大多数革兰阴性菌群均对头孢唑啉耐药,在革兰氏阴性感染风险较高的手术中应适度扩大抗生素的覆盖面。

5. 总结与展望

SSI是脊柱术后最常见且影响最为广泛的并发症之一,其造成的疾病负担及经济压力对现代医疗系统提出了巨大的挑战。通过诸如术前戒烟、合理使用抗生素、规范消毒等诸多措施可有效预防SSI发生。随着现代医学的日益发展,术后SSI的相关防治领域仍在进一步完善,许多新兴技术理论正在不断涌现。例如Imani等 [51] 提出使用超声驱动的可降解纳米发电机,以电刺激来消除深层组织微生物。此外应用数字化远程医疗体系评估出院患者手术切口情况,也为术后SSI预防提供了新的思路。未来相关研究可侧重于上述争议点及新兴技术理论,进一步降低术后SSI发病率,努力提升患者生活质量。

文章引用

沈万熙,张 涛,王玉琴,马玉林,郑 峰. 脊柱术后手术部位感染相关因素及预防研究进展
Research Progress of Related Factors and Prevention of Surgical Site Infection after Spinal Surgery[J]. 临床医学进展, 2023, 13(08): 12867-12875. https://doi.org/10.12677/ACM.2023.1381803

参考文献

  1. 1. 肖莉, 陈荣春, 曾国华, 等. 脊柱术后切口感染危险因素的荟萃分析[J]. 中国感染与化疗杂志, 2019, 19(5): 473-477. https://doi.org/10.16718/j.1009-7708.2019.05.002

  2. 2. Fei, Q., Li, J., Lin, J., et al. (2016) Risk Factors for Surgi-cal Site Infection after Spinal Surgery: A Meta-Analysis. World Neurosurgery, 95, 507-515. https://doi.org/10.1016/j.wneu.2015.05.059

  3. 3. Zheng, L.M., Zhang, Z.W., Wang, W., Li, Y. and Wen, F. (2022) Relationship between Smoking and Postoperative Complications of Cervical Spine Surgery: A Systematic Review and Meta-Analysis. Scientific Reports, 12, Article No. 9172. https://doi.org/10.1038/s41598-022-13198-x

  4. 4. Thomsen, T., Villebro, N. and Møller, A.M. (2014) Interven-tions for Preoperative Smoking Cessation. The Cochrane Database of Systematic Reviews, No. 3, Article No. CD002294. https://doi.org/10.1002/14651858.CD002294.pub4

  5. 5. Fan Chiang, Y.H., Lee, Y.W., Lam, F., et al. (2023) Smoking Increases the Risk of Postoperative Wound Complications: A Propensity Score-Matched Cohort Study. Inter-national Wound Journal, 20, 391-402. https://doi.org/10.1111/iwj.13887

  6. 6. Marinucci, L., Balloni, S., Fettucciari, K., et al. (2018) Nicotine Induces Apoptosis in Human Osteoblasts via a Novel Mechanism Driven by H2O2 and Entailing Glyoxalase 1-Dependent MG-H1 Accumulation Leading to TG2-Mediated NF-kB Desensitization: Implication for Smokers-Related Osteoporosis. Free Radical Biology & Medicine, 117, 6-17. https://doi.org/10.1016/j.freeradbiomed.2018.01.017

  7. 7. Zheng, Y.H., Yang, J.J., Tang, P.J., et al. (2021) A Novel Keap1 Inhibitor iKeap1 Activates Nrf2 Signaling and Ameliorates Hydrogen Peroxide-Induced Oxidative Injury and Apoptosis in Osteoblasts. Cell Death & Disease, 12, Article No. 679. https://doi.org/10.1038/s41419-021-03962-8

  8. 8. Darvin, M.E., Lademann, J., Von Hagen, J., et al. (2022) Carot-enoids in Human Skin in Vivo: Antioxidant and Photo-Protectant Role against External and Internal Stressors. Antioxi-dants, 11, Article 1451. https://doi.org/10.3390/antiox11081451

  9. 9. Hikata, T., Iwanami, A., Hosogane, N., et al. (2014) High Preopera-tive Hemoglobin A1c Is a Risk Factor for Surgical Site Infection after Posterior Thoracic and Lumbar Spinal Instrumen-tation Surgery. Journal of Orthopaedic Science, 19, 223-228. https://doi.org/10.1007/s00776-013-0518-7

  10. 10. Kobayashi, K., Ando, K., Kato, F., et al. (2018) Reoperation within 2 Years after Lumbar Interbody Fusion: A Multicenter Study. European Spine Journal, 27, 1972-1980. https://doi.org/10.1007/s00586-018-5508-1

  11. 11. Aitcheson, S.M., Frentiu, F.D., Hurn, S.E., Edwards, K. and Murray, R.Z. (2021) Skin Wound Healing: Normal Macrophage Function and Macrophage Dysfunction in Diabetic Wounds. Molecules, 26, Article 4917. https://doi.org/10.3390/molecules26164917

  12. 12. Mukai, K., Horike, S.I., Meguro-Horike, M., et al. (2022) Topical Estrogen Application Promotes Cutaneous Wound Healing in db/db Female Mice with Type 2 Diabetes. PLOS ONE, 17, e0264572. https://doi.org/10.1371/journal.pone.0264572

  13. 13. Liu, J., Li, G., Chen, Z.L. and Jiang, H.F. (2023) A Me-ta-Analysis of the Effect of Different Body Mass Index on Surgical Wound Infection after Colorectal Surgery. Interna-tional Wound Journal, 20, 2151-2158. https://doi.org/10.1111/iwj.14091

  14. 14. Bono, O.J., Poorman, G.W., Foster, N., et al. (2018) Body Mass Index Predicts Risk of Complications in Lumbar Spine Surgery Based on Surgical Invasiveness. The Spine Journal, 18, 1204-1210. https://doi.org/10.1016/j.spinee.2017.11.015

  15. 15. Abdallah, D.Y., Jadaan, M.M. and Mccabe, J.P. (2013) Body Mass Index and Risk of Surgical Site Infection following Spine Surgery: A Meta-Analysis. European Spine Journal, 22, 2800-2809. https://doi.org/10.1007/s00586-013-2890-6

  16. 16. Porche, K., Lockney, D.T., Gooldy, T., Kubilis, P. and Murad, G. (2021) Nuchal Thickness and Increased Risk of Surgical Site Infection in Posterior Cervical Operations. Clinical Neurology and Neurosurgery, 205, Article ID: 106653. https://doi.org/10.1016/j.clineuro.2021.106653

  17. 17. Shaw, K., Chen, J., Sheppard, W., et al. (2018) Use of the Subcutaneous Lumbar Spine (SLS) Index as a Predictor for Surgical Complications in Lumbar Spine Surgery. The Spine Journal, 18, 2181-2186. https://doi.org/10.1016/j.spinee.2018.04.018

  18. 18. Sang, C., Chen, X., Ren, H., et al. (2020) Correlation between Lumbar Multifidus Fat Infiltration and Lumbar Postoperative Infection: A Retrospective Case-Control Study. BMC Sur-gery, 20, Article No. 35. https://doi.org/10.1186/s12893-019-0655-9

  19. 19. Lian, J., Wang, Y., Yan, X., et al. (2023) Development and Vali-dation of a Nomogram to Predict the Risk of Surgical Site Infection within 1 Month after Transforaminal Lumbar Inter-body Fusion. Journal of Orthopaedic Surgery and Research, 18, Article No. 105. https://doi.org/10.1186/s13018-023-03550-w

  20. 20. Elsamadicy, A.A., Havlik, J., Reeves, B.C., et al. (2021) Effects of Preoperative Nutritional Status on Complications and Readmissions after Posterior Lumbar Decompression and Fu-sion for Spondylolisthesis: A Propensity-Score Analysis. Clinical Neurology and Neurosurgery, 211, Article ID: 107017. https://doi.org/10.1016/j.clineuro.2021.107017

  21. 21. Hart, A., Sun, Y., Titcomb, T.J., et al. (2022) Associ-ation between Preoperative Serum Albumin Levels with Risk of Death and Postoperative Complications after Bariatric Surgery: A Retrospective Cohort Study. Surgery for Obesity and Related Diseases, 18, 928-934. https://doi.org/10.1016/j.soard.2022.04.006

  22. 22. Donnally, C.J., Rush, A.J., Rivera, S., et al. (2018) An Epidural Steroid Injection in the 6 Months Preceding a Lumbar Decompression without Fusion Predisposes Patients to Post-Operative Infections. Journal of Spine Surgery, 4, 529-533. https://doi.org/10.21037/jss.2018.09.05

  23. 23. Petignat, C., Francioli, P., Harbarth, S., et al. (2008) Cefuroxime Prophylaxis Is Effective in Noninstrumented Spine Surgery: A Double-Blind, Placebo-Controlled Study. Spine, 33, 1919-1924. https://doi.org/10.1097/BRS.0b013e31817d97cf

  24. 24. Menz, B.D., Charani, E., Gordon, D.L., et al. (2021) Surgical Antibiotic Prophylaxis in an Era of Antibiotic Resistance: Common Resistant Bacteria and Wider Considerations for Practice. Infection and Drug Resistance, 14, 5235-5252. https://doi.org/10.2147/IDR.S319780

  25. 25. Hu, W., Wang, H., Wu, X., et al. (2023) Does the Microflora of Sur-gery Site Infection Change after Prophylactic Use of Vancomycin Powder in the Spine Surgery. Infection and Drug Re-sistance, 16, 105-113. https://doi.org/10.2147/IDR.S390837

  26. 26. Ghobrial, G.M., Wang, M.Y., Green, B.A. and Levene, H.B. (2018) Preoperative Skin Antisepsis with Chlorhexidine Gluconate versus Povidone-Iodine: A Prospective Analysis of 6959 Consecutive Spinal Surgery Patients. Journal of Neurosurgery Spine, 28, 209-214. https://doi.org/10.3171/2017.5.SPINE17158

  27. 27. Mastrocola, M., Matziolis, G., Böhle, S., et al. (2021) Me-ta-Analysis of the Efficacy of Preoperative Skin Preparation with Alcoholic Chlorhexidine Compared to Povidone Iodine in Orthopedic Surgery. Scientific Reports, 11, Article No. 18634. https://doi.org/10.1038/s41598-021-97838-8

  28. 28. Panzures, A. (2023) 222-nm UVC Light as a Skin-Safe Solution to Antimicrobial Resistance in Acute Hospital Settings with a Particular Focus on Methicillin-Resistant Staphylococcus aureus and Surgical Site Infections: A Review. Journal of Applied Microbiology, 134, lxad046. https://doi.org/10.1093/jambio/lxad046

  29. 29. Carballo Cuello, C.M., Fernández-De Thomas, R.J., De Jesus, O., De Jesús Espinosa, A. and Pastrana, E.A. (2021) Prevention of Surgical Site Infection in Lumbar Instrumented Fusion Us-ing a Sterile Povidone-Iodine Solution. World Neurosurgery, 151, e700-e706. https://doi.org/10.1016/j.wneu.2021.04.094

  30. 30. Lemans, J.V.C., Öner, F.C., Wijdicks, S.P.J., et al. (2019) The Efficacy of Intrawound Vancomycin Powder and Povidone-Iodine Irrigation to Prevent Surgical Site Infections in Com-plex Instrumented Spine Surgery. The Spine Journal, 19, 1648-1656. https://doi.org/10.1016/j.spinee.2019.05.592

  31. 31. Newton Ede, M.P., Philp, A.M., Philp, A., et al. (2016) Pov-idone-Iodine Has a Profound Effect on in Vitro Osteoblast Proliferation and Metabolic Function and Inhibits Their Abil-ity to Mineralize and Form Bone. Spine, 41, 729-734. https://doi.org/10.1097/BRS.0000000000001332

  32. 32. Remy, K.E., Hall, M.W., Cholette, J., et al. (2018) Mecha-nisms of Red Blood Cell Transfusion-Related Immunomodulation. Transfusion, 58, 804-815. https://doi.org/10.1111/trf.14488

  33. 33. Yoshida, T., Prudent, M. and D’alessandro, A. (2019) Red Blood Cell Stor-age Lesion: Causes and Potential cliNical Consequences. Blood Transfusion, 17, 27-52.

  34. 34. Tanner, J. and Parkinson, H. (2002) Double Gloving to Reduce Surgical Cross-Infection. Cochrane Database of Systematic Reviews, No. 3, CD003087. https://doi.org/10.1002/14651858.CD003087

  35. 35. Carroll, A.M., Kim, K.G., Walters, E.T., et al. (2021) Glove and Instrument Changing to Prevent Bacterial Contamination in Infected Wound Debridement and Closure Procedures: A Prospective Observational Study. International Wound Journal, 18, 664-669. https://doi.org/10.1111/iwj.13568

  36. 36. Pennington, Z., Lubelski, D., Molina, C., et al. (2019) Prolonged Post-Surgical Drain Retention Increases Risk for Deep Wound Infection after Spine Surgery. World Neurosurgery, 130, e846-e853. https://doi.org/10.1016/j.wneu.2019.07.013

  37. 37. Rao, S.B., Vasquez, G., Harrop, J., et al. (2011) Risk Factors for Surgical Site Infections following Spinal Fusion Procedures: A Case-Control Study. Clinical Infectious Diseases, 53, 686-692. https://doi.org/10.1093/cid/cir506

  38. 38. Sheffield, C.W., Sessler, D.I., Hunt, T.K., et al. (1994) Mild Hy-pothermia during Halothane-Induced Anesthesia Decreases Resistance to Staphylococcus aureus Dermal Infection in Guinea Pigs. Wound Repair and Regeneration, 2, 48-56. https://doi.org/10.1046/j.1524-475X.1994.20108.x

  39. 39. Seidelman, J.L., Mantyh, C.R. and Anderson, D.J. (2023) Surgical Site Infection Prevention: A Review. JAMA, 329, 244-252. https://doi.org/10.1001/jama.2022.24075

  40. 40. Zucconi, G., Marchello, A.M., Demarco, C., Fortina, E. and Milano, L. (2022) Health Technology Assessment for the Prevention of Peri-Operative Hypothermia: Evaluation of the Correct Use of Forced-Air Warming Systems in an Italian Hospital. International Journal of Environmental Research and Public Health, 20, Article 133. https://doi.org/10.3390/ijerph20010133

  41. 41. Yuan, S., Zhang, T., Zhang, D., et al. (2022) Impact of Negative Pressure Wound Treatment on Incidence of Surgical Site Infection in Varied Orthopedic Surgeries: A Systematic Review and Meta-Analysis. International Wound Journal, 20, 2334-2345. https://doi.org/10.1111/iwj.14043

  42. 42. Norman, G., Shi, C., Goh, E.L., et al. (2022) Negative Pressure Wound Therapy for Surgical Wounds Healing by Primary Closure. Cochrane Database of Systematic Reviews, No. 4, CD009261. https://doi.org/10.1002/14651858.CD009261.pub7

  43. 43. Tsantes, A.G., Papadopoulos, D.V., Vrioni, G., et al. (2020) Spinal Infections: An Update. Microorganisms, 8, Article 476. https://doi.org/10.3390/microorganisms8040476

  44. 44. Long, D.R., Bryson-Cahn, C., Pergamit, R., et al. (2021) 2021 Young Investigator Award Winner: Anatomic Gradients in the Microbiology of Spinal Fusion Surgical Site Infec-tion and Resistance to Surgical Antimicrobial Prophylaxis. Spine, 46, 143-151. https://doi.org/10.1097/BRS.0000000000003603

  45. 45. Alverdy, J.C., Hyman, N. and Gilbert, J. (2020) Re-Examining Causes of Surgical Site Infections following Elective Surgery in the Era of Asepsis. The Lancet Infectious Diseases, 20, e38-e43. https://doi.org/10.1016/S1473-3099(19)30756-X

  46. 46. Lu, Y.A., Wang, L., Tian, H.B., et al. (2023) Association between Nasal Colonization of Staphylococcus aureus and Surgical Site Infections in Spinal Surgery Patients: A System-atic Review and Meta-Analysis. European Review for Medical and Pharmacological Sciences, 27, 417-425.

  47. 47. Ning, J., Wang, J., Zhang, S.Z. and Sha, X.J. (2020) Nasal Colonization of Staphylococcus aureus and the Risk of Surgical Site Infection after Spine Surgery: A Meta-Analysis. The Spine Journal, 20, 448-456. https://doi.org/10.1016/j.spinee.2019.10.009

  48. 48. Wang, F., Meng, J., Zhang, L., et al. (2018) Morphine Induces Changes in the Gut Microbiome and Metabolome in a Morphine Dependence Model. Scientific Reports, 8, Article 3596. https://doi.org/10.1038/s41598-018-21915-8

  49. 49. Ashley, S.L., Sjoding, M.W., Popova, A.P., et al. (2020) Lung and Gut Microbiota Are Altered by Hyperoxia and Contribute to Oxygen-Induced Lung Injury in Mice. Science Transla-tional Medicine, 12, eaau9959. https://doi.org/10.1126/scitranslmed.aau9959

  50. 50. Rabin, N., Zheng, Y., Opoku-Temeng, C., et al. (2015) Biofilm Formation Mechanisms and Targets for Developing Antibiofilm Agents. Future Medicinal Chemistry, 7, 493-512. https://doi.org/10.4155/fmc.15.6

  51. 51. Imani, I.M., Kim, B., Xiao, X., et al. (2023) Ultrasound-Driven On-Demand Transient Triboelectric Nanogenerator for Subcutaneous Antibacterial Activity. Advanced Science, 10, e2204801. https://doi.org/10.1002/advs.202204801

  52. NOTES

    *通讯作者。

期刊菜单