Advances in Clinical Medicine
Vol. 13  No. 11 ( 2023 ), Article ID: 75144 , 6 pages
10.12677/ACM.2023.13112468

铁蛋白水平与心血管病的研究进展

张兴艳,丁慧敏,郭玉君*

新疆医科大学第一附属医院心脏中心,新疆 乌鲁木齐

收稿日期:2023年10月11日;录用日期:2023年11月6日;发布日期:2023年11月13日

摘要

生理状态下,铁能够通过多种途径进入心肌细胞,在能量代谢中发挥重要作用,然而,在持续应激或过载的情况下,会通过芬顿反应损伤机体细胞。铁稳态失调与多种心血管疾病有关,如缺血再灌注损伤、冠状动脉粥样硬化、心肌疾病及心力衰竭等,早期检测铁蛋白水平,维持铁稳态,预防铁超载,探究铁蛋白与心脏疾病之间的相互关系,为心脏疾病的诊治和预后提供新的方向。

关键词

铁蛋白,铁过载,炎症,缺血再灌注损伤,心血管疾病

Research Progress on Ferritin Levels and Cardiovascular Disease

Xingyan Zhang, Huimin Ding, Yujun Guo*

Heart Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Oct. 11th, 2023; accepted: Nov. 6th, 2023; published: Nov. 13th, 2023

ABSTRACT

Physiologically, iron can enter cardiomyocytes through a variety of pathways and play an important role in energy metabolism, however, in the case of continuous stress or overload, it can damage body cells through the Fenton reaction. Iron homeostasis disorder is related to a variety of cardiovascular diseases, such as ischemia-reperfusion injury, coronary atherosclerosis, myocardial diseases and heart failure, early detection of ferritin levels, maintenance of iron homeostasis, prevention of iron overload, exploration of the interrelationship between ferritin and heart diseases, and provide a new direction for the diagnosis and prognosis of heart diseases.

Keywords:Ferritin, Iron Overload, Inflammation, Ischemia-Reperfusion Injury, Cardiovascular Disease

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

血清铁蛋白又称铁蛋白(serum ferritsn, SF),是去铁蛋白和铁核心Fe3+形成的复合物,其水平变化可用于判断体内铁含量。一直以来,铁摄取的主要机制被认为是转铁蛋白(Transferrin, Tf)通过转铁蛋白受体(Transferrin receptor, TfR)传递铁的作用。J. Fisher等人 [1] 发现SF不仅是铁存储蛋白,更可能是铁传递蛋白,其主要由H-亚基和I-亚基组成,Fe的储存需要将Fe2+氧化为Fe3+,这是由H-铁蛋白的铁氧化酶酶活性催化的。胞质Fe2+通过伴侣蛋白多聚rC结合蛋白(poly-rC-binding protein, PCBP) 1和2 (PCBP1和PCBP2)传递到SF中,游离的Fe2+可以通过铁蛋白自噬的转换过程被动员调节,进入多个器官 [2] 。H-亚基吸附不稳定的Fe2+,减少游离Fe2+通过芬顿反应产生有害的活性羟基自由基氧化应激导致的脂质过氧化引起细胞损伤 [3] 。目前越来越多的证据表明铁代谢失衡与多种心血管疾病(Cardiovascular disease, CVD)之间存在关联 [4] [5] 。当心衰患者发生铁缺乏时会影响铁相关酶的活性,造成组织细胞生理功能紊乱,影响氧化磷酸化和丙酮酸代谢,无法为心肌提供足够能量需求,诱发心肌细胞凋亡 [6] 。而当过量的铁积聚在心脏等器官中会导致心肌病甚至心力衰竭。线粒体中ROS的产生被认为是最重要的致病因素决定心肌细胞损伤的途径。ROS的产生导致脂质过氧化和DNA损伤,导致心肌细胞死亡、纤维化,最终导致心功能障碍 [7] 。

2. 铁稳态与失衡

2.1. 铁稳态

铁稳态是一种动态的铁平衡,不仅包括体内循环的铁含量,也包括细胞内铁的水平,在哺乳动物中,大部分铁存在于血红蛋白中,只有一小部分铁在血液中循环,与转铁蛋白结合,在人体中,转铁蛋白结合的铁不到体内总铁的0.1% (约3 mg),然而,转铁蛋白结合的铁池是高度动态循环的 [8] 。循环转铁蛋白的铁供应主要由网状内皮系统的巨噬细胞维持,这些细胞通过吞噬裂解衰老的红细胞并回收铁,其余一小部分由十二指肠吸收转化而来。铁平衡主要受到多肽激素–铁调素(Hepcidin)的负调节,Hepcidin在肝细胞中产生,通过与靶细胞表面的铁转运蛋白结合减少铁流入血液 [9] 。铁缺乏时血红蛋白合成减少,常会引发血液系统、心血管系统及脑神经系统等疾病 [10] ,欧洲心脏病学会指南也推荐静脉注射羧基麦芽糖铁可用于治疗射血分数降低的症状性的急性和慢性心力衰竭。而当细胞内发生铁超载时,游离的Fe2+与线粒体作用产生过氧化氢物通过芬顿(Fenton)反应,生成羟基自由基或过氧化自由基,形成脂质过氧化及ROS积累,导致细胞损伤 [11] ,另一方面,铁会增加非血红素铁酶的活性,促进ROS生成,增加氧化损伤 [12] 。而这些具有高度活性的羟基自由基,可以破坏蛋白质、核酸和膜脂质导致铁凋亡,这是一种铁依赖性的非凋亡细胞死亡形式,也叫铁死亡 [11] ,最早是2012年Dixon等 [13] 在寻找对ROS突变肿瘤细胞具有选择性致死作用的化合物时提出的,铁死亡在形态学、生化和遗传学上不同于细胞凋亡、各种形式的坏死和自噬。这一过程的特点是脂质过氧化及ROS的铁依赖性积累。

2.2. 铁死亡

铁死亡脂质过氧化后产生的脂质过氧化物(lipid peroxide, LOOH)、活性醛如丙二醛(Malondialdehyde, MDA)和4-羟基壬烯醛(4-Hydroxynonenal, 4HNE)会损伤蛋白质甚至核酸的结构和功能,导致细胞损伤 [11] 。目前对于铁死亡的主流途径研究有:依赖于谷胱甘肽过氧化物酶4 (glutathione peroxidase 4, GPX4)途径和不依赖GPX4的信号途径,如:脂质代谢途径,铁离子代谢途径以及能量代谢途径等 [14] 。GPX4是一种抗氧化剂,在谷胱甘肽(glutathione, GSH)的辅助下将过氧化氢物还原为羟基化合物,从而保护细胞结构功能 [15] 。当GSH依赖的脂质过氧化修复系统受损时,ROS的铁依赖性积累驱动,核受体共激活因子4 (NCOA4)介导的铁蛋白选择性自噬,又称铁蛋白自噬,参与铁凋亡的调节,同时铁蛋白水平也会反过来调控NCOA4水平来维持铁稳态 [16] 。在小鼠实验中观察到敲除GPX4基因后出现脂质过氧化物堆积,这也说明GPX4细胞在脂质过氧化物损害方面的重要作用 [17] 。此外嗜铁细胞中的脂质过氧化还可以以旁分泌的方式传递给其他细胞。一旦发生铁死亡,影响就会传播到周围的细胞,铁死亡事件以连锁的方式继续发生 [18] 。目前,国内外对铁死亡研究较多,但机制尚未完全明确,就现有的研究提示铁死亡的发生过程是在铁、脂质、氨基酸和脂质ROS代谢的共同作用下完成的,但也受到其他一些途径的影响。

3. 铁代谢对心血管疾病的作用

3.1. 铁代谢与炎症及免疫及心血管疾病

在正常情况下,SF是体内铁水平的表现,在炎性条件下,SF可以作为一种反映急慢性炎症程度的急性期指标蛋白 [19] ,通过一个独立于铁稳态的过程上调合成,并在急慢性炎性疾病中发挥作用 [20] 。当体内铁超载时也会以两种方式来影响免疫细胞功能。一方面,铁超载会影响免疫细胞本身的数量和功能。另一方面,嗜铁细胞可以被免疫细胞识别,然后引发一系列炎症或特异性反应 [21] 。冠状动脉粥样硬化是一种低级别炎症性疾病,其中铁诱导的氧化应激,在炎症反应中也起着重要作用,SF和高敏C反应蛋白(High sensitive C-reactive protein, hs CRP)作为急性期阳性反应物,可以促进低密度脂蛋白颗粒氧化,引起血管炎症 [22] 。许多研究表明,促炎生物标志物在各种CVD中升高,炎症标志物的水平与CVD的预后和严重程度相关 [5] [23] [24] 。Mantel等人 [25] 的研究也提供了相关证据,证明炎症是心力衰竭的直接因果途径的一部分。慢性免疫紊乱可直接导致非缺血性心力衰竭,此外有分析显示,SF水平在转铁蛋白饱和度正常的患者中发现与心衰患者之间也存在线性关联,这表明SF水平升高与心肌细胞损伤可能涉及除铁超载外的另一种途径,如代谢综合征的低级别炎症反应导致HF的发展 [4] 。因此考虑SF水平可能在炎症及免疫细胞等方面上与CVD也密切相关。

3.2. 铁代谢与血管内皮损伤及缺血再灌注损伤

缺血再灌注损伤(Ischemia-reperfusion injury, IRI)是指局部组织器官因缺血发生缺血性损伤后在一定条件下恢复血液再灌注,细胞功能代谢障碍及结构破坏不但未减轻反而加重。当铁超载、氧化应激、全身炎症及线粒体损伤时,会引起心肌细胞丢失和纤维化,加重缺血再灌注损伤最终导致心肌细胞代谢进行性紊乱和不可逆心肌重构的恶性循环 [26] 。在铁过载时可以观察到氧化应激反应增加造成线粒体功能的障碍,线粒体作为真核细胞细胞质中的一种膜结合细胞器,在细胞代谢和信号转导的调节中起重要作用 [27] ,此外线粒体不仅是血红素合成和铁硫簇(ISCs)的主要场所,也是ROS的主要来源 [28] 。心肌细胞中的线粒体铁水平明显高于其他细胞。因此,线粒体中的SF浓度对心肌细胞至关重要,目前已经发现严重的线粒体铁超载会诱导线粒体DNA (mtDNA)损伤及功能障碍 [27] 。其原因除了ROS对线粒体的毒性外,还会导致线粒体膜电位去极化和线粒体穿透孔开放,从而导致线粒体肿胀失衡 [29] ,这一病理过程进一步加剧了氧化应激,并引发心肌膜损伤和心血管内皮功能障碍。因此预防细胞死亡及线粒体损伤对IRI后心脏功能的保护具有重要意义 [30] 。有研究发现,IRI损伤后给心肌细胞给予铁螯合剂有利于心肌功能障碍的逆转 [10] 。此外Fang等人 [31] 也发现在心肌缺血前30 min给小鼠注射铁抑制剂Fer-1,发现对小鼠心脏IRI模型具有组织保护作用。选择性的给予铁抑制剂liproxstatin-1也可以增加GPX4水平,改善小鼠缺血心肌梗死、线粒体功能和ROS生成 [32] 。

3.3. 铁代谢与心肌病及其他类型心脏病

高铁致心肌损伤称为铁过载心肌病(iron overload cardiomyopathy, IOC)是一组预后差、死亡率高的心血管疾病。目前IOC的发病率正不断上升,新兴的心脏磁共振成像检测方法对心肌铁含量的定量检测具有较高的诊断价值 [33] ,可用于检测及预防心肌铁超载,在小鼠镰状细胞病模型中,铁超载会通过诱导心脏毒性和脂质过氧化,在心肌细胞铁死亡和HF中发挥作用 [34] 。同时有研究表明,高铁会增加NCOA4的泛素化和降解引起铁蛋白自噬,铁蛋白自噬是铁代谢稳态的核心,又受NCOA4和细胞内铁蛋白水平的严格调节 [16] ,噬铁蛋白紊乱在心肌细胞损伤中起关键作用 [35] 。阿霉素可以通过NCOA4去泛素化诱导心肌细胞铁凋亡 [36] 。这些研究均提示了体内高铁蛋白水平对心肌细胞产生的负性影响。但Ilaria等 [37] 通过对扩张性心肌病患者的心肌细胞进行铁代谢基因测定,结果并没有发现可以提供高铁蛋白水平在心肌疾病进展过程中直接作用的证据。此外铁代谢在冠状动脉粥样硬化及心肌梗死(myocardial infarction, MI)中也起着重要作用,定量蛋白质组学分析表明,GSH代谢途径和ROS途径在MI的早期和中期均显著下调,证实了代谢应激下MI时铁超载导致细胞死亡 [38] ,而且有研究显示,大多数ST段抬高型MI患者存在心肌铁残留,也表明心肌铁升高是MI后左室重构不良的危险因素 [39] ,此外,经人脐带血间充质干细胞(HUCB-MSC)外泌体递送的miR-23a-3p被证明可抑制心肌铁死亡,介导AMI的心肌修复 [40] ,因此抑制铁死亡可能是修复MI心肌损伤的新思路。

4. 总结与展望

根据目前研究可知,铁稳态是心血管疾病的重要因素,过量的游离铁可以进入线粒体,产生氧化应激,导致线粒体功能受损,进一步加重IRI及MI、影响心肌细胞代谢及血管内皮收缩功能,铁超载会加速心肌细胞铁死亡,越来越多的证据也表明铁稳态和铁死亡在心血管疾病中的作用和潜在机制。然而,SF水平与炎症及应激状态也密切相关,SF升高在多大程度上真正反映了铁储量尚不清楚。此外有多项研究表明使用铁死亡抑制剂、铁螯合剂、他汀–铁类药物有显著的协同心脏保护作用,可以改善心脏血管的炎症反应,抑制脂质过氧化。但其具体的机制仍在被探索,这些发现可能为预防和治疗心血管疾病提供新的生物标志物和潜在靶点,以此改善心血管疾病预后。

文章引用

张兴艳,丁慧敏,郭玉君. 铁蛋白水平与心血管病的研究进展
Research Progress on Ferritin Levels and Cardiovascular Disease[J]. 临床医学进展, 2023, 13(11): 17608-17613. https://doi.org/10.12677/ACM.2023.13112468

参考文献

  1. 1. Fisher, J., Devraj, K., Ingram, J., et al. (2007) Ferritin: A Novel Mechanism for Delivery of Iron to the Brain and Other Organs. American Journal of Physiology-Cell Physiology, 293, C641-C649. https://doi.org/10.1152/ajpcell.00599.2006

  2. 2. Katsarou, A. and Pantopoulos, K. (2020) Basics and Principles of Cellular and Systemic Iron Homeostasis. Molecular Aspects of Medicine, 75, Article ID: 100866. https://doi.org/10.1016/j.mam.2020.100866

  3. 3. Omiya, S., Ito, J. and Otsu, K. (2021) Labile Iron Derived from Autophagy-Mediated Ferritin Degradation in Cardiomyocytes under Pressure Overload Increases Myocardial Oxidative Stress and Develops Heart Failure in Mice. European Heart Journal, 42, ehab724.0747. https://doi.org/10.1093/eurheartj/ehab724.0747

  4. 4. Klip, I.T., Voors, A.A., Swinkels, D.W., et al. (2017) Serum Ferritin and Risk for New-Onset Heart Failure and Cardiovascular Events in the Community. European Journal of Heart Failure, 19, 348-356. https://doi.org/10.1002/ejhf.622

  5. 5. Sawicki, K.T., De Jesus, A. and Ardehali, H. (2023) Iron Metabolism in Car-diovascular Disease: Physiology, Mechanisms, and Therapeutic Targets. Circulation Research, 132, 379-396. https://doi.org/10.1161/CIRCRESAHA.122.321667

  6. 6. Chung, Y.J., Swietach, P., Curtis, M.K., et al. (2020) Iron-Deficiency Anemia Results in Transcriptional and Metabolic Remodeling in the Heart Toward a Glycolytic Pheno-type. Frontiers in Cardiovascular Medicine, 7, Article ID: 616920. https://doi.org/10.3389/fcvm.2020.616920

  7. 7. Walter, P.B., Knutson, M.D., Paler-Martinez, A., et al. (2002) Iron Deficiency and Iron Excess Damage Mitochondria and Mitochondrial DNA in Rats. Proceedings of the National Acade-my of Sciences, 99, 2264-2269. https://doi.org/10.1073/pnas.261708798

  8. 8. Gkouvatsos, K., Papanikolaou, G. and Pantopoulos, K. (2012) Regu-lation of Iron Transport and the Role of Transferrin. Biochimica et Biophysica Acta, 1820, 188-202. https://doi.org/10.1016/j.bbagen.2011.10.013

  9. 9. Zhang, D.-L., Rouault, T., et al. (2018) How Does Hepcidin Hinder Ferroportin Activity? The Journal of the American Society of Hematology, 131, 840-842. https://doi.org/10.1182/blood-2018-01-824151

  10. 10. Paraskevaidis, I.A., Iliodromitis, E.K., Vlahakos, D., et al. (2005) Deferoxamine Infusion during Coronary Artery Bypass Grafting Ameliorates Lipid Peroxidation and Protects the Myocardium against Reperfusion Injury: Immediate and Long-Term Significance. European Heart Journal, 26, 263-270. https://doi.org/10.1093/eurheartj/ehi028

  11. 11. Tang, D., Chen, X., Kang, R., et al. (2021) Ferroptosis: Molecular Mechanisms and Health Implications. Cell Research, 31, 107-125. https://doi.org/10.1038/s41422-020-00441-1

  12. 12. Sousa, L., Oliveira, M.M., Pessoa, M.T.C., et al. (2020) Iron Overload: Effects on Cellular Biochemistry. Clinica Chimica Acta, 504, 180-189. https://doi.org/10.1016/j.cca.2019.11.029

  13. 13. Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., et al. (2012) Fer-roptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042

  14. 14. 牛帅, 张锐, 荣智华, 等. 铁死亡在血管内皮损伤机制中的研究进展[J]. 中华实验外科杂志, 2022, 39(7): 1418-1421.

  15. 15. Ursini, F. and Maiorino, M. (2020) Lipid Peroxidation and Ferroptosis: The Role of GSH and GPx4. Free Radical Biology & Medicine, 152, 175-185. https://doi.org/10.1016/j.freeradbiomed.2020.02.027

  16. 16. Jin, X., Jiang, C., Zou, Z., et al. (2023) Ferritinophagy in the Etiopathogenic Mechanism of Related Diseases. The Journal of Nutritional Biochemistry, 117, Article ID: 109339. https://doi.org/10.1016/j.jnutbio.2023.109339

  17. 17. Friedmann, A.J.P., Schneider, M., Proneth, B., et al. (2014) In-activation of the Ferroptosis Regulator Gpx4 Triggers Acute Renal Failure in Mice. Nature Cell Biology, 16, 1180-1191. https://doi.org/10.1038/ncb3064

  18. 18. Nishizawa, H., Matsumoto, M., Chen, G., et al. (2021) Lipid Peroxidation and the Subsequent Cell Death Transmitting from Ferroptotic Cells to Neighboring Cells. Cell Death & Disease, 12, Ar-ticle No. 332. https://doi.org/10.1038/s41419-021-03613-y

  19. 19. Dignass, A., Farrag, K. and Stein, J. (2018) Limitations of Se-rum Ferritin in Diagnosing Iron Deficiency in Inflammatory Conditions. International Journal of Chronic Diseases, 2018, Article ID: 9394060. https://doi.org/10.1155/2018/9394060

  20. 20. Namaste, S.M., Rohner, F., Huang, J., et al. (2017) Adjusting Ferritin Concentrations for Inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) Project. The American Journal of Clinical Nutrition, 106, 359S-371S. https://doi.org/10.3945/ajcn.116.141762

  21. 21. Chen, X., Kang, R., Kroemer, G., et al. (2021) Ferroptosis in Infec-tion, Inflammation, and Immunity. Journal of Experimental Medicine, 218, e20210518. https://doi.org/10.1084/jem.20210518

  22. 22. Li, J., Xu, L., Zuo, Y.X., et al. (2022) Potential Intervention Target of Atherosclerosis: Ferroptosis (Review). Molecular Medicine Reports, 26, Article No. 343. https://doi.org/10.3892/mmr.2022.12859

  23. 23. Heidenreich, P. (2017) Inflammation and Heart Failure: Therapeutic or Diagnostic Opportunity? Journal of the American College of Cardiology, 69, 1286-1287. https://doi.org/10.1016/j.jacc.2017.01.013

  24. 24. Silvestre, O.M., Goncalves, A., Nadruz, W., et al. (2017) Ferritin Levels and Risk of Heart Failure—The Atherosclerosis Risk in Communities Study. European Journal of Heart Failure, 19, 340-347. https://doi.org/10.1002/ejhf.701

  25. 25. Martens, P. and Tang, W. (2022) Iron Deficiency in Heart Fail-ure and Pulmonary Hypertension. Springer, Berlin, 1-17.

  26. 26. Li, J.Y., Liu, S.Q., Yao, R.Q., et al. (2021) A Novel In-sight into the Fate of Cardiomyocytes in Ischemia-Reperfusion Injury: From Iron Metabolism to Ferroptosis. Frontiers in Cell and Developmental Biology, 9, Article ID: 799499. https://doi.org/10.3389/fcell.2021.799499

  27. 27. Walter, P.B., Knutson, M.D., Paler-Martinez, A., et al. (2002) Iron Deficiency and Iron Excess Damage Mitochondria and Mitochondrial DNA in Rats. Proceedings of the National Acade-my of Sciences, 99, 2264-2269. https://doi.org/10.1073/pnas.261708798

  28. 28. Chang, L.-C., Chiang, S.-K., Chen, S.-E., et al. (2018) Heme Oxy-genase-1 Mediates BAY 11-7085 Induced Ferroptosis. Cancer Letters, 416, 124-137. https://doi.org/10.1016/j.canlet.2017.12.025

  29. 29. Sripetchwandee, J., Kenknight, S., Sanit, J., et al. (2014) Block-ade of Mitochondrial Calcium Uniporter Prevents Cardiac Mitochondrial Dysfunction Caused by Iron Overload. Acta Physiologica, 210, 330-341. https://doi.org/10.1111/apha.12162

  30. 30. Chevion, M., Leibowitz, S., Aye, N.N., et al. (2008) Heart Protection by Ischemic Preconditioning: A Novel Pathway Initiated by Iron and Mediated by Ferritin. Journal of Molecular and Cellu-lar Cardiology, 45, 839-845. https://doi.org/10.1016/j.yjmcc.2008.08.011

  31. 31. Su, L., Jiang, X., Yang, C., et al. (2019) Pannexin 1 Mediates Ferroptosis That Contributes to Renal Ischemia/Reperfusion Injury. Journal of Biological Chemistry, 294, 19395-19404. https://doi.org/10.1074/jbc.RA119.010949

  32. 32. Feng, Y., Madungwe, N.B., Aliagan, A.D.I., et al. (2019) Liprox-statin-1 Protects the Mouse Myocardium against Ischemia/Reperfusion Injury by Decreasing VDAC1 Levels and Re-storing GPX4 Levels. Biochemical and Biophysical Research Communications, 520, 606-611. https://doi.org/10.1016/j.bbrc.2019.10.006

  33. 33. Li, D., Pi, W., Sun, Z., et al. (2022) Ferroptosis and Its Role in Cardiomyopathy. Biomedicine & Pharmacotherapy, 153, Article ID: 113279. https://doi.org/10.1016/j.biopha.2022.113279

  34. 34. Menon, A.V., Tsai, H.P. and Kim, J. (2020) Cardiac Iron Overload Promotes Ferroptosis and Cardiac Dysfunction in Mice with Sickle Cell Disease. The FASEB Journal, 34, 1. https://doi.org/10.1096/fasebj.2020.34.s1.02704

  35. 35. Ito, J., Omiya, S., Rusu, M.-C., et al. (2021) Iron Derived from Autophagy-Mediated Ferritin Degradation Induces Cardiomyocyte Death and Heart Failure in Mice. Elife, 10, e62174. https://doi.org/10.7554/eLife.62174

  36. 36. Zhou, Y.-J., Duan, D.-Q., Lu, L.-Q., et al. (2022) The SPATA2/CYLD Pathway Contributes to Doxorubicin-Induced Cardiomyocyte Ferroptosis via Enhancing Ferritinophagy. Chemico-Biological Interactions, 368, Article ID: 110205. https://doi.org/10.1016/j.cbi.2022.110205

  37. 37. Massaiu, I., Campodonico, J., Mapelli, M., et al. (2023) Dysregula-tion of Iron Metabolism-Linked Genes at Myocardial Tissue and Cell Levels in Dilated Cardiomyopathy. International Journal of Molecular Sciences, 24, Article No. 2887. https://doi.org/10.3390/ijms24032887

  38. 38. Park, T.-J., Park, J.H., Lee, G.S., et al. (2019) Quantitative Proteomic Analyses Reveal That GPX4 Downregulation during Myocardial Infarction Contributes to Ferroptosis in Cardiomyocytes. Cell Death & Disease, 10, Article No. 835. https://doi.org/10.1038/s41419-019-2061-8

  39. 39. Bulluck, H., Rosmini, S., Abdel-Gadir, A., et al. (2016) Residual Myocardial Iron Following Intramyocardial Hemorrhage during the Convalescent Phase of Reperfused ST-Segment-Elevation Myocardial Infarction and Adverse Left Ventricular Remodeling. Circulation: Cardiovascular Imaging, 9, e004940. https://doi.org/10.1161/CIRCIMAGING.116.004940

  40. 40. Song, Y., Wang, B., Zhu, X., et al. (2021) Human Um-bilical Cord Blood-Derived MSCs Exosome Attenuate Myocardial Injury by Inhibiting Ferroptosis in Acute Myocardial Infarction Mice. Cell Biology and Toxicology, 37, 51-64. https://doi.org/10.1007/s10565-020-09530-8

  41. NOTES

    *通讯作者。

期刊菜单