Advances in Clinical Medicine
Vol. 12  No. 07 ( 2022 ), Article ID: 53790 , 10 pages
10.12677/ACM.2022.127960

胃肠道间质瘤分子学研究进展

李新鹏1,张超2,陈军2*

1滨州医学院,山东 滨州

2滨州医学院烟台附属医院,山东 烟台

收稿日期:2022年6月15日;录用日期:2022年7月9日;发布日期:2022年7月19日

摘要

胃肠道间质瘤(Gastrointestinal Stromal Tumors, GIST)是胃肠道最常见的间叶源性肿瘤,其主要发病机制是c-kit与血小板源性生长因子受体PDGFRA基因突变。甲磺酸伊马替尼(Imatinib Mesylate, IM)可改善晚期GIST患者的生存期。然而部分患者因对IM耐药导致治疗失败。分子学研究表明约10%~15%的GIST无c-kit与PDGFRA基因突变,被称为野生型GIST。野生型GIST包括:NF1相关性、BRAF突变型、K-RAS突变型、四重野生型及其他基因突变型(PIK3CA突变) GIST与无综合征相关性、Carney三联征相关性、Carney-Stratakis综合征相关性GIST。同时表观遗传改变作为新的作用机制参与GIST的发生,对GIST的表观遗传的调控成为新的治疗方法。本文对国内外GIST分子学研究进行概述,旨在进一步阐明GIST的发病机制,为制定精准的个体化治疗方案提供帮助。

关键词

胃肠道间质瘤,野生型,琥珀酸脱氢酶,表观遗传

Advances in Molecular Studies of Gastrointestinal Stromal Tumors

Xinpeng Li1, Chao Zhang2, Jun Chen2*

1Binzhou Medical University, Binzhou Shandong

2Yantai Affiliated Hospital of Binzhou Medical University, Yantai Shandong

Received: Jun. 15th, 2022; accepted: Jul. 9th, 2022; published: Jul. 19th, 2022

ABSTRACT

Gastrointestinal Stromal Tumors (GIST) are the most common mesenchymal tumors of gastrointestinal tract, and the main pathogenesis is c-kit and PDGFRA gene mutations. Imatinib mesylate (IM) improves survival in patients with advanced GIST. However, some patients failed due to drug resistance to IM. Molecular studies have shown that about 10 to 15 percent of GIST is free of c-kit and PDGFRA mutations, known as wild-type GIST. Wild type GIST includes: NF1 correlation, BRAF mutation, K-RAS mutation, quadruple wild type and other gene mutations (PIK3CA mutation) GIST and syndrome-free correlation, Carney triad correlation, and Carney-Stratakis syndrome correlation GIST. Meanwhile, epigenetic changes are involved in the pathogenesis of GIST as a new mechanism of action, and epigenetic regulation of GIST becomes a new treatment method. This paper summarizes the molecular studies of GIST at home and abroad, aiming to further clarify the pathogenesis of GIST and provide help for the development of accurate and individualized treatment plans.

Keywords:Gastrointestinal Stromal Tumors, Wild Type, Succinate Dehydrogenase, Epigenetic

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 研究背景

胃肠道间质瘤(Gastrointestinal Stromal Tumors, GIST)是胃肠道最常见的间叶源性肿瘤,占胃肠道肉瘤的80%和胃肠道恶性肿瘤的0.1%~3% [1]。全世界GIST每年发病率约为1.2/10万,它在任何年龄均可发病,常见的发病年龄40~60岁,男女发病率无明显差异 [2] [3] [4]。GIST最常见的发生部位是胃(60%)和小肠(20%~30%),很少累及结直肠及食管 [3] [4]。GIST的临床症状不具有特异性,包括出血、贫血、消化不良和腹痛。手术切除是局部GIST治疗的首选治疗方法,但晚期GIST的治疗仍面临巨大挑战。

GIST起源于胃肠道间质Cajal细胞及其前体细胞 [5],约85%~90%的GIST有c-kit与PDGFRA基因突变。甲磺酸伊马替尼(IM)作为晚期GIST靶向治疗的一线药物,可改善晚期患者的中位生存期 [6] [7]。虽然IM可为晚期GIST提供持续的疾病管理,但仍有部分患者因原发性或继发性耐药而导致治疗失败,值得注意的是c-kit与PDGFRA基因次级突变是晚期GIST进展的主要驱动因素 [8]。尽管二线药物舒尼替尼和三线药物瑞戈菲尼因对ATP结合部位(外显子13/14)和各种激活环(外显子17)有明显抑制作用而被用于对伊马替尼耐药的晚期GIST的治疗 [9],但因继发性耐药突变的基因组的异质性致使舒尼替尼和瑞戈菲尼未能明显改善晚期GIST的无进展生存期 [10] [11],未达到预期的临床效果。对c-kit及PDGFRA基因的深入研究发现更多突变基因,详细地阐明了晚期GIST的耐药机制,促进了新型酪氨酸激酶受体抑制剂(TKI)的研发,推动了晚期GIST治疗的发展。

少数约10%~15%的GIST无c-kit与PDGFRA基因突变,被称为野生型GIST。这表明有其它分子参与GIST的发病机制,也是GIST对伊马替尼原发性耐药的主要原因 [7]。约12%~15%的成人GIST和90%的儿童GIST为野生型GIST [12]。根据是否有琥珀酸脱氢酶(SDHB)表达缺失将其分为无SDH缺陷组与SDH缺陷组。无SDH缺陷组包括:NF1相关性、BRAF突变型、K-RAS突变型、四重野生型及其他基因突变型(PIK3CA突变) GIST等,SDH缺陷组包括:无综合征相关性、Carney三联征相关性、Carney-Stratakis综合征相关性GIST [13]。对野生型GIST分子亚型分类的细化,加深了我们对野生型GIST的发病机制的认识,依据突变靶点介导的信号转导途径而研发的抑制剂可为野生型GIST提供精准的个体化治疗方案。

虽然大多数GIST伴有c-kit与PDGFRA基因突变,但在治疗的过程中出现伊马替尼耐药,这种耐药性不仅可能是次级突变引起的,也可能由微小RNA等表观遗传机制引起 [14]。我们推测表观遗传机制在GIST的发生、进展的过程中扮演着不可或缺的角色。表观遗传学是研究非DNA核苷酸序列改变所致基因表达水平变化,包括DNA甲基化、组蛋白修饰、染色质重塑和非编码RNAs [15]。其中DNA甲基化是人类肿瘤中常见的表观遗传改变,促进肿瘤的形成和发展 [16] [17],表现为组蛋白修饰、非编码抑制基因(TSGs) CpG岛的高甲基化和全基因组甲基化(低甲基化) [18]。DNA整体低甲基化可激活原癌基因,而DNA高甲基化增强肿瘤抑制基因的沉默,另外,微小RNA (miRNA)和长链非编码RNA (LincRNA)也被报道在GIST的发生、疾病进展、预后和耐药性等不同的GIST生物学步骤中发挥相关作用 [19] [20]。

本文从遗传机制及表观遗传机制两方面阐述GIST的分子遗传学研究进展,更好地阐述GIST的发病、耐药机制,并寻找出新的评估预后和治疗靶点,为GIST的治疗提供精准的个体化治疗方案。

2. 遗传学

2.1. c-kit和PDGFRA基因突变的GISTs

2.1.1. c-kit基因突变的GISTs

约80%的GIST存在c-kit基因突变,主要发生在体细胞,其发病机制是c-kit基因突变致激酶活性的持续激活,刺激肿瘤细胞持续增殖和凋亡信号的失调所造成。基因突变随机发生在不同的区域,包括外显子9、11、13和17。

第11外显子突变是c-kit基因突变最常见的,通过解除膜旁结构域(JM)的自抑制功能促进激酶的激活。该基因突变包括:缺失、单核苷酸替换和重复 [21] [22]。

1) 框架内缺失是GIST中最常见的c-kit突变,缺失突变主要是由密码子Lys550和Glu561内的框内缺失引起的,其中密码子Trp557或Lys558的缺失是最常见的突变 [23],相关研究表明伴有W557和K558缺失的GIST更具有侵袭性和远处转移的能力,常提示不良的预后 [23] [24] [25]。少部分GIST呈现纯/半合子c-kit外显子11突变和内含子10与外显子11连接处的缺失(p.K550_K558缺失),而这些GIST的生物学行为大多数为恶性 [26]。2) 单核苷酸替换(即错义突变)是GIST中第二常见的c-kit突变,这些突变主要聚集在密码子Trp557、Val559、Val560和Leu576。GIST中最常见的错义突变是Val559Asp、Val560Asp、Trp557Arg、Val559Ala、Val559Gly和Leu576Pro。错义突变的GIST的生物学行为表现为惰性,预后较好 [25] [27]。3) 重复是GIST中第三常见的c-kit突变,外显子11的重复在结构上是异质的,大小从1到18个密码子不等。其好发于女性,病变主要位于胃部,有良好的预后。

第9外显子突变主要是重复,以胞外结构域中密码子Ala502-Tyr503的重复为特征,由此产生的构象变化被认为是模拟干细胞生长因子(Stem Cell Growth Factors, SCF)与c-kit受体的结合,从而导致二聚化和结构性激活 [28]。这些肿瘤通常发生于小肠,且具有侵袭表型 [29]。少数胃部GIST也被检测出第9外显子重复突变,侵袭性较肠道突变弱。

第13、17外显子突变的频率各约1%~2%。第13外显子突变位于c-kit的ATP结合区,大多数突变为1945A > G替换,导致蛋白质水平的Lys642Glu,并干扰JM的生理自抑功能 [30]。第17外显子突变位于c-kit的激酶激活环,主要突变为2487T > A替换,导致蛋白质水平Asn822Lys,通过参与稳定激活环构象导致GIST的发生。第13、17外显子突变型间质瘤多发于小肠,与伴有其它基因突变的小肠间质瘤的生物学行为未见明显差异。第13外显子突变的胃间质瘤较其它突变的胃间质瘤的平均体积大且更具有侵袭性 [30]。

2.1.2. PDGFRA基因突变的GISTs

约10%的GISTs存在PDGFRA基因突变,突变包括:单核苷酸替换、框内缺失和插入,突变主要发生在:外显子18、12和14。

第18外显子主要突变是单核苷酸替换,发生于激酶激活环(TK2),突变为2664A > T,导致蛋白质水平的Asp842Val,通过维持激活环的稳定导致GIST的发生。p.D842V是伊马替尼最初耐药的最常见原因 [31]。除p.D842V突变外,第18外显子的框内缺失突变发生于密码子842~845。PDGFRA 18外显子突变状态与良好的疾病预后相关。

第12外显子大多数突变为单核苷酸替换,发生于膜旁结构域(JM),突变为1821T > A,导致蛋白质水平的Val561Asp,抑制激酶的自抑功能致使激酶超活化促进GIST的发生。外显子12的框内缺失和插入突变分别发生于密码子559~572和561~562insER。

第14外显子发生单核苷酸替换突变较罕见,大多数突变为2125C > A和2125C > G,导致蛋白质水平的Asn659Lys,少数突变为2123A > T,导致Asn659Tyr。第14外显子接近第12外显子,亦可能通过膜旁结构域的自抑功能发挥作用。外显子14突变可能是一个良好预后的标志 [32]。

2.2. 无SDH缺陷WT-GISTs

2.2.1. NF1相关性GIST

I型神经纤维瘤病(Neurofibromin 1, NF1)是一种遗传性常染色体显性遗传疾病,由编码神经纤维蛋白的NF1基因的双等位基因缺失引起。典型的表型特征为:咖啡牛奶斑、腋窝或腹股沟雀斑、Lisch结节(虹膜错构瘤)和神经纤维瘤。约7%的NF1患者会逐渐发展成GIST [33]。NF1相关的胃肠道间质瘤通常是多中心的,主要位于十二指肠和小肠,生物学行为呈现惰性。而其它相关研究发现起源于十二指肠的NF1相关的间质瘤的生物学行为更具有侵袭性 [33]。这提示可能有额外的致癌突变机制参与NF1相关的胃肠道间质瘤的发生,NOTCH2、MAML2和CDC73等基因突变导致Notch通路被抑制,这些突变最常在十二指肠、空肠屈曲(Treitz韧带)肿瘤中发现,这就更好地解释了位于十二指肠的NF1相关的间质瘤更具有侵袭性 [34]。

2.2.2. BRAF相关性GIST

丝氨酸–苏氨酸蛋白激酶BRAF作为RAS-RAF-MEK-ERK信号通路的一部分,参与许多细胞调控,包括增殖和分化的关键过程 [35]。BRAF突变的GIST占WT-GIST约3.5%~13.5%,大多数突变位于激酶结构域内,在15号外显子的1799位有单个核苷酸替换,导致蛋白质水平V600E氨基酸替换。然而与没有BRAF突变的GIST相比,该突变并没有诱导BRAF蛋白的更高表达,也没有诱导MAPK级联信号通路的优先激活 [35]。BRAF突变的GIST对男性和女性均有影响,通常与小肠表现相关,表现为梭形细胞形态和多种临床行为。目前尚未发现BRAF突变状态与临床或预后相关 [36]。

2.2.3. K-RAS相关性GIST

在原发性耐药GIST中存在RAS基因家族突变,RAS蛋白作为分子开关,控制活化GTP结合状态和非活化GDP结合状态之间的转变,而鸟苷交换因子(GEF)和GTP酶激活蛋白(GAP)正负调节RAS蛋白的活性。KRAS突变常见于胰腺癌、结直肠癌及肺癌中,且突变大多发生在12号密码子或13号密码子上,两者皆可减弱GAP的活性,从而使RAS蛋白始终处于活化状态。米兰达等人在60例样本中检测出3例存在突变,KRAS的突变位点多位于12号和13号(G12D、G13D和G12A/G13D)密码子。携带G12D和G12A/G13D突变的肿瘤在c-kit外显子11处表现为删失突变(del560-576、del579),而具有G13D突变的肿瘤在PDGFRA外显子18处显示为点突变(D842V) [37]。KRAS突变极为罕见,仍需进一步研究。

2.2.4. PIK3CA相关性GIST

PI3K/AKT/mTOR信号通路参与细胞生长、凋亡、翻译和细胞代谢等生理过程,同样也参与许多癌症的发展过程。在GIST也发现了PIK3CA突变(H1047L),PIK3CA编码PI3K的p110a亚基,是c-kit激酶信号转导的下游信号调节蛋白,活化的PI3K可直接抑制肿瘤细胞凋亡 [38]。PIK3CA突变与GIST的体积大小和生物学行为(侵袭性)相关 [39]。与KRAS突变一样,病例数较少,需要进一步的研究及良好的随访。

2.2.5. 四重野生型GIST

ETV6-NTRK3融合基因是该类型GIST首先被发现的基因突变,同样FGFR1-HOOK3、FGFR1-TACC1、KIT-PDGFRA、SPRED2-NELFCDPRKAR1B-BRAF和MARK2-PPFIA1等融合基因也被发现。此外GIST发现了多种其它体细胞突变,包括MAX、FGFR1、CBL、ARID1A、BCOR、APCTP53、MEN1CHD3、ARID1A、ARID1B、SUFU、PARK2ATR、LTK和ZNF217等。这些蛋白质的功能从促癌到抑癌变化,表明该类型GIST具有分子异质性。这些突变患者的数量仍然很少,基因型-表现型的相关性还无法确定。

2.3. SDH缺陷型WT-GISTs

2.3.1. CT相关性GIST

Carney Triad (CT)是指GIST同时伴有肺软骨瘤、肾上腺外副神经节瘤。CT不会发生遗传,年轻女性多见,肿瘤细胞呈上皮样型,SDHC启动子高甲基化可能是CT相关性GIST发病的分子机制。尽管该类型的肿瘤较c-kit和PDGFRA基因突变的GIST更容易发生淋巴结转移,但其生物学行为表现为惰性 [40]。

2.3.2. CSS相关性GIST

Carney-Stratakis Syndrome (CSS)以胃间质瘤(多灶性)和副神经节瘤为特征,是一种常染色体显性遗传疾病,不完全外显,常见于儿童和青少年。发病机制是SDHB、SDHC或SDHD的基因胚系突变导致SDH的功能障碍所致。与CT相关性GIST相比,在CSS相关性GIST中仅在靠近SDHB基因的少数CpGs中发现DNA甲基化,而SDHC基因启动子在所有筛选的CpG位点完全未甲基化 [41]。

2.3.3. 无综合征相关性SDH缺陷型GIST

无综合征相关性SDH缺陷型GIST多发生于儿童和青年,女性多见,好发于胃部,镜下见肿瘤常呈多结节性或丛状生长,细胞呈上皮样,淋巴结转移多见。分子检测显示约50% SDH亚单位(SDHA、SDHB、SDHC、SDHD)发生功能丧失性胚系突变,其中约30%为SDHA突变,多数为胚系突变,20%为SDHB、C或D突变。SDHA的常见突变是c.91C4T;p.R31X,同时基因组杂交检测发现SDHA基因5p15的等位基因同时丢失 [42]。另外半数肿瘤SDHC促进高甲基化和SDH复合体表观基因沉默。

3. 表观遗传学

3.1. DNA甲基化

DNA甲基化是指在DNA甲基化转移酶(DNMT)的作用下,以S-腺苷甲硫氨酸(SAM)作为甲基供体,在基因组CpG二核苷酸的胞嘧啶5号碳位共价键结合一个甲基基团的化学修饰过程。CpG岛是CG序列出现频率较高的区域,多位于基因的起始部位和启动子的功能区域 [43]。DNA的异常甲基化通过抑制抑癌基因和miRNAs在致癌过程中发挥重要作用。几乎每种癌症都涉及CpG岛的高甲基化,同样反转录转座子、异染色质DNA重复序列的低甲基化在癌症中被发现 [44]。

3.1.1. DNA高甲基化

在对GIST基因组的研究发现的高甲基化的基因包括:hMLH1、MINT2、MGMT、p73、p16、CDH1 (E-cadherin)、MINT1、p15、MINT、RASSF1A、APC等,部分GIST存在超过3个CpG岛的高甲基化,被称为CpG甲基化表型。锌指蛋白转录因子(Snail)的高表达和CDH1高甲基化导致E-cadherin的蛋白的丢失,上皮细胞钙粘素(E-cadherin)在细胞–细胞粘附中起作用,它的丢失会导致癌细胞的扩散,增加肿瘤细胞的侵袭性,故Snail的高表达和CDH1高甲基化与GIST复发和预后不良有关 [45] [46];p16INK4a编码周期蛋白依赖性激酶抑制剂CDKN2A,负性调节G1/S期转变,而相关基因的高甲基化降低多重肿瘤抑制基因(Multiple Tumor SuppressorI, CDKN2A)的表达,促进GIST的发展 [47]。全基因组DNA甲基化分析显示,REC8、P16、PAX3的高甲基化与GIST的恶性程度密切相关。DNA高甲基化不仅与局部、整体生存等相关,而且与治疗反应相关。在舒尼替尼耐药的GIST中发现了PTEN的高甲基化和PTEN表达的下降 [48],提示PTEN的表观遗传沉默可能导致导致TKI治疗GIST的耐药性。

3.1.2. DNA低甲基化

DNA低甲基化与多种肿瘤的癌基因激活和染色体不稳定性有关 [49]。长散步原件-1 (Long Interspersed Elements-1, LINE-1)基因占人类基因组约18%,LINE-1基因的甲基化常被用作评估癌症中DNA整体低甲基化的替代物。在高危和转移性GIST发现显著的LINE-1低甲基化,并与肿瘤大小和有丝分裂指数呈负相关,LINE-1低甲基化被认为是GIST风险评估、侵袭性和预后不良的标志。ENG在c-kit阳性的GIST过表达,且与GIST的恶性行为和高风险相关,它的高表达可能由DNA低甲基化引起。同样在预后不良的GIST发现在启动子序列外的非CpG岛中出现重组人分泌型磷蛋1 (Secreted Phosphoporotein, SPP1)基因显著低甲基化,并激活MAP激酶级联通路和PI3K/AKT通路,促进肿瘤细胞发展和扩散 [50]。组蛋白甲基转移酶(SET domain-containing 2) SETD2催化H3K36三甲基化(H3K36Me3),并与甲基转移酶(DNMT3)相结合,通过DNA高甲基化维持染色质转录沉默。在高危和转移性GIST中发现SETD2突变,SETD2的丢失与GIST患者H3K36Me3、DNA甲基化的异染色质的减少以及肿瘤进展有关,说明SETD2是一种新的GIST肿瘤抑制因子 [51]。

3.2. 组蛋白修饰

组蛋白修饰主要发生在组蛋白尾部,包括乙酰化、甲基化、磷酸化、泛素化和磺酰化 [51]。赖氨酸的可逆乙酰化与染色质转录、复制相关,高乙酰化的染色质具有转录活性,而赖氨酸的甲基化可抑制乙酰化,因此沉默基因的激活取决于甲基化的水平。同源盒基因转录反义(Homeobox Gene Transcriptantisense Intergenic RNA, HOTAIR)与PRC2甲基转移酶的结合促进组蛋白H3赖氨酸的甲基化(H3K27Me2、H3K27Me3),抑制沉默基因的激活。组蛋白2A变异体(Histone Family 2A Variant, H2AX)在DNA损伤时丝氨酸残基上迅速磷酸化,识别损伤DNA并介导细胞的凋亡。研究发现IM通过抑制PI3K和mTOR信号通路和泛素–蛋白酶机制使可溶性蛋白H2AX上调,H2AX过表达通过异常染色质聚集和转录阻滞使GIST细胞凋亡,对IM耐药的GIST具有潜在的治疗价值 [45]。

3.3. 非编码RNA

3.3.1. miRNA

miRNAs是一组高度保守的短链非编码RNA (19~24个核苷酸),通过miRNAs 5'端的6~8核苷酸与mRNA3'-UTR进行碱基配对介导翻译抑制及目标mRNA的破坏从而影响基因转录后的控制,参与细胞发育、分化、增值和凋亡。依据miRNAs在癌细胞的表达水平和目标基因,可作为肿瘤抑制因子或癌基因。

miR221/222直接作用于c-kit,通过翻译抑制是c-kit基因沉默,它的表达与c-kit的表达呈负相关,同时miR221/222的过表达可致细胞凋亡抑制剂BCL-2下调。miR17-92直接作用于EVT1,降低EVT1水平,并间接负向调控c-kit,它的降低促进GIST的发展。miR-494与miR-218是c-kit的负向调控因子,抑制肿瘤细胞的生长。miR-137抑制Twist1的表达,增加E-Cadherin的表达,维持细胞的上皮样形态和降低细胞远处转移能力。miRNA也影响GIST对药物IM的敏感性,miR-125a-5p通过调控PTPN18蛋白和miR-320抑制GIST细胞凋亡致伊马替尼耐药;miR-218 通过抑制PI3K/AKT途径提高GIST细胞对伊马替尼的敏感性。miR-34a和miR335的高甲基化可导致GIST的发生,可作为DNA甲基转移酶抑制剂治疗理想靶点。

3.3.2. LncRNA

LncRNA是HOXC基因簇中一个由HOTAIR基因编码的长链非编码RNA,调控基因的表达。HOTAIR是一种致癌因子,被发现在GIST中上调,增加肿瘤细胞的侵袭性,抑制HOTAIR表达可降低细胞侵袭能力 [52]。LncRNA通过与组蛋白修饰复合体相互作用直接抑制目标基因 [53]。

4. 总结

分子生物学研究的进展进一步阐明了GIST的发病机制,使酪氨酸激酶受体抑制剂(TKI)能更为精准地应用于GIST患者并取得良好的临床获益。但野生型GIST和继发性耐药GIST仍是临床治疗的巨大挑战,遗传学和表观遗传学的最新进展发现了许多与GIST发生、发展相关的新的分子特征改变,根据这些分子特征及信号通路有助于寻找出新的治疗靶点和改善GIST的治疗管理。

文章引用

李新鹏,张 超,陈 军. 胃肠道间质瘤分子学研究进展
Advances in Molecular Studies of Gastrointestinal Stromal Tumors[J]. 临床医学进展, 2022, 12(07): 6649-6658. https://doi.org/10.12677/ACM.2022.127960

参考文献

  1. 1. Burch, J. and Ahmad, I. (2020) Cancer, Gastrointestinal Stromal (GIST). StatPearls, Treasure Island.

  2. 2. Costa, P.A., Hana, C.K.A., Balaji, N.C., Skryd, A.F., Valdes, B.N., Minjares, R.O., Barreto-Coelho, P., Espejo-Freire, A.P., Hakim, M.O., Jonczak, E., et al. (2021) Dose Escalation of Ripretinib Can Lead to Response in Advanced Gastrointestinal Stro-mal Tumor Patients Refractory to the Standard Dose: A Report of Two Cases. Gastrointest Stromal Tumor, 4, 1-8. https://doi.org/10.21037/gist-21-1

  3. 3. Nishida, T., Blay, J.-Y., Hirota, S., Kitagawa, Y. and Kang, Y.-K. (2016) The Standard Diagnosis, Treatment, and Follow-up of Gastrointestinal Stromal Tumors Based on Guidelines. Gastric Cancer, 19, 3-14. https://doi.org/10.1007/s10120-015-0526-8

  4. 4. Demetri, G.D., Von Mehren, M., Antonescu, C.R., DeMatteo, R.P., Ganjoo, K.N., Maki, R.G., Pisters, P.W., Raut, C.P., Riedel, R.F., Schuetze, S., et al. (2010) NCCN Task Force Report: Update on the Management of Patients with Gastrointestinal Stromal Tumors. Journal of the National Compre-hensive Cancer Network, 8, S1-S44. https://doi.org/10.6004/jnccn.2010.0116

  5. 5. Kindblom, L.G., Remotti, H.E., Aldenborg, F. and Meis-Kindblom, J.M. (1998) Gastrointestinal Pacemaker Cell Tumor (GIPACT): Gastroin-testinal Stromal Tumors Show Phenotypic Characteristics of the Interstitial Cells of Cajal. The American Journal of Pathology, 152, 1259-1269.

  6. 6. Reichardt, P. (2018) The Story of Imatinib in GIST—A Journey Through the Development of a Targeted Therapy. Oncology Research and Treatment, 41, 472-477. https://doi.org/10.1159/000487511

  7. 7. Poveda, A., García Del Muro, X., López-Guerrero, J.A., Cubedo, R., Martínez, V., Romero, I., et al. (2017) GEIS Guidelines for Gastrointestinal Sarco-mas (GIST). Cancer Treatment Reviews, 55, 107-119. https://doi.org/10.1016/j.ctrv.2016.11.011

  8. 8. Falkenhorst, J., Hamacher, R. and Bauer, S. (2019) New Therapeu-tic Agents in Gastrointestinal Stromal Tumours. Current Opinion in Oncology, 31, 322-328. https://doi.org/10.1097/CCO.0000000000000549

  9. 9. Serrano, C., Mariño-Enríquez, A., Tao, D.L., Ketzer, J., Ei-lers, G., Zhu, M., Yu, C., et al. (2019) Complementary Activity of Tyrosine Kinase Inhibitors against Secondary Kit Mutations in Imatinib-Resistant Gastrointestinal Stromal Tumours. British Journal of Cancer, 120, 612-620. https://doi.org/10.1038/s41416-019-0389-6

  10. 10. Demetri, G.D., van Oosterom, A.T., Garrett, C.R., Blackstein, M.E., Shah, M.H., Verweij, J., et al. (2006) Efficacy and Safety of Sunitinib in Patients with Advanced Gastrointestinal Stromal Tumour after Failure of Imatinib: A Randomised Controlled Trial. Lancet, 368, 1329-1338. https://doi.org/10.1016/S0140-6736(06)69446-4

  11. 11. Demetri, G.D., Reichardt, P., Kang, Y.K., Blay, J.Y., Rutkowski, P., Gelderblom, H., et al. (2013) Efficacy and Safety of Regorafenib for Advanced Gastrointestinal Stromal Tumours after Failure of Imatinib and Sunitinib (GRID): An International, Multicentre, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet, 381, 295-302. https://doi.org/10.1016/S0140-6736(12)61857-1

  12. 12. Martín-Broto, J., Rubio, L., Alemany, R. and López-Guerrero, J.A. (2010) Clinical Implications of KIT and PDGFRA Genotyping in GIST. Clinical and Translational Oncology, 12, 670-676. https://doi.org/10.1007/s12094-010-0576-7

  13. 13. Brčić, I., Argyropoulos, A. and Liegl-Atzwanger, B. (2021) Update on Molecular Genetics of Gastrointestinal Stromal Tumors. Diagnostics, 11, Article No. 194. https://doi.org/10.3390/diagnostics11020194

  14. 14. Akcakaya, P., Caramuta, S., Ahlen, J., Ghaderi, M., Berglund, E., et al. (2014) MicroRNA Expression Signatures of Gastrointestinal Stromal Tumours: Associations with Imatinib Resistance and Patient Outcome. British Journal of Cancer, 111, 2091-2102. https://doi.org/10.1038/bjc.2014.548

  15. 15. Esteller, M. (2011) Cancer Epigenetics for the 21st Century: What’s Next? Genes & Cancer, 2, 604-606. https://doi.org/10.1177/1947601911423096

  16. 16. Niinuma, T., Suzuki, H. and Sugai, T. (2018) Molecular Charac-terization and Pathogenesis of Gastrointestinal Stromal Tumor. Translational Gastroenterology and Hepatology, 3, Arti-cle No. 2. https://doi.org/10.21037/tgh.2018.01.02

  17. 17. Saito, K., Sakurai, S., Sano, T., Sakamoto, K., Asao, T., Hosoya, Y., et al. (2008) Aberrant Methylation Status of Known Methylation-Sensitive CpG Islands in Gastrointestinal Stromal Tumors without Any Correlation to the State of C-Kit and PDGFRA Gene Mutations and Their Malignancy. Cancer Science, 99, 253-259. https://doi.org/10.1111/j.1349-7006.2007.00682.x

  18. 18. Daniel, F.I., Cherubini, K., Yurgel, L.S., De Figueiredo, M.A. and Salum, F.G. (2011) The Role of Epigenetic Transcription Repression and DNA Methyltransferases in Cancer. Cancer, 117, 677-687. https://doi.org/10.1002/cncr.25482

  19. 19. Sioulas, A.D., Vasilatou, D., Pappa, V., Dimitriadis, G. and Triantafyllou, K. (2013) Epigenetics in Gastrointestinal Stromal Tumors: Clinical Implications and Potential Therapeuticperspectives. Digestive Diseases and Sciences, 58, 3094-3102. https://doi.org/10.1007/s10620-013-2785-8

  20. 20. Nannini, M., Ravegnini, G., Angelini, S., Astolfi, A., Biasco, G. and Pantaleo, M.A. (2015) miRNA Profiling in Gastrointestinal Stromal Tumors: Implication as Diagnostic and Prognostic Markers. Epigenomics, 7, 1033-1049.

  21. 21. Szucs, Z., Thway, K., Fisher, C., Bulusu, R., Constantinidou, A., Benson, C., et al. (2017) Molecular Subtypes of Gastrointestinal Stromal Tumors and Their Prognostic and Therapeutic Implications. Future Oncology, 13, 93-107. https://doi.org/10.2217/fon-2016-0192

  22. 22. Lasota, J. and Miettinen, M. (2008) Clinical Significance of Oncogenic KIT and PDGFRA Mutations in Gastrointestinal Stromal Tumours. Histopathology, 53, 245-266. https://doi.org/10.1111/j.1365-2559.2008.02977.x

  23. 23. Martín, J., Poveda, A,. Llombart-Bosch, A., Ramos, R., López-Guerrero, J.A., García del Muro, J., et al. (2005) Deletions Affecting Codons 557-558 of Thec-KIT Gene Indicate a Poor Prognosis in Patients with Completelyresected Gastrointestinal Stromal Tumors: A Study by the Spanish Group for Sarcoma Research (GEIS). Journal of Clinical Oncology, 23, 6190-6198. https://doi.org/10.1200/JCO.2005.19.554

  24. 24. Martin-Broto, J., Gutierrez, A., Garcia-del-Muro, X., Lopez-Guerrero, J.A., Martinez-Trufero, J., de Sande, L.M., et al. (2010) Prognostic Time Dependence of Deletions Af-fecting Codons 557 and/or 558 of KIT Gene for Relapse-free Survival (RFS) in Localized GIST: A Spanish Group for Sarcoma Research (GEIS) Study. Annals of Oncology, 21, 1552-1557. https://doi.org/10.1093/annonc/mdq047

  25. 25. Wozniak, A., Rutkowski, P., Schöffski, P., Ray-Coquard, I., Hostein, I., Schildhaus, H.U., et al. (2014) Tumour Genotype Is an Independent Prognostic Factor in Primary Gastrointestinal Stromal Tumours of Gastric Origin: A European Multicenter Analysis Based on ConticaGIST. Clinical Cancer Re-search, 20, 6105-6116. https://doi.org/10.1158/1078-0432.CCR-14-1677

  26. 26. Wozniak, A., Rutkowski, P., Piskorz, A., Ciwoniuk, M., Osuch, C., Bylina, E., et al. (2012) Polish Clinical GIST Registry. Prognostic Value of KIT/PDGFRA Mutations in Gastrointestinal Stromal Tumours (GIST): Polish Clinical GIST Registry Experience. Annals of Oncology, 23, 353-360. https://doi.org/10.1093/annonc/mdr127

  27. 27. Steigen, S.E., Eide, T.J., Wasag, B., Lasota, J. and Miettinen, M. (2007) Mutations in Gastrointestinal Stromal Tumours—A Population-Based Study from Northern Norway. APMIS, 115, 289-298. https://doi.org/10.1111/j.1600-0463.2007.apm_587.x

  28. 28. Yuzawa, S., Opatowsky, Y., Zhang, Z., Mandiyan, V., Lax, I. and Schlessinger, J. (2007) Structural Basis for Activation of Thereceptor Tyrosine Kinase KIT by Stem Cell Factor. Cell, 130, 323-334. https://doi.org/10.1016/j.cell.2007.05.055

  29. 29. Antonescu, C.R., Sommer, G., Sarran, L., Tschernyavsky, S.J., Riedel, E., Woodruff, J.M., et al. (2003) Association of KIT Exon 9 Mutations with Nongastric Primary Site and Ag-gressive Behaviour: KIT Mutation Analysis and Clinical Correlates of 120 Gastrointestinal Stromal Tumours. Clinical Cancer Research, 9, 3329-3337.

  30. 30. Lasota, J., Corless, C.L., Heinrich, M.C., Debiec-Rychter, M., Sciot, R., Wardelmann, E., et al. (2008) Clinico-Pathologic Profile of Gastrointestinal Stromal Tumours (GISTs) with Primary KIT Exon 13 or Exon 17 Mutations: A Multicenter Study on 54 Cases. Clinical Cancer Research, 21, 476-484. https://doi.org/10.1038/modpathol.2008.2

  31. 31. Corless, C.L., Barnett, C.M. and Heinrich, M.C. (2011) Gastroin-testinal Stromal Tumours: Origin and Molecular Oncology. Nature Reviews Cancer, 11, 865-878. https://doi.org/10.1038/nrc3143

  32. 32. Lasota, J., Stachura, J. and Miettinen, M. (2006) GISTs with PDGFRA Exon 14 Mutationsrepresent Subset of Clinically Favorable Gastric Tumors with Epithelioid Morphology. Laboratory Investi-gation, 86, 94-100. https://doi.org/10.1038/labinvest.3700360

  33. 33. Miettinen, M., Fetsch, J.F., Sobin, L.H. and Lasota, J. (2006) Gas-trointestinal Stromal Tumors in Patients with Neurofibromatosis 1: A Clinicopathologic and Molecular Genetic Study of 45 Cases. The American Journal of Surgical Pathology, 30, 90-96. https://doi.org/10.1097/01.pas.0000176433.81079.bd

  34. 34. Burgoyne, A.M., De Siena, M., Alkhuziem, M., Tang, C.M., Medina, B., Fanta, P.T., Belinsky, M.G., Von Mehren, M., Thorson, J.A., Madlensky, L., et al. (2017) Duode-nal-Jejunal Flexure GI Stromal Tumor Frequently Heralds Somatic Nf1 and Notch Pathway Mutations. JCO Precision Oncology, 1, 1-12. https://doi.org/10.1200/PO.17.00014

  35. 35. Hostein, I., Faur, N., Primois, C., Boury, F., Denard, J., Emile, J.F., Bringuier, P.P., Scoazec, J.Y. and Coindre, J.M. (2010) BRAF Mutation Status in Gastrointestinal Stromal Tumors. American Journal of Clinical Pathology, 133, 141-188. https://doi.org/10.1309/AJCPPCKGA2QGBJ1R

  36. 36. Falchook, G.S., Trent, J.C., Heinrich, M.C., Beadling, C., Patterson, J., Bastida, C.C., Blackman, S.C. and Kurzrock, R. (2013) BRAF Mutant Gastrointestinal Stromal Tumor: First Report of Regression with BRAF Inhibitor Dabrafenib (gsk2118436) and Whole Exomic Sequencing for Analysis of Acquired Resistance. Oncotarget, 4, 310-315. https://doi.org/10.18632/oncotarget.864

  37. 37. Miranda, C., Nucifora, M., Molinari, F., Conca, E., Anania, M.C., Bordoni, A., et al. (2012) KRAS and BRAF Mutations Predict Primary Resistance to Imatinib in Gastrointestinal Stromal Tumors. Clinical Cancer Research, 18, 1769-1776. https://doi.org/10.1158/1078-0432.CCR-11-2230

  38. 38. Osaki, M., Oshimura, M. and Ito, H. (2004) PI3K-Akt Pathway: Its Functions and Alterations in Human Cancer. Apoptosis, 9, 667-676. https://doi.org/10.1023/B:APPT.0000045801.15585.dd

  39. 39. Lasota, J., Felisiak-Golabek, A., Wasag, B., Kowalik, A., Zięba, S., Chłopek, M., Wang, Z.F., Coates, T., Kopczynski, J., Gozdz, S., et al. (2016) Frequency and Clinicopathologic Profile of Pik3ca Mutant Gists: Molecular Genetic Study of 529 Cases. Modern Pathology, 29, 275-282. https://doi.org/10.1038/modpathol.2015.160

  40. 40. Zhang, L., Smyrk, T.C., Young Jr., W.F., Stratakis, C.A. and Carney, J.A. (2010) Gastric Stromal Tumors in Carney Triad Aredifferent Clinically, Pathologically, and Be-haviorally from Sporadicgastric Gastrointestinal Stromal Tumors: Findings in 104 Cases. The American Journal of Sur-gical Pathology, 34, 53-56. https://doi.org/10.1097/PAS.0b013e3181c20f4f

  41. 41. Haller, F., Moskalev, E.A., Faucz, F.R., Barthelmeß, S., Wiemann, S., Bieg, M., Assie, G., Bertherat, J., Schaefer, I.M., Otto, C., et al. (2014) Aberrant DNA Hypermethylation of SDHC: A Novel Mechanism of Tumor Development in Carney Triad. Endocrine-Related Cancer, 21, 567-577. https://doi.org/10.1530/ERC-14-0254

  42. 42. Miettinen, M., Killian, J.K., Wang, Z.F., Lasota, J., Lau, C., Jones, L., et al. (2013) Immunohistochemical Loss of Succinate Dehydrogenase Subunit a (SDHA) in Gastrointestinal Stromal Tu-mors (GISTs) Signals SDHA Germline Mutation. The American Journal of Surgical Pathology, 37, 234-240. https://doi.org/10.1097/PAS.0b013e3182671178

  43. 43. Deaton, A.M. and Bird, A. (2011) CpG Islands and the Regulation of Transcription. Genes & Development, 25, 1010-1022. https://doi.org/10.1101/gad.2037511

  44. 44. Choi, S.H., Worswick, S., Byun, H.M., Shear, T., Soussa, J.C., Wolff, E.M., et al. (2009) Changes in DNA Methylation of Tandem DNA Repeats Are Different from Interspersed Repeats in Cancer. International Journal of Cancer, 125, 723-729. https://doi.org/10.1002/ijc.24384

  45. 45. Liu, Y., Tseng M., Perdreau, S.A., Rossi, F., Antonescu, C., Besmer, P., et al. (2007) Histone H2AX Is a Mediator of Gastrointestinal Stromal Tumor Cell Apoptosis Following Treatment with Imatinib Mesylate. Cancer Journals, 67, 2685-2692. https://doi.org/10.1158/0008-5472.CAN-06-3497

  46. 46. Liu, S., Liao, G., Ding, J., Ye, K., Zhang, Y., Zeng, L., et al. (2014) Dysregulated Expression of Snail and E-Cadherin Correlates with Gastrointestinal Stromal Tumor Metastasis. European Journal of Cancer Prevention, 23, 329-335. https://doi.org/10.1097/CEJ.0000000000000072

  47. 47. Schneider-Stock, R., Boltze, C., Lasota, J., Peters, B., Cor-less, C.L., Ruemmele, P., et al. (2005) Loss of P16 Protein Defines High-Risk Patients with Gastrointestinal Stromal Tumors: A Tissue Microarray Study. Clinical Cancer Research, 11, 638-645. https://doi.org/10.1158/1078-0432.638.11.2

  48. 48. Yang, J., Ikezoe, T., Nishioka, C., Takezaki, Y., Hanazaki, K., Taguchi, T., et al. (2012) Long-Term Exposure of Gastrointestinal Stromal Tumor Cells to Sunitinib Induces Epigenetic Silencing of the PTEN Gene. International Journal of Cancer, 130, 959-966. https://doi.org/10.1002/ijc.26095

  49. 49. Bauer, S., Duensing, A., Demetri, G.D. and Fletcher, J.A. (2007) KIT On-cogenic Signaling Mechanisms in Imatinib-Resistant Gastrointestinal Stromal Tumor: PI3-Kinase/AKT Is a Crucial Sur-vival Pathway. Oncogene, 26, 7560-7568. https://doi.org/10.1038/sj.onc.1210558

  50. 50. Huang, K.K., McPherson, J.R., Tay, S.T., Das, K., Tan, I.B., Ng, C.C., et al. (2016) SETD2 Histone Modifier Loss in Aggressive GI Stromal Tu-mours. Gut, 65, 1960-1972. https://doi.org/10.1136/gutjnl-2015-309482

  51. 51. Sweatt, J.D., Nestler, E.J., Meaney, M.J. and Akbarian, S. (2013) An Overview of the Molecular Basis of Epigenetics.. In: Sweatt, J.D., Nestler, E.J., Mea-ney, M.J. and Akbarian, S., Eds., Epigenetic Regulation in the Nervous System. Basic Mechanisms and Clinical Impact, Academic Press, Cambridge, 3-33. https://doi.org/10.1016/B978-0-12-391494-1.00001-X

  52. 52. Niinuma, T., Suzuki, H., Nojima, M., Nosho, K., Yamamoto, H., Takamaru, H., et al. (2012) Upregulation of MiR-196a and HOTAIR Drive Malignant Character in Gas-trointestinal Stromal Tumors. Cancer Research, 72, 1126-1136. https://doi.org/10.1158/0008-5472.CAN-11-1803

  53. 53. Hajjari, M. and Salavaty, A. (2015) HOTAIR: An Onco-genic Long Non-Coding RNA in Different Cancers. Cancer Biology & Medicine, 12, 1-9.

  54. NOTES

    *通讯作者Email: 15154574017@139.com

期刊菜单