设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投搞
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
Sustainable Energy 可持续能源, 2013, 3, 1-7
http://dx.doi.org/10.12677/se.2013.31001 Published Online January 2013 (http://www.hanspub.org/journal/se.html)
Research and Applications of the High-Power Thermoelectric
Gener atio n Techno logy *
Anjun Jin1,2*, Daw ei Liu1, Wenbo Peng1, Qiming Li1,3, Shisen Xu1,2,4
1Huaneng Clean Energy Research Institute, China Huaneng Group, Beijing
2China Huaneng Group, Beijing
3Beijing Engineering Research Center for Efficient and Clean Use of Low-Quality Fuel, Beijing
4State Key Laboratory of Coal-Based Clean Energy, Beijing
Email: *ajjin@hnceri.com
Received: Aug. 16th, 2012; revised: Sep. 10th, 2012; accepted: Sep. 28th, 2012
Abstract: Thermal electric generation (TEG) is a green energy technology that it has advantages of no-vibration, envi-
ronmental, no noise, small volume, and long life expectancy. This article will review its current state of development
and introduce its principal as well as a new approach by the large-scale integration (LSI) for high-power devices. Using
off-shelf devices, we designed, studied, and measured some specified devices. In order to address the commercial fun-
damentals, we proposed a solution by utilizing LSI TEG to reduce cost. This solution can breakthrough a barrier in
processing cost. The article will discuss manufacturability of TEG for future commercialization in a large scale.
Keywords: Thermal Electric Generation; High-Power TEG; Thermal Electric Device; China Huaneng Group
大功率温差发电技术的产品研发*
金安君 1,2*,刘大为 1,彭文博 1,李启明 1,3,许世森 1,2,4
1中国华能集团清洁能源技术研究院有限公司,北京
2中国华能集团,北京
3北京市低质燃料高效清洁利用工程技术研究中心,北京
4煤基清洁能源国家重点实验室,北京
Email: *ajjin@hnceri.com
收稿日期:2012 年8月16 日;修回日期:2012年9月10日;录用日期:2012 年9月28 日
摘 要:温差发电技术是一种绿色环保的发电方式,具有无振动、无噪音、体积小以及安全可靠寿命长的特点。
本文综述了温差发电技术的研究意义以及现状,介绍了该发电技术的原理。在此基础上,本文给出了大规模集
成温差发电器件的设计思路、工艺流程以及测试结果。通过对小功率的样机进行了测试,验证了设计和工艺的
可行性。该方案的成功有助于使温差发电技术突破材料成本的制约,为大规模应用奠定基础。最后,对温差发
电技术的商业化生产进行了展望。
关键词:温差发电;大功率温差发电;热电器件;中国华能集团
1. 引言
1.1. 温差发电技术的市场和社会价值
当今世界上以美国、俄罗斯、日本以及欧盟为代
表的主要能源大国,不论是能源输出国还是输入国,
都将发展可再生能源作为保障国家能源安全的重要
战略方向[1,2]。我国国家中长期科技发展纲要和国家
“十二五”规划纲要都把节能减排、积极发展新能源
作为实现绿色经济转型的重点来抓[3,4]:国家“十二五”
规划中明确提出了 2015 年全国单位 GDP能耗(按
*资助信息:中国华能集团“千人计划”专项项目。
#通讯作者。
Copyright © 2013 Hanspub 1
大功率温差发电技术的产品研发
2005 年价格)比2010 年下降 16%的目标;国家中长期
科技发展纲要(2006~2020)中提出了重点研发包括交
通运输业等在内的主要高耗能领域的节能技术与新
能源装备的要求,并经国务院常务会议同意,将到
2020 年时单位 GDP 二氧化碳排放量相比2005 年下降
40%~45%纳入约束性指标。因此,发展新型环境友好
的可再生能源及能源转换技术对于国家能源科技战
略的实现十分重要。
温差发电(或热电,TE)是一种利用热电材料中微
观粒子(电子或空穴)的迁移,将温差产生的热流直接
转变为电能的新技术。温差发 电设备(TEG)及技术在
军事、航空航天、医学、余热和废热利用以及太阳能
利用等方面均有广泛的应用前景[1-7],并有望在未来的
节能和可再生能源利用市场占有重要的一席之地。温
差发电设备完全绿色的新一代发电产品。该设备制造
过程无污染、低耗能;工作中零排放、无水耗。此外
温差发电是一种固态发电技术,发电过程不含气、液
循环工质,而且没有移动部件,因此可以被制成任意
大小和形状,灵活应用于各种需要的场合[8,9]。温差发
电技术的另一个优势在于可以利用各种品质的热源,
理论上只要存在任意大小的温差便可发电,同时适应
性强,温度参数在200℃内变化都不会影响温差发电
机的正常工作。因此,温差发电技术在工业余热回收,
汽车尾气废热回收,以及地热、海洋能、太阳能等自
然热源的利用中具有广泛的应用前景,也是目前发达
国家下一代清洁能源技术研发的重点。
1.2. 大功率温差发电技术的研究现状
目前大功率温差发电技术最主要的应用是余热
回收,其中最具代表性的是汽车尾气温差发电,此外
还包括工业中高温余热的回收利用。美国能源部、日
本宇宙航天局等发达国家的相关部门都将热电技术
列入中长期能源开发计划。为了开发温差发电技术,
促使其成熟并进行量产,日本政府推出了“固体废物
燃烧能源回收研究计划”[10]。从2003 年起美国就开
始支持多个实验室开展高性能热电材料和应用技术
的研究,尤其是工业余热的利用。美国的通用、福特,
德国的宝马等多家大型汽车公司,均设立了汽车尾气
废热回收的项目并取得了一定的成绩[11]。图 1列举了
一些国际上比较具有代表性的集中利用温差发电
Cross section of TE channel
TE generator section
(a)
1 kW Generator for Diesel Truck
1 kW TEG Installed on a Kenworth Truck
(b) (c)
Figure 1. Of the cases illustrated high-power TE generation as
follows: (a) 1 kW waste heat thermoelectric generator developed in
Japan[9]; (b) Hot spring power generation system developed by
Japanese, which are comprised of several 500 W thermoelectric
generators[9]; (c) 1 kW automobile exhaust thermoelectric genera-
tor developed by BMW, GM, etc.[10]
图1. 大功率温差发电技术的应用实例: (a) 日本多家企业联合研
制的 1 kW燃烧余热发电机[9];(b) 日本多家企业联合完成的温泉
热能发电工程,由多个 500 W发电单元组成[9];(c) 宝马、通用汽
车等公司联合研制的 1 kW汽车尾气发电装置[10]
技术进行余热回收和可再生能源发电的示范工程
[10,11]。
热电技术已被列为国家重点基础研究(973 项目)
计划中重点发展的新能源技术;国家“十二五”规划
纲要也明确提出发展“太阳能热发电、热电转换材料”
的计划。国家的科技发展规划将推动和带动国内热电
研发水平的提升,并对国内热电工业界带来巨大的影
响。譬如清华大学、武汉理工大学的热电研发工作已
达到世界先进水平。热电工业的发展能有效地服务于
新能源产业、并为节能减排做出重要贡献。
1.3. 热电背景介绍及新型大功率温差发电的
应用
温差发电的原理如图2所示:将 p型和 n型热电
半导体材料交替排列并用金属电极将其连成回路,并
用陶瓷等高导热绝缘材料封装起来,就形成了温差发
Copyright © 2013 Hanspub
2
大功率温差发电技术的产品研发
Copyright © 2013 Hanspub 3
冷端 T
c
P
N
+
-
负载 R
V
TE
导电材料构成的闭合回路(简称热电电路)中。当两个
接点温度不同时(存在温差 ),温差产生回路的
电势。产生的电势VTE(温差电动势)的大小由下式决
定:
h
TTc

T


TEh c
VT


(1)
其中 α称为两种材料的相对塞贝克系数,单位是 V/K。
当接入负载R并考虑电路内阻 r后,温差电动势将使
整个回路中形成电流I,从而使热能转变为电能。
(a)

TE
IV Rr

 (2)
目前产业化热电器件的单片功率一般在10−6~10
W量级,功率密度小于 1 W/cm3,转换效率一般在 10%
以下。这些热电器件的性能参数和经济指标如表 1所
示[10-14],这些产品大都是使用粉末冶金和机械加工技
术制造的常规尺度热电器件。目前产品的性能和经济
指标对于温差发电技术在民用和能源领域大规模推
广应用的需要还有一定差距。
(b)
Figure 2. (a) Schematic illustration of the semiconductor thermal
electric power generation with labels at below: Hot-side, electron
flows, hole flows, cold-side, and load; (b) Schematics to illustrate
the thermal electric devices with labels at below: ceramic substrate,
electrodes, n-type TE, and p-type TE leg: order from top down
then left to right
利用半导体材料的高密度集成技术实现大功率
热电器件的低成本大规模制造,将是解决这一差距(问
题)的有效突破口,目前世界上已经取得了一些研究进
展[9-18]。
图2. (a) 示意图为半导体温差发电。其记号如下:热端,n型电子
流, p型空穴流,冷端,电负载;(b) 示意图为热电器件。其记号如
下:陶瓷衬底,电极,n型,和 p型热电臂:图示顺序先上下再左
右 中国华能集团引进了中组部“千人计划”专家并
为此建立核心研发团队:设立专项项目进行技术攻
关。该项目使用优化的热电转化材料,以纳米块体材
料为基础,大幅度提高热电转化效率。项目目的是研
发制造新一代的高效率、大功率热电器件。该项目的
成功将使得温差发电技术可以与传统热能发电技术
比拟,可以实现高效率、高输出、并使温差发电的
电装置的核心——热电器件;当有热流沿垂直于陶瓷
板的方向穿过热电材料,就会在回路中产生电流输
出,实现对外功率输出。热电器件(芯片)是温差发电
技术的核心部件,其功率密度、转换效率以及制造成
本决定了温差发电技术的发展前景。
温差发电的基础是塞贝克效应,即在两种不同热 相
Table 1. Typical cases of the applications of high-power TE generators
表1. 部分具代表性的大功率温差发电应用项目
序号 厂商 功率/W 效率/% 热端温度/℃ 使用材料 应用领域 价格
$/W
1[10] BMW、GM
BSST、Hi-z 800 6 500 Co-Sb
汽车尾气 13
2[9] Plantec、Showa
Denko、Komatsu 21.6(单片) 6.2 280
n: Ce-Co-Sb
p: La-Fe-Sb
焚化炉余热、
温泉热 -
3[13] Thermonamic 500 4.8 250 BiTe
通用 <2
4[9] Komatsu/KELK、
Showa Cable Systems 200 7.2 280 BiTe
锅炉废热 -
5[9] Komatsu 500 10~11 700
n: Co-Sb
p: Mn-Si 燃烧炉余热 -
6[11] GM、Hi-z 1000 4.5 250 BiTe
柴油机余热 11
大功率温差发电技术的产品研发
装机成本降至7000 RMB/kW以下,从而突破限制温
差发电技术普及应用的成本瓶颈,推动世界清洁能源
利用的发展。
实际应用中常选择具有接近的兼容度的 p和n型
半导体材料交替排列组成热电堆,以获得更大的热电
转换功率和效率,这即是热电模块。
2. 大功率热电器件开发项目的技术成果
2.1. 温差发电装置的结构
用于低温(热端温度 300℃以下)的400 W级温差
发电装置采用2 W-32.6 W-391 W的整合三级子单元
结构设计,如图2所示。热电臂采用由区域熔炼法制
作的普通工业级(或由机械合金化 + 热压烧结法制作
出的高性能——美国 GMZ公司)p 型Bi0.5Sb1.5Te3和n
型Bi2Te3热电块为原料,热电优值系数为 0.6~0.7(或
1.4~1.5——美国 GMZ 公司)。每一级结构的制作工艺
和结构特征如图3。
1) 2 W 标准小单元
考虑到工艺的可靠性,利用微型机械加工法制作
的热电模块不易超过1 cm2,因此先制作约 2 W的小
模块。温差发电片热电臂的尺寸为100 μm × 100 μm ×
350 μm。采用先串联再并联再串联的连接方式:每个
小单元包含 5个串联的热电模块,每个模块由12 组
每组 25 对串联的热电臂组并联组成。一个 2 W小单
元总共包含125 串12 并共 1500 个热电对,额定输出
特性为:5.15 V / 0.396 A(2.04 W),封装后外观尺寸约
为8.5 × 8.5 mm2。
该2 W小单元的制作工艺如图 4所示,首先 a)
将p、n型材料切割出24列凹槽,在可以承受 300℃
长期使用的液态有机粘合剂(例如聚酰亚胺树脂)的润
滑下对插起来并固化;b) 将二维阵列上表面的n型基
座磨掉,露出相间的p、n热电材料;c) 再次沿垂直
于上次的方向切割出4个大凹槽和55 个小凹槽,小
凹槽目的是把p或n型材料分割成热电臂,大凹槽的
目的是将模块分割成几个串联在一起的子单元;d) 将
凹槽内再次填充液态有机填充物并固化,磨平抛光后
制作上电极;e) 下表面磨掉 p型基座,抛光后制作底
部连接电极。
2) 32 W 可拓展单元
将4 × 4组2.04 W的小单元组成 32 W的可拓展
单元。如图4所示。单元的上下左右四个边上均有一
对正负电极接线柱,所有4个正极柱或负极柱都等电
位,因此对外输出时只要将任意一个正极柱和负极柱
与负载相连即可。该32 W单元封装后外观尺寸约为
60 × 60 mm2。
3) 400 W 级温差发电装置
把12 个32.6 W 的可拓展单元安装在一个中空导
板上,组成额定功率为391.2 W的低温发电装置, 热
Figure 3. The three-level design of a 400 W TE generator is shown with cascade of a typical TE device design as follows: 1) A 2 W output of
sub-unit is comprised of a serials of TE modules. In one case, each module has 25 serials and 5 parallels; 2) A 32 W generator unit is com-
prised of 16 sub-units that has 4 sub-units serials where all serials are connected into parallels. The number of parallels is four; 3) A 384 W
generator device is comprised of 12 each of the 32-power units that has 3 units serials where all serials are connected into parallels. The
number of parallels is four
图3. 400 W级温差发电装置的分级设计图如下:1) 2 W小单元由 5个模块串联组成,每个模块包含25 串联 × 12并联个热电对;2) 32 W
可拓展单元由 16 个2 W小单元组成,4组串联、4组并联;3) 384 W装置由 12 个32 W可拓展单元组成。中间可安装热管理器
Copyright © 2013 Hanspub
4
大功率温差发电技术的产品研发
Figure 4. Fabrication process of a 2 W thermoelectric power unit: (a) Engrave parallel grooves on the surface of p and n type thermoelectric
bulks, and then affixed p and n into each other using organic filler; (b) Grind off the n-type base to expose the interlaced p-n array; (c) En-
grave parallel grooves on the perpendicular direction, narrow grooves are for separation of thermoelectric legs, while grooves are for separa-
tion of modules; (d) Fill the grooves with organic fillers, and fabricate top-electrodes after solidification; (e) Grind off the p-type base, and
fabricate bottom-electrodes
图4. 设计的 2 W温差发电单元的制作工艺流程:(a) 将p、n型材料切割出凹槽,在液态有机填充物的润滑下对插起来并固化;(b) 将二
维阵列上表面的 n型基座磨掉,露出相间的 p、n热电材料;(c) 二次切割凹槽,窄凹槽的目的是把p或n型材料分割成热电臂,宽凹槽的
目的是分割出模块;(d) 将凹槽内再次填充液态有机填充物并固化,磨平抛光后制作上电极;(e) 下表面磨掉 p型基座,抛光后制作底部连
接电极
外观尺寸约为220 × 220 mm2。由于每个 32.6 W 可拓
展单元都具有上下左右4组正负接线柱,因此可以跟
据实际需要方便地将该温差发电装置连接成多种输
出参数的组合。将可拓展单元安装在中空导热板上的
原因是考虑到以后将发电装置扩展到多级温差发电
系统时,可以方便地借助穿过每级导热板孔的热管理
开关对各级进行热流控制,该设计本文不再进一步展
开讨论。
2.2. 热电性能测试结果
实验方法请参考文献[19]。本文汇报 2 W及32 W
的测试。对 2 W标准单元的温差发电输出特性如图
5(a)和(b)所示。图中给出了五个不同温差(单位:℃)
下的 I-V 特性测试数据和线性拟合结果,以及据此计
算出的输出功率值随外电路电压的变化关系。可以看
出随着温度的提高热电片的总电阻略有提高,在温差
达到 135℃时(冷端:245℃,热端:11 0℃)内阻约为
0.8 Ω,开路电压可达约 3.5 V,短路电流可达约2.6 A;
当内外电阻相等时达到最大输出功率约2.2 W。测试
得到的 32 W标准单元的温差发电输出特性如图 5(c)
和(d)所示。图中展示了三个不同温差下的I-V 特性测
试数据和线性拟合结果,以及据此计算出的输出功率
值随外电路电压的变化关系。表2还显示了测试的数
据表。测试结果基本满足设计要求,如果可以提高冷
端散热效果则有望进一步提高功率输出。
3. 大功率温差技术的经济效益预期
大功率温差发电技术可以用于余热、废热回收和
发电。火电厂烟道尾气的温度一般在 130℃或更高。
末端排烟温度每降低15~20 度,排烟热损失要增大一
个百分点,煤耗减少1.5~2 g/kw·h(度电)。据初步估计
适量回收烟气中的热能,考虑到尾气废热可以回收及
热利用效率,可以节省燃煤量3~5 g/kWh。减少可观
的热能浪费,在实现经济性的同时降低温室气体和污
染物的排放量。
温差发电装置结构简单、紧凑,体功率密度可以
达到 1 MWp/m3以上,而且发电机可以设计成平板、
管状等任意形状来贴合锅炉受热面或烟气管道外壁,
非常适合于对已建电厂进行改动量很少的低成本节
能减排的改造。此外,我国是一个能耗大国,炼焦厂
等化工企业的热效率远低于大型火电厂,生产中通过
冷却和散热等方式损失的热能占到了总热量的
40%~60%,是一笔巨大的浪费。由于功率较低,难以
用汽轮机的方式实现废热发电,而温差发电技术则 利
Copyright © 2013 Hanspub 5
大功率温差发电技术的产品研发
(a) (b)
(c) (d)
Figure 5. Output properties of the thermoelectric device. (a) I-V curve (2 W); (b) P-V curve, (2 W); (c) I-V curve (27 W); (d) P-V curve (27
W)
图5. 温差发电装置的输出特性。(a) I-V曲线(2 W);(b) P-V曲线(2 W);(c) I-V曲线(27 W );(d) P-V曲线(27 W)
Table 2. Experimental studies are conducted on some off-the-shelf
devices[14]. Table shows the recording of a typical TE with delta-T
variation for I (the short-current), V (the open-voltage), and P (the
maximum power output)
表2. 实验使用了部分制造厂商经常产制的器件进行。表中记录了
典型的温差依赖曲线:短路电流,开路电压,及P(最大输出功率)
热端
温度℃
冷端
温度℃ 温差℃ 开路电压
V(V)
短路
电流 I(A) IV(W) 最大
功率(W)
196 62.1 133.9 8.66 3.35 29.0 7.3
300 87.3 212.7 15.81 5.22 82.5 20.7
361 102.5 258.5 19.08 5.74 109.527.3
是对该问题最有前景的解决方案之一。
温差发电技术同样可以用于太阳能热效应发电。太
阳能作为自然界中能量总量最大、分布最为广泛的可
再生能源,具有巨大的应用前景。温差发电技术可以
利用太阳热能产生的温差来发电,通常需要采用聚光
等集热手段提高热端温度。太阳能温差发电的结构形
式远比集热技术(CSP)简单,仅比光伏(PV)技术多了一
个聚光镜组;同时材料的生产工艺成本和能耗都明显
低于光伏电池,而且几乎不排放有毒污染物。只要有
足够的研发投入和市场开拓力度,无论是发电形式还
是价格成本,太阳能温差发电技术都将成为太阳能发
电领域的有力竞争者。
中国的自然热能资源十分丰富,目前已发现的温
度在 150℃以下的中低温地热资源多达2900 多处,每
年总计天然放热量约相当于360 万吨标准煤当量。温
差发电技术非常适合自然界地热或温泉等低品质可
再生热源的利用。这些温度在60℃~1 5 0℃左右的热源
无法推动普通的蒸汽轮机发电,而相比有机物的朗肯
循环或闪蒸技术,温差发电机的结构更加简单,设计
更加灵活。同时工作温度不依赖于循环工质的汽化
点,设计的适用度更加广泛,而且不存在有机物挥发
Copyright © 2013 Hanspub
6
大功率温差发电技术的产品研发
参考文献 (References)
和泄漏的环境风险,具有更高的可靠性和稳定性。利
用现有的温差发电技术可以实现效率5%~7%的电能
转换,只要控制好成本因素,温差发电技术将成为此
类可再生能源最具潜力的利用方式。
4. 总结和展望
低成本的温差发电技术有望跻身主流清洁能源
市场,提供大功率的电力供给。温差发电技术大规模
应用的重要制约之一是稀有材料的使用量,热电器件
的微型化将是解决这一问题的有效突破口。该技术是
一个涵盖多领域的技术综合体,需要多方面的技术整
合,其中以微型热电器件的工业化生产为重点和难
点。成熟的大功率温差发电技术可以用于电厂和化工
厂的余热、废热回收,以及太阳能、地热和温泉能等
清洁能源发电领域。
中国华能集团是中国最大发电企业和行业科技
创新的领跑者,同时也是国内最早开始关注集中式温
差发电技术的大型电力企业。本课题组正在开展大功
率温差发电技术的产业化研发。通过技术攻关和技术
整合,中国华能集团准备在3年左右开发出一套国际
领先并在主流清洁能源市场具有竞争力的温差发电
技术方案。
5. 致谢
本文得到了中国华能集团“千人计划”专项项目
的资助、感谢北京市工程技术研究中心NO:BG0083
的支持。
[1] IEA. Solar photovoltaic energy technology roadmap.
http://www.iea.org
[2] 2011中国光伏产业发展报告[R]. Semi PV Group&中国光伏
产业联盟, 2011.
[3] 颜军. 太阳能温差发电[D]. 电子科技大学, 2011.
[4] G. Chen. Theoretical efficiency of solar thermoelectric energy
generators. Journal of Applied Physics, 2011, 109(10): Article
ID: 104908.
[5] 金安君, 彭文博等. 固体温差发电技术在太阳能领域的应用
和简要综述[J]. 可持续能源, 2012, 2: 35-41.
[6] B. Poudel, Z. Ren. High thermoelectric performance. Science,
2008, 320: 634.
[7] 白忠恺. 中高温余热回收半导体温差发电热系统设计研究
[D]. 南京航空航天大学, 2009.
[8] 郑艳丽, 张卫华, 杨梦春. 热电半导体发电器和制冷器的应
用前景[J]. 铜业工程, 2010, 4: 59-62.
[9] 赵建云, 朱冬生, 周泽广等. 温差发电技术的研究进展及现
状[J]. 电源技术, 2010, 34(3): 310-313.
[10] T. Kajikawa. Overview of thermoelectric power generation
technologies in Japan. 2011, presentation.
[11] 示范工程案例[URL], 2008.
http://green.autoblog.com/2008/08/11/ researchers-work-to-turn-
cars-exhaust- into-power
[12] Brochure 2006. Hi-z Technology Inc., 2006. http://www.hi-z.com
[13] 热电器件制造集成[URL]. http://www.micropelt.com
[14] 参考热电器件性能参数[URL]. http://www.thermonamic.com
[15] W. Glatz, et al. Bi2Te3-based flexible micro thermoelectric gen-
erator with optimized design. Journal of Microelectromechanical
Systems, 2009, 18: 763-772.
[16] G. J. Snyder, et al. Thermoelectric microdevice fabricated by a
MEMS-like electrochemical process. Nature Materials, 2003,
2(8): 528-531.
[17] L. Wang, D. M. Sipe, Y. Xu, et al. A MEMS thermal biosensor
for metabolic. Journal of Microelectromechanical Systems, 2008,
17(2): 318-327.
[18] R. Izaki, N. Kaiwa, M. Hoshino, et al. Roll-type thermoelectric
devices with InN thin films. Applied Physics Letters, 2005,
87(24): Article ID: 243508.
[19] 刘大为, 彭文博等. 热电器件在大功率温差发电技术中的应
用[J]. 可持续能源, 2012/8(已接收发表).
Copyright © 2013 Hanspub 7

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2012 Hans Publishers Inc. All rights reserved.