Advances in Clinical Medicine
Vol. 12  No. 08 ( 2022 ), Article ID: 54890 , 8 pages
10.12677/ACM.2022.1281099

射血分数保留性心力衰竭研究进展

赵小利1,刘青华1,刘新宏2*

1西安医学院,陕西 西安

2陕西省人民医院心血管内科,陕西 西安

收稿日期:2022年7月15日;录用日期:2022年8月11日;发布日期:2022年8月18日

摘要

射血分数保留性心力衰竭(HFPEF)是一种复杂且具有异质性的疾病,近年来随着人们保健意识的增强,HFPEF的发病率也呈持续升高的趋势,目前占所有心力衰竭的一半,其发病机制还未完全明确,尚缺乏有效的治疗方法,现阐述射血分数保留性心力衰竭潜在的发病机制及治疗进展,以期为临床治疗提供研究思路。

关键词

射血分数保留性心力衰竭,肥胖,房颤,慢性肾脏病,糖尿病

Advances in Research on Heart Failure with Preserved Ejection Fraction

Xiaoli Zhao1, Qinghua Liu1, Xinhong Liu2*

1Xi’an Medical College, Xi’an Shaanxi

2Departments of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, Xi’an Shaanxi

Received: Jul. 15th, 2022; accepted: Aug. 11th, 2022; published: Aug. 18th, 2022

ABSTRACT

Heart failure with preserved ejection fraction (HFPEF) is a complex and heterogeneous disease. In recent years, with the enhancement of people’s health awareness, the incidence of HFPEF has also shown a continuous upward trend, currently accounting for half of all HF. Its pathogenesis is not fully clear. There is still a lack of effective treatment methods. Now we expound the potential pathogenesis and treatment progress of heart failure with preserved ejection fraction, in order to provide research ideas for the clinical treatment of the disease.

Keywords:Heart Failure with Preserved Ejection Fraction, Obesity, Atrial Fibrillation, Chronic Kidney Disease, Diabetes Mellitus

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 流行病学

2012年欧洲和2013年美国的心力衰竭(Heart failure, HF)指南提出按照左心室射血分数(Left ventricular ejection fraction, LVEF)将HF分类的概念 [1] [2]。2016年欧洲心脏病学会提出根据左室射血分数(LVEF)将心力衰竭分为:射血分数降低的心力衰竭(heart failure with reduced ejection fraction, HFrEF)为LVEF < 40%、射血分数中间值心力衰竭为LVEF 40%~49%、射血分数保留性心力衰竭(heart failure with preserved ejection fraction, HFPEF) 为LVEF ≥ 50% [3]。在我国基于0.5亿中国城镇职工医疗保险数据的调查发现,在我国25岁及以上人群中,心力衰竭标准化患病率是1.1%,发病率是275/100,000人年,估算现有心力衰竭患者达1250万,每年新发心力衰竭患者297万,随着年龄增长,心力衰竭患病率和发病率均明显增加 [4]。Cheng等人 [5] 使用GWTG-HF登记处的数据进行的一项研究发现,HFrEF和HFPEF之间的1年死亡率没有差异,HFrEF患者的HF再入院率较高,而HFPEF患者的全因再入院率较高,HFPEF中非心血管性病因导致的死亡率高于HFrEF,推测结果可能与HFPEF合并症负担增加有关。在美国,根据2022年心衰指南最新研究报道指出随着人口老龄化的发展,心衰发病率及住院率仍处于上升趋势,其中以HFpEF尤为显著 [6],并且也指出HFpEF是一种异质性疾病,多合并高血压、糖尿病、肥胖症、心血管疾病、慢性肾脏病和心脏淀粉样变等疾病,且85%以上的患有心力衰竭的患者合并 ≥ 2种其他疾病。由于其病理生理学的异质性,目前临床试验尚未能建立有效干预措施。因此,建议HFPEF患者的治疗应针对不同的表型治疗,可通过识别不同的HFPEF患者群体来制定有效的治疗措施 [7] [8]。在过去的十年里,我们对HFpEF的理解也已经从单纯的左心室舒张功能障碍演变为多器官综合征,多合并肥胖、糖尿病和房颤、慢性肾脏病等多种疾病。该综述中分析HFPEF与肥胖症,房颤、慢性肾脏病、糖尿病的相关机制。

2. HFPEF与合并疾病的病理生理学机制

目前HFpEF确切的病理生理学机制尚未明确,可能由于多种因素造成心肌细胞内信号传导改变及心肌的结构、功能异常。心肌细胞内异常传导包括:一氧化氮–环鸟苷酸–蛋白激酶G轴受损 [9],离子通道肌质网Ca2+-ATP酶(sarcoplasmic reticulum Ca2+-ATPase, SERCA) 2a功能受损,转化生长因子β1 (transforming growth factor-β1, TGF-β1) [10] 等过程。心肌细胞结构异常包括:心肌细胞病理性重构,心肌细胞电活动障碍,心肌细胞肥大及纤维化等。心肌功能异常包括:心肌能量供应障碍,心肌运动节律障碍等。然而,现在HFpEF更多的被认为是一种多系统疾病,涉及心脏、肺、肾脏、骨骼肌、脂肪组织、血管系统以及免疫和炎症信号传导的异常,这种多器官受累使得HFpEF难以在实验动物中建模 [11]。

2.1. HFpEF与肥胖症

在过去的几十年里,全世界肥胖症和HFpEF的患病率都在增加 [12] [13]。最近研究预测,到2030年,美国每2名成年人中就有1人肥胖 [14]。肥胖的定义为体重指数(Body mass index, BMI) ≥ 30 kg/m2,是HFpEF常见且临床上重要的危险因素,它代表着全身脂肪组织过多是HFpEF的一个可改变的危险因素 [15] [16]。在心力衰竭的患者中,较高的BMI可预测HFpEF,但不能预测HFrEF的HF [17] 提示出现了一种独特的“肥胖-HFpEF表型” [18] [19]。肥胖一方面包括:体重指数它代表总脂肪积累;另一方面包括:腰围和腰臀比代表肥胖的中心分布。目前认为肥胖对心血管的风险可能是由于脂肪组织在体内的分布造成的 [20]。在肥胖个体中,区域性脂肪分布可能在HFpEF的发展中起关键作用 [21]。区域性脂肪积聚在皮下,内脏和心外膜,不平等地导致HFpEF住院的风险增加 [21]。其中内脏脂肪组织是一种促进炎性组织,可以通过促进糖尿病、血脂异常和高血压等疾病来增加心血管风险 [22]。最具有代表性的为心外膜脂肪组织。心外膜脂肪组织是指心肌周围,心包内的区域脂肪。心外膜脂肪组织对心脏有害的两个关键因素:1) 促进炎症作用,心外膜脂肪组织是一种复杂的具有代谢活性脂肪组织,它有旁分泌和外分泌功能,储存甘油三酯为心肌提供能量,产生促进炎性脂肪因子和促进氧化的物质,并可能直接影响心血管疾病的发生 [23] [24];2) 心肌之间相互作用导致舒张功能障碍,促进炎症细胞因子产生导致代谢级联反应,使心肌细胞肥大,左心室重塑和左心室舒张功能障碍 [25]。一项包含5881例患者的研究显示,调整了其他危险因素后,全BMI范围内平均BMI每增加1个单位,心力衰竭发病率在男性中增加5%,在女性中增加7% [26]。因此,研究降低区域性脂肪及内脏脂肪组织是否可以改善全身性炎症失调,可能为肥胖的HFpEF提供潜在的治疗靶点,一项瑞典的前瞻性对照外科的干预研究显示,减肥手术后所有HF的发病率均显著降低,在体重减轻最大的人群中,HF的风险降低最为显著 [27]。

2.2. HFpEF与房颤

在Framingham心脏病研究中,房颤(Atrial fibrillation, AF)被认为是新发HFpEF的主要风险因素(HR: 2.5),与HFrEF相比,房颤倾向于预测HFpEF(HR:2.3) [16]。HFpEF患者在病程中的大多会出现心房颤动,其机制可能包括:1) 同时易患这两种疾病的常见危险因素及合并疾病相同,HFpEF和心房颤动之间显著共有的常见危险因素包括高龄及与年龄相关的疾病:例如高血压、肥胖症和睡眠呼吸暂停综合征。2) 左心房的结构和功能重塑:随着HFpEF心房颤动负担的增加,左心房的依从性和力学逐渐下降,增加了新发心房颤动和进行性心房颤动的风险 [28]。3) 全身性炎症也可能将HFpEF和AF联系起来,HFpEF被认为一种炎症性疾病,其中合并疾病:如肥胖可引发广泛的内皮功能障碍、氧化应激和微血管炎症,从而导致终末器官表现,如舒张功能障碍 [25] [29],支持HFpEF中内皮微血管炎症假说的证据不断累积,但目前仍缺乏明确的临床试验数据。这些变化促进了HFpEF独特表型的发展。

2.3. HFpEF与慢性肾脏病

HFpEF和慢性肾脏病(Chronic kidney disease, CKD)是患病率不断上升的全球性疾病,并且随着人们保健意识的增强及全球老龄化出现,HFpEF和CKD在老年人中越来越常见并且有上升趋势,肾损害也成为HFpEF发生的独立风险因素 [30]。其原因可能包括:1) 心肌纤维化是HFpEF的主要病理生理学表现导致心脏结构和功能异常,可能影响肾功能 [31]。2) 左心室(Left ventricle, LV)肥厚而增大是HFpEF的另一个主要特征,LV质量增加可预测心力衰竭高危社区人群的肾脏疾病进展 [32] [33]。3) HFpEF中心静脉压升高导致肾小球毛细血管血流量减少,肾内间质和肾小管压力升高 [34] 肾血流量减少,这与肾小球滤过率(GFR)降低独立相关 [35]。4) 系统性炎症目前认为在HFpEF病理生理学中非常重要,它会导致冠状动脉微血管内皮炎症和功能障碍,最终通过减少一氧化氮信号传导导致心肌细胞僵硬和舒张性左室僵硬 [25],HFpEF合并症如糖尿病和高血压均会导致机体产生炎症,而CKD已经被公认为促炎症状态 [36]。5) 肥胖在HFpEF的老年患者中比例较高,脂肪组织导致许多病理生理途径增加炎症和氧化应激,可能导致心脏和肾功能不全 [37]。6) 有研究证明CKD中成纤维细胞生长因子23水平的增加会导致左室肥厚 [38],而CKD中交感神经激活的增强会导致心力衰竭 [39]。一项研究通过5/6肾切除术在猪模型CKD中成功诱导HFpEF的发生 [40]。人群中数据表明,晚期CKD与多种心脏结构异常有关 [41]。这些均可表明HFpEF与慢性肾脏病成为一种新的表型。

2.4. HFpEF与糖尿病

糖尿病和心力衰竭并存的情况很常见,约45%HFpEF患有糖尿病,在新发HFpEF患者中,合并糖尿病的患病率增加最为显著 [42]。其原因可能是:1) 糖尿病患者过度交感神经和肾素–血管紧张素系统激活之间存在正相关系,导致心脏充血、及机体对反应降低 [43]。2) 糖尿病机体持续高血糖状态导致钠-葡萄糖共转运蛋白-2的上调,使肾近端小管钠吸收增加,全身容量增加和利尿剂反应性降低 [44]。3) 糖尿病患者的胰岛素抵抗导致心肌细胞对游离脂肪酸的利用增加,这可能导致线粒体功能障碍,产生有毒的脂质中间体和活性氧增加。4) 在糖尿病人群中心外膜组织中脂肪增加导致促进炎性细胞因子的释放。5) 高血糖诱导的晚期糖基化产物损害微血管功能并降低一氧化氮的可用性 [45]。以上这些过程都可能导致心肌细胞的结构变化、内皮功能障碍和多器官损伤,从而进一步促进HFpEF与糖尿病合并的发生。RELAX和I-PRESERVE试验中超声心动图的数据表明,糖尿病与更严重的舒张功能障碍和左心室肥厚有关,潜在的代谢异常和炎症变化可能是该表型的原因 [46]。

3. 治疗

目前能降低HFrEF再住院率和死亡率,明显改善了预后的“金三角”药物:β受体阻滞剂、盐皮质激素受体抑制剂、血管紧张素转换酶抑制剂/血管紧张素Ⅱ受体阻滞剂,已经转换为“四剑客”新加的药物为:钠–葡萄糖协同转运蛋白-2抑制剂。既往“金三角”的治疗对于HFpEF患者并未取得相同获益,因此HFpEF的治疗选择非常有限,可能由于HFpEF多合并不同疾病,因此我们在治疗时应识别和注重合并疾病的管理,将其可分为不同的表型,针对HFpEF不同表型探索新疗法。

3.1. 利尿剂

利尿剂可以增加尿钠排泄,减少液体潴留的体征,改善症状以及生活质量和运动耐力,有液体潴留证据的所有心衰患者均应给予利尿剂治疗,使用合适的低剂量维持血容量正常。OPTIMIZE-HF [47] 注册表的最新数据显示,与HF患者出院后不使用利尿剂相比,使用利尿剂的HF患者的30天全因死亡率和住院率降低,该研究纳入4382例患者的平均年龄为78岁,54%为女性,11%为非裔美国人。袢利尿剂组和未使用袢利尿剂组患者的30天全因死亡率分别为4.9% (2191例中的107例)和6.6% (2191例中的144例);袢利尿剂与未使用袢利尿剂相比的(HR: 0.73; 95% CI: 0.57~0.94; p = 0.016)。袢利尿剂组患者的30天HF再入院风险显著降低(HR: 0.79; 95% CI: 0.63~0.99; p = 0.037),但30天全因再入院的风险(HR: 0.89; 95% CI: 0.79~1.01; p = 0.081)。因此在2022年美国心衰指南中指出在HFpEF患者中,利尿剂有助于减少HF住院和心血管死亡率,并将其推荐为1级治疗药物 [6]。

3.2. 钠–葡萄糖协同转运蛋白-2抑制剂(恩格列净)

钠–葡萄糖协同转运蛋白-2抑制剂其潜在机制不仅能通过渗透性利尿和利钠减少血管内容量,还可以减少了神经激素的激活,增加代谢效率和心肌能量供应,减少纤维化,增强内皮功能和血管顺应性,在HFpEF中可能有利。EMPEROR-Preserved试验 [48] 结果表明,在LVEF > 40%且利钠肽水平升高的心力衰竭患者中,使用恩格列净治疗后心血管死亡主要复合终点减少21%,心衰住院时间显著减少29%,在52周时改善了HPpEF患者的生活质量,这种效果出现得很早,并且至少持续了一年,无论基线检查时是否有糖尿病,这种益处都是相似的,因此钠–葡萄糖协同转运蛋白-2抑制剂有望成为治疗HFpEF的药物,但仍需要更多临床试验支持。在2022年美国心衰指南中指出在HFpEF患者中,钠–葡萄糖协同转运蛋白-2抑制剂有助于减少HF住院和心血管死亡率将其推荐为2a级治疗药物 [6]。

3.3. 胰高血糖素样肽受体激动剂-1

目前HFpEF的治疗尚未取得较大的突破,可能由于缺乏合适的临床前HFpEF模型来模拟人类HFpEF的复杂性而阻碍了新型疗法的开发。一项试验开发了一种小鼠模型,该模型与人类心脏代谢相关的HFpEF表型非常相似,并评估了胰高血糖素样肽受体激动剂-1 (利拉鲁肽)对心脏的作用,结果表明使用利拉鲁肽治疗可减轻心脏代谢失调并改善心功能,减少心脏肥大和心肌纤维化,减轻心房重量,降低利钠肽水平和肺淤血症状,因此胰高血糖素样肽受体激动剂-1可能是治疗HFpEF的治疗药物 [49]。期待将来在治疗心脏代谢HFpEF表型方面发挥价值,并设计临床试验支持。

3.4. 血管紧张素受体脑啡肽酶抑制剂

脑啡肽酶是一种锌依赖型金属蛋白酶,可降低体内利钠肽生物活性。血管紧张素受体-脑啡肽酶抑制剂不但可以抑制肾素–血管紧张素–醛固酮系统,也能增强利钠肽的作用,从而提高心肌舒张功能,减少心肌肥大,维持体内的水钠平衡。在PARAGON-HF试验中比较了用沙库巴曲缬沙坦和缬沙坦分别治疗的HFpEF患者,观察发生住院率和心血管死亡率,中位随访35个月后,与缬沙坦组相比,沙库巴曲缬沙坦组主要终点降低了13%,心力衰竭住院率也有所降低,但对心血管总死亡率没有改善。但是其中一项亚组分析表明,HFpEF女性患者可以从治疗中获得更多益处。在次要标准中:沙库巴曲缬沙坦组中观察到生活质量和心力衰竭症状的显著改善 [50]。在2022年美国心衰指南中推荐可以考虑使用血管紧张素受体脑啡肽酶抑制剂及血管紧张素受体抑制剂减少HFpEF住院率 [6]。

3.5. 可溶性鸟苷酸环化酶激动剂

可溶性鸟苷酸环化酶激动剂作用机制涉及鸟苷酸环化酶的直接激活,增加NO生物利用度,在抗心肌缺血及抗左心室重塑,抑制炎症和纤维化,改善代谢等方面发挥重大作用。在SOCRATES-PRESERVATION中,口服vericiguat (一种口服可溶性鸟苷酸环化酶激动剂),可改善HFpEF患者的生活质量,但未改善患者12周时氨基末端脑钠肽前体水平和左心房容积大小,vericiguat对HFpEF患者的影响需要进一步研究,以后可以使用不同剂量及延长随访时间来评估其有效性 [51]。在2022年美国心衰指南将vericiguat可作为治疗HFrEF 2b级推荐药物 [6]。期待将来在治疗HFpEF方面发挥价值。

4. 总结与展望

HFpEF好发于老年人,由于其独特的病理生理学机制且常合并多种疾病,导致在治疗方面仍需要不断的探索。目前我们已经关注到HFpEF的治疗不能用“一刀切”方案,而是需要基于不同患者临床表型方面制定个体化治疗方案,来减少HFpEF患者再住院率及改善生活治疗、延长生存期,期待HFpEF在不久的将来可以得到更好的临床治疗效果。

利益冲突

所有作者均声明不存在利益冲突。

文章引用

赵小利,刘青华,刘新宏. 射血分数保留性心力衰竭研究进展
Advances in Research on Heart Failure with Preserved Ejection Fraction[J]. 临床医学进展, 2022, 12(08): 7613-7620. https://doi.org/10.12677/ACM.2022.1281099

参考文献

  1. 1. Mcmurray, J.J., Adamopoulos, S., Anker, S.D., et al. (2012) ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in Collaboration with the Heart Failure Association (HFA) of the ESC. European Journal of Heart Failure, 14, 803-869. https://doi.org/10.1093/eurjhf/hfs105

  2. 2. Yancy, C.W., Jessup, M., Bozkurt, B., et al. (2013) 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology, 62, e147-e239. https://doi.org/10.1161/CIR.0b013e31829e8776

  3. 3. Ponikowski, P., Voors, A.A., Anker, S.D., et al. (2016) 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: The Task Force for the Di-agnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC) Developed with the Special Contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal, 37, 2129-2200. https://doi.org/10.1093/eurheartj/ehw128

  4. 4. Wang, H., Chai, K., Du, M., et al. (2021) Prevalence and Incidence of Heart Failure among Urban Patients in China: A National Population-Based Analysis. Circulation Heart Failure, 14, e008406. https://doi.org/10.1161/CIRCHEARTFAILURE.121.008406

  5. 5. Cheng, R.K., Cox, M., Neely, M.L., et al. (2014) Outcomes in Patients with Heart Failure with Preserved, Borderline, and Reduced Ejection Fraction in the Medicare Pop-ulation. American Heart Journal, 168, 721-730. https://doi.org/10.1016/j.ahj.2014.07.008

  6. 6. Heidenreich, P.A., Bozkurt, B., Aguilar, D., et al. (2022) 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiolo-gy/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145, e895-e1032. https://doi.org/10.1161/CIR.0000000000001063

  7. 7. Shah, S.J., Katz, D.H., Selvaraj, S., et al. (2015) Phenomap-ping for Novel Classification of Heart Failure with Preserved Ejection Fraction. Circulation, 131, 269-279. https://doi.org/10.1161/CIRCULATIONAHA.114.010637

  8. 8. Kao, D.P., Lewsey, J.D., Anand, I.S., et al. (2015) Characterization of Subgroups of Heart Failure Patients with Preserved Ejection Fraction with Possible Implications for Prognosis and Treatment Response. European Journal of Heart Failure, 17, 925-935. https://doi.org/10.1002/ejhf.327

  9. 9. Persoon, S., Paulus, M., Hirt, S., et al. (2018) Cardiac Unloading by LVAD Support Differentially Influences Components of the cGMP-PKG Signaling Pathway in Ischemic and Dilated Cardio-myopathy. Heart and Vessels, 33, 948-957. https://doi.org/10.1007/s00380-018-1149-x

  10. 10. Shyu, K.G. (2017) The Role of Endoglin in Myocardial Fibrosis. Acta Cardiologica Sinica, 33, 461-467.

  11. 11. Mishra, S. and Kass, D.A. (2021) Cellular and Molecular Pathobiology of Heart Failure with Preserved Ejection Fraction. Nature Reviews Cardiology, 18, 400-423. https://doi.org/10.1038/s41569-020-00480-6

  12. 12. Steinberg, B.A., Zhao, X., Heidenreich, P.A., et al. (2012) Trends in Patients Hospitalized with Heart Failure and Preserved Left Ventricular Ejection Fraction: Prevalence, Thera-pies, and Outcomes. Circulation, 126, 65-75. https://doi.org/10.1161/CIRCULATIONAHA.111.080770

  13. 13. Kenchaiah, S., Evans, J.C., Levy, D., et al. (2002) Obesity and the Risk of Heart Failure. The New England Journal of Medicine, 347, 305-313. https://doi.org/10.1056/NEJMoa020245

  14. 14. Ward, Z.J., Bleich, S.N., Cradock, A.L., et al. (2019) Projected U.S. State-Level Prevalence of Adult Obesity and Severe Obesity. The New England Journal of Medicine, 381, 2440-2450. https://doi.org/10.1056/NEJMsa1909301

  15. 15. Sharma, K. and Kass, D.A. (2014) Heart Failure with Preserved Ejection Fraction: Mechanisms, Clinical Features, and Therapies. Circulation Research, 115, 79-96. https://doi.org/10.1161/CIRCRESAHA.115.302922

  16. 16. Ho, J.E., Lyass, A., Lee, D.S., et al. (2013) Predictors of New-Onset Heart Failure: Differences in Preserved versus Reduced Ejection Fraction. Circulation Heart Failure, 6, 279-286. https://doi.org/10.1161/CIRCHEARTFAILURE.112.972828

  17. 17. Savji, N., Meijers, W.C., Bartz, T.M., et al. (2018) The Association of Obesity and Cardiometabolic Traits with Incident HFpEF and HFrEF. JACC Heart Failure, 6, 701-709. https://doi.org/10.1016/j.jchf.2018.05.018

  18. 18. Kitzman, D.W. and Shah, S.J. (2016) The HFpEF Obesity Phenotype: The Elephant in the Room. Journal of the American College of Cardiology, 68, 200-203. https://doi.org/10.1016/j.jacc.2016.05.019

  19. 19. Obokata, M., Reddy, Y.N.V., Pislaru, S.V., et al. (2017) Evidence Supporting the Existence of a Distinct Obese Phenotype of Heart Failure with Preserved Ejection Fraction. Circulation, 136, 6-19. https://doi.org/10.1161/CIRCULATIONAHA.116.026807

  20. 20. Bays, H.E., González-Campoy, J.M., Bray, G.A., et al. (2008) Pathogenic Potential of Adipose Tissue and Metabolic Consequences of Adipocyte Hypertrophy and In-creased Visceral Adiposity. Expert Review of Cardiovascular Therapy, 6, 343-368. https://doi.org/10.1586/14779072.6.3.343

  21. 21. Rao, V.N., Zhao, D., Allison, M.A., et al. (2018) Adiposity and In-cident Heart Failure and Its Subtypes: MESA (Multi-Ethnic Study of Atherosclerosis). JACC Heart Failure, 6, 999-1007. https://doi.org/10.1016/j.jchf.2018.07.009

  22. 22. Bays, H.E. (2011) Adiposopathy Is “Sick Fat” a Cardiovascular Disease? Journal of the American College of Cardiology, 57, 2461-2473. https://doi.org/10.1016/j.jacc.2011.02.038

  23. 23. Berg, G., Miksztowicz, V., Morales, C., et al. (2019) Epicardial Adipose Tissue in Cardiovascular Disease. Advances in Experimental Medicine and Biology, 1127, 131-143. https://doi.org/10.1007/978-3-030-11488-6_9

  24. 24. Fitzgibbons, T.P. and Czech, M.P. (2014) Epicardial and Peri-vascular Adipose Tissues and Their Influence on Cardiovascular Disease: Basic Mechanisms and Clinical Associations. Journal of the American Heart Association, 3, e000582. https://doi.org/10.1161/JAHA.113.000582

  25. 25. Paulus, W.J. and Tschöpe, C. (2013) A Novel Paradigm for Heart Failure with Preserved Ejection Fraction: Comorbidities Drive Myocardial Dysfunction and Remodeling through Coronary Microvascular Endothelial Inflammation. Journal of the American College of Cardiology, 62, 263-271. https://doi.org/10.1016/j.jacc.2013.02.092

  26. 26. Chien, S.C., Chandramouli, C., Lo, C.I., et al. (2021) Associations of Obesity and Malnutrition with Cardiac Remodeling and Cardi-ovascular Outcomes in Asian Adults: A Cohort Study. PLoS Medicine, 18, e1003661. https://doi.org/10.1371/journal.pmed.1003661

  27. 27. Jamaly, S., Carlsson, L., Peltonen, M., et al. (2019) Surgical Obesity Treatment and the Risk of Heart Failure. European Heart Journal, 40, 2131-2138. https://doi.org/10.1093/eurheartj/ehz295

  28. 28. Reddy, Y.N.V., Obokata, M., Verbrugge, F.H., et al. (2020) Atrial Dysfunction in Patients with Heart Failure with Preserved Ejection Fraction and Atrial Fibrillation. Journal of the Ameri-can College of Cardiology, 76, 1051-1064. https://doi.org/10.1016/j.jacc.2020.07.009

  29. 29. Lam, C.S. and Lund, L.H. (2016) Microvascular Endothelial Dys-function in Heart Failure with Preserved Ejection Fraction. Heart (British Cardiac Society), 102, 257-259. https://doi.org/10.1136/heartjnl-2015-308852

  30. 30. Brouwers, F.P., De Boer, R.A., Van Der Harst, P., et al. (2013) Incidence and Epidemiology of New Onset Heart Failure with Preserved vs. Reduced Ejection Fraction in a Communi-ty-Based Cohort: 11-Year Follow-Up of PREVEND. European Heart Journal, 34, 1424-1431. https://doi.org/10.1093/eurheartj/eht066

  31. 31. Paulus, W.J. and Zile, M.R. (2021) From Systemic Inflammation to Myocardial Fibrosis: The Heart Failure with Preserved Ejection Fraction Paradigm Revisited. Circulation Research, 128, 1451-1467. https://doi.org/10.1161/CIRCRESAHA.121.318159

  32. 32. Zelnick, L.R., Katz, R., Young, B.A., et al. (2017) Echo-cardiographic Measures and Estimated GFR Decline among African Americans: The Jackson Heart Study. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 70, 199-206. https://doi.org/10.1053/j.ajkd.2016.11.022

  33. 33. Ravera, M., Noberasco, G., Signori, A., et al. (2013) Left-Ventricular Hypertrophy and Renal Outcome in Hypertensive Patients in Primary-Care. American Journal of Hy-pertension, 26, 700-707. https://doi.org/10.1093/ajh/hps100

  34. 34. Agrawal, A., Naranjo, M., Kanjanahattakij, N., et al. (2019) Cardiorenal Syndrome in Heart Failure with Preserved Ejection Fraction—An Under-Recognized Clinical En-tity. Heart Failure Reviews, 24, 421-437. https://doi.org/10.1007/s10741-018-09768-9

  35. 35. Klein, D.A., Katz, D.H., Beussink-Nelson, L., et al. (2015) As-sociation of Chronic Kidney Disease with Chronotropic Incompetence in Heart Failure with Preserved Ejection Fraction. The American Journal of Cardiology, 116, 1093-1100. https://doi.org/10.1016/j.amjcard.2015.06.038

  36. 36. Mihai, S., Codrici, E., Popescu, I.D., et al. (2018) Inflamma-tion-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. Journal of Immunology Re-search, 2018, Article ID: 2180373. https://doi.org/10.1155/2018/2180373

  37. 37. Upadhya, B., Amjad, A. and Stacey, R.B. (2020) Optimizing the Man-agement of Obese HFpEF Phenotype: Can We Mind both the Heart and the Kidney? Journal of Cardiac Failure, 26, 108-111. https://doi.org/10.1016/j.cardfail.2019.11.018

  38. 38. Faul, C., Amaral, A.P., Oskouei, B., et al. (2011) FGF23 In-duces Left Ventricular Hypertrophy. The Journal of Clinical Investigation, 121, 4393-4408. https://doi.org/10.1172/JCI46122

  39. 39. Neumann, J., Ligtenberg, G., Klein, I.I., et al. (2004) Sympathetic Hyperac-tivity in Chronic Kidney Disease: Pathogenesis, Clinical Relevance, and Treatment. Kidney International, 65, 1568-1576. https://doi.org/10.1111/j.1523-1755.2004.00552.x

  40. 40. Rieger, A.C., Bagno, L.L., Salerno, A., et al. (2021) Growth Hormone-Releasing Hormone Agonists Ameliorate Chronic Kidney Disease-Induced Heart Failure with Pre-served Ejection Fraction. Proceedings of the National Academy of Sciences of the United States of America, 118, e2019835118. https://doi.org/10.1073/pnas.2019835118

  41. 41. Hickson, L.J., Negrotto, S.M., Onuigbo, M., et al. (2016) Echocardiography Criteria for Structural Heart Disease in Patients with End-Stage Renal Disease Initiating Hemo-dialysis. Journal of the American College of Cardiology, 67, 1173-1182. https://doi.org/10.1016/j.jacc.2015.12.052

  42. 42. Echouffo-Tcheugui, J.B., Xu, H., Devore, A.D., et al. (2016) Temporal Trends and Factors Associated with Diabetes Mellitus among Patients Hospitalized with Heart Failure: Find-ings from Get with the Guidelines-Heart Failure Registry. American Heart Journal, 182, 9-20. https://doi.org/10.1016/j.ahj.2016.07.025

  43. 43. Thorp, A.A. and Schlaich, M.P. (2015) Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome. Journal of Diabetes Research, 2015, Article ID: 341583. https://doi.org/10.1155/2015/341583

  44. 44. Heerspink, H.J., Perkins, B.A., Fitchett, D.H., et al. (2016) So-dium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Po-tential Mechanisms, and Clinical Applications. Circulation, 134, 752-772. https://doi.org/10.1161/CIRCULATIONAHA.116.021887

  45. 45. Dei Cas, A., Khan, S.S., Butler, J., et al. (2015) Impact of Diabetes on Epidemiology, Treatment, and Outcomes of Patients with Heart Failure. JACC Heart Failure, 3, 136-145. https://doi.org/10.1016/j.jchf.2014.08.004

  46. 46. Vaishnav, J., Yanek, L.R., Hahn, V.S., et al. (2022) Un-der-Enrollment of Obese Heart Failure with Preserved Ejection Fraction Patients in Major HFpEF Clinical Trials. Journal of Cardiac Failure, 28, 723-731. https://doi.org/10.1016/j.cardfail.2021.12.007

  47. 47. Faselis, C., Arundel, C., Patel, S., et al. (2020) Loop Diuretic Prescription and 30-Day Outcomes in Older Patients with Heart Failure. Journal of the American College of Cardiology, 76, 669-679. https://doi.org/10.1016/j.jacc.2020.06.022

  48. 48. Butler, J., Filippatos, G., Jamal Siddiqi, T., et al. (2022) Empagliflozin, Health Status, and Quality of Life in Patients with Heart Failure and Preserved Ejection Fraction: The EMPEROR-Preserved Trial. Circulation, 145, 184-193. https://doi.org/10.1161/CIRCULATIONAHA.121.057812

  49. 49. Withaar, C., Meems, L.M.G., Markousis-Mavrogenis, G., et al. (2021) The Effects of Liraglutide and Dapagliflozin on Cardiac Function and Structure in a Multi-Hit Mouse Model of Heart Failure with Preserved Ejection Fraction. Cardiovascular Research, 117, 2108-2124. https://doi.org/10.1093/cvr/cvaa256

  50. 50. Tridetti, J., Nguyen Trung, M.L., Ancion, A., et al. (2020) The PARAGON-HF Trial. Revue Medicale de Liege, 75, 130-135.

  51. 51. Pieske, B., Maggioni, A.P., Lam, C.S.P., et al. (2017) Vericiguat in Patients with Worsening Chronic Heart Failure and Preserved Ejection Fraction: Results of the Sol-uble Guanylate Cyclase Stimulator in Heart Failure Patients with Preserved EF (Socrates-Preserved) Study. European Heart Journal, 38, 1119-1127. https://doi.org/10.1093/eurheartj/ehw593

  52. NOTES

    *通讯作者。

期刊菜单