Advances in Clinical Medicine
Vol.
12
No.
05
(
2022
), Article ID:
51507
,
6
pages
10.12677/ACM.2022.125633
影响高血压性脑出血的相关因素研究
叶钦1,贺瑛福2*
1青海大学,青海 西宁
2青海大学附属医院,青海 西宁
收稿日期:2022年4月20日;录用日期:2022年5月15日;发布日期:2022年5月23日

摘要
脑出血(intracerebral hemorrhage, ICH)是世界上最具破坏性的疾病之一,有着极高发病率和死亡率,但没有有效和特异性的治疗方法。高血压脑出血(hypertensive intracerebral hemorrhage, HICH)是ICH最常见的类型。HICH是一种毁灭性疾病;它不仅对生命和健康造成直接风险,而且导致身体虚弱、恢复期长和社会经济困难。为降低HICH的发病率及致残率,本文就HICH发病的相关因素研究作一综述。
关键词
高血压性脑出血,发病率,危险因素

Study on Related Factors Affecting Hypertensive Intracerebral Hemorrhage
Qin Ye1, Yingfu He2*
1Qinghai University, Xining Qinghai
2Affiliated Hospital of Qinghai University, Xining Qinghai
Received: Apr. 20th, 2022; accepted: May 15th, 2022; published: May 23rd, 2022

ABSTRACT
Intracerebral hemorrhage (ICH) is one of the most devastating diseases in the world, with high morbidity and mortality, but there is no effective and specific treatment. Hypertension intracerebral hemorrhage (HICH) is the most common type of ICH. HICH is a devastating disease; It not only poses immediate risks to life and health, but also causes physical weakness, long-term recovery and socio-economic hardship. In order to reduce the incidence and disability rate of HICH, this paper reviewed the related factors of HICH.
Keywords:Hypertensive Intracerebral Hemorrhage, Incidence Rate, Risk Factor
Copyright © 2022 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
1. 引言
近年来,每年因心脑血管疾病死亡的人数急剧增加,且疾病趋势年轻化。ICH比以往任何时候都受到更多的关注和越来越多的研究兴趣。目前,已知ICH有多种原因,包括高血压、血管畸形、脑淀粉样血管病、脑肿瘤和外伤 [1]。然而,中风是可以预防的。血压、血糖、血脂、尿酸、同型半胱氨酸、吸烟、肥胖、缺乏体力活动等多种可干预的危险因素在脑卒中的防治中被广泛观察。
2. 影响HICH发病及预后的相关因素
2.1. 血压
在所有可干预因素中,对血压的控制尤为重要。在病理学研究中,血压升高(BP)导致动脉硬化,即动脉壁内膜中退化物质的积聚。随后,该疾病的特征是纤维蛋白样坏死、脂肪透明症、微动脉粥样硬化和微动脉瘤 [2]。在HICH患者中,基底神经节是最常见的部位,其次是丘脑和脑叶出血。因此,HICH的病因和预后可能取决于解剖位置 [3]。此外,在不同的血压条件下,大脑中小血管的耐受性和敏感性是不同的。根据相关的血管和大脑解剖结构,脑叶类别包括单个大脑叶区域和非脑叶区域,非脑叶区域包括深层和幕下区域。相关研究显示,与脑叶HICH相比,高血压程度的增加会加重非脑叶HICH [4]。脑叶区域的出血患者不仅更有可能降低手术风险,而且具有长期生存率,血压相对偏高的HICH病死率低于控制不佳者,说明高血压的程度及分级对HICH的预后有影响 [5]。因此,积极控制血压不仅能降低动脉硬化、HICH的发病率,还能减轻HICH的危险程度。
2.2. 血糖
研究发现,大多数既往没有糖尿病的患者在病情危重时也会出现高血糖,存在应激性高血糖及胰岛素抵抗的现象 [6]。应激性高血糖是脑出血常见的并发症,这种现象已被证实为急性脑卒中预后不良的危险因素。胰岛素抵抗是一种全身性代谢紊乱,不仅是2型糖尿病的标志,而且,在没有糖尿病但患有血管疾病的患者中很常见。胰岛素敏感性受损已成为缺血性卒中发展和不良预后的重要因素 [7]。机制可能归因于高血糖、高胰岛素血症、血脂异常、高血压、纤溶异常、内皮功能障碍、全身炎症和动脉粥样硬化 [8]。同时,胰岛素抵抗与神经炎症相互关联,被认为是神经退行性过程的主要罪魁祸首之一。此外,胰岛素抵抗提供促炎作用,对血脑屏障(BBB)产生深远影响 [9]。目前,关于胰岛素抵抗对HICH患者影响的现有证据很少且存在争议。REGARDS研究报告了胰岛素抵抗水平较高的患者的HICH风险趋势不一致,白人呈下降趋势,黑人呈上升趋势 [10]。另有研究发现,胰岛素抵抗在非糖尿病和非肥胖HICH患者中也很常见 [11]。因此,长期以来,人们对于了解葡萄糖代谢对HICH的影响有着极高的研究兴趣,并且,一直提出加强血糖管理来预防非糖尿病和糖尿病合并HICH患者的不良结局 [12]。
2.3. 血脂
血脂异常是一种以血浆胆固醇、甘油三酯或两者兼有的高水平为特征的常见疾病 [13]。目前常以血清总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)作为高脂血症的检测指标。相关研究表明,血脂异常加重HICH发生风险的机制可能为:血脂异常会增加动脉粥样硬化发生和进展的风险。动脉粥样硬化的发病机制涉及脂质浸润、内皮损伤、炎症反应、血小板聚集和血栓形成。内皮细胞的一个关键功能是防止血管系统中的粘附。异常或受损的内皮会增加炎症因子的表达,导致穿透内膜的脂质颗粒数量增加和内膜下脂质的连续积累 [14]。LDL-C通常通过胞吞作用进入血管壁的内皮下层并积聚。然后形成氧化的LDL (ox-LDL),进一步刺激内皮细胞产生E-选择素或P-选择素,促进循环单核细胞向血管壁迁移 [15]。在有丝分裂原反应性核因子的影响下,单核细胞转化为巨噬细胞,并与平滑肌细胞(SMC)一起通过多种机制摄取ox-LDL,从而形成泡沫细胞,最终促进动脉粥样硬化发生 [16]。相反,HDL有抗动脉粥样硬化的作用,包括将胆固醇转运到肝脏以及抗炎、抗感染、抗氧化、抗凋亡、抗血栓形成和血管舒张作用。HDL能够减少内皮粘附分子的产生,并通过刺激内皮产生前列环素和一氧化氮(NO)来促进血管舒张和内皮增殖,从而减少炎症细胞浸润和维持内皮细胞的稳定 [17]。此外,HDL的抗氧化活性促进胆固醇流出,从而缓解动脉粥样硬化的进展。脂蛋白胆固醇水平与HICH之间的关联仍存在争议。在一项HICH患者的研究中,TC水平低的患者更可能有较差的90天预后 [18]。另一项研究发现,血清TC水平低的HICH患者的mRS评分在发病30天后恶化 [19]。有报道表明低LDLC水平与HICH的死亡独立相关。然而,有研究表明,低LDLC水平与HICH后mRS无关 [20]。因此,鉴于这些研究争议,关注并明确血脂与HICH发病及预后的关系尤为重要。
2.4. 同型半胱氨酸
同型半胱氨酸(Hcy)是一种含硫氨基酸,是蛋氨酸代谢的中间产物。此外,Hcy代谢迟缓可导致血清Hcy水平升高,称为高同型半胱氨酸血症(HHcy)。血清Hcy水平升高与Hcy代谢紊乱有关,包括遗传因素、服用某些药物、不健康的生活习惯以及叶酸维生素B6、B12的缺乏 [21]。目前的研究表明,高浓度的Hcy是冠状动脉疾病、缺血性脑血管疾病和外周血管缺血疾病的独立危险因素。也有人发现血清Hcy可以预测急性脑梗死的风险 [22]。有研究发现HHcy可预测急性缺血性卒中患者的严重神经损伤或其他不良功能结果。然而,只有少数研究阐明了Hcy升高与出血性卒中之间的关系。相关研究证实,由于各种因素,小动脉壁发生透明变和纤维坏死,管壁弹性减弱,易破裂出血 [23]。而Hcy的升高会引起内皮细胞肥大和损伤,这导致血管弹力膜破裂,中层平滑肌细胞肥大和损伤,间质胶原纤维增多,血管壁硬化,从而导致血压升高。同时,脆弱的管壁在血流冲击下也容易发生病变,导致动脉瘤大小不一,破裂后导致脑实质出血。此外,Hcy的升高也具有细胞毒作用,刺激LDL氧化 [24]。积极探讨Hcy与HICH之间的关系,旨在为临床预测HICH患者预后提供理论依据。
2.5. 尿酸
尿酸(UA)是嘌呤的一种代谢终产物,以UA盐的形式存在,在生物体中具有高溶解度。相关研究已证实,高尿酸血症与高血压、糖尿病、冠心病和缺血性脑卒中有关。此外,高尿酸血症可能导致不良结局、增加症状性ICH和缺血性卒中死亡率 [25]。UA是血液中最重要的抗氧化剂之一,其浓度是其他抗氧化剂的10倍。UA提供抗氧化防御,防止人体因氧化剂和自由基引起的损伤,并保护神经免受氧化损伤 [26]。据最新的荟萃分析报道,可能的机制是UA水平升高与颈动脉内膜中层厚度相关;高UA与颈动脉内膜增厚有关。同时,升高的UA通过增加自由基的产生和促进LDL-C氧化和脂质过氧化来促进动脉粥样硬化的进展。此外,高水平的UA会增加血管内皮功能障碍和血管平滑肌细胞增殖,可能导致肾小球前血管疾病和高血压 [27]。也有报道称,升高的UA水平与微血管损伤有关 、增加血小板聚集和血栓形成 [28]。所有这些因素都可能作用于脑损伤部位和/或全身水平,从而影响神经血管恢复、继发性损伤和全身并发症。HICH早期极不稳定,约20%的患者在发病2天内易出现早期神经功能恶化(END),与预后不良有关 [29]。早期的研究表明,较高的白细胞计数可预测HICH患者的END,这表明炎症反应可能与END有关,血清UA促进一系列炎症介质的释放,例如中性粒细胞计数、C反应蛋白、白细胞介素-1β (IL-1β)、IL-6、IL-18和肿瘤坏死因子-a (TNF-a) [30],这可能反过来导致END。其次,血清UA通过增加活性氧(ROS)的产生而具有促氧化特性,增加的氧化应激水平可通过炎症反应、血脑屏障的破坏加重HICH后的继发性脑损伤,并最终导致END。最后,UA水平较高的个体更可能有较大的血肿体积、较高比例的脑室内出血和血肿扩大,所有这些都已被证明是与HICH患者END相关的危险因素 [31]。
2.6. 胱抑素C (Cys-C)
胱抑素C (Cys-C)是一种半胱氨酸蛋白酶的低分子量抑制剂,相比肌酐和肾小球滤过率,它是更敏感的肾功能指标。近年来,多项研究发现Cys-C与心脑血管疾病密切相关。脑出血患者血清Cys-C水平显着高于高血压患者和健康人,脑卒中患者Cys-C水平与病灶体积呈正相关 [32]。Cys-C作为广为人知的广泛分布的组织蛋白酶抑制剂之一,存在于所有体液中,参与和调节细胞增殖、炎症反应、抗菌、肿瘤转移和骨基质重吸收等多种生理和病理过程 [33]。此外,还发现Cys-C与血管性认知障碍显著相关。首先,Cys-C参与了动脉粥样硬化的病理生理过程。其次,脑脊液中的大量Cys-C在中风发作时通过病理性血脑屏障进入血液循环 [34]。第三,作为半胱氨酸蛋白酶的抑制剂,Cys-C通过打破蛋白水解和抗蛋白水解活性的平衡来影响血管壁重塑的过程 [35]。
3. 结局与展望
由于HICH发病率高、预后差,近年来已有大量研究表明,影响HICH的相关因素众多,但对其的具体影响仍有争议,为降低HICH的发病率、提高HICH患者生活质量,还需大量的临床研究和动物试验去证实。
文章引用
叶 钦,贺瑛福. 影响高血压性脑出血的相关因素研究
Study on Related Factors Affecting Hypertensive Intracerebral Hemorrhage[J]. 临床医学进展, 2022, 12(05): 4365-4370. https://doi.org/10.12677/ACM.2022.125633
参考文献
- 1. Hostettler, I.C., Seiffge, D.J. and Werring, D.J. (2019) Intracerebral Hemorrhage: An Update on Diagnosis and Treat-ment. Expert Review of Neurotherapeutics, 19, 679-694. https://doi.org/10.1080/14737175.2019.1623671
- 2. Pires, P.W., Dams Ramos, C.M., Matin, N. and Dorrance, A.M. (2013) The Effects of Hypertension on the Cerebral Circulation. The American Journal of Physiology-Heart and Circulatory Physiology, 304, H1598-H1614. https://doi.org/10.1152/ajpheart.00490.2012
- 3. Charidimou, A., Schmitt, A., Wilson, D., Fox, Z., et al. (2017) The Cerebral Haemorrhage Anatomical Rating Instrument (CHARTS): Development and Assessment of Reliability. Journal of the Neurological Sciences, 372, 178-183. https://doi.org/10.1016/j.jns.2016.11.021
- 4. Rodrigues, M.A., Samarasekera, N., Lerpiniere, C., et al. (2018) The Edinburgh CT and Genetic Diagnostic Criteria for Lobar Intracerebral Haemorrhage Associated with Cerebral Amyloid Angiopathy: Model Development and Diagnostic Test Accuracy Study. The Lancet Neurology, 17, 232‐240. https://doi.org/10.1016/S1474-4422(18)30006-1
- 5. Delcourt, C., Sato, S., Zhang, S., et al. (2017) Intracerebral Hemorrhage Location and Outcome among INTERACT2 Participants. Neurology, 88, 1408-1414. https://doi.org/10.1212/WNL.0000000000003771
- 6. Jing, J., Pan, Y., Zhao, X., Zheng, H., Jia, Q., Mi, D., et al. (2017) Insulin Resistance and Prognosis of Nondiabetic Patients with Ischemic Stroke: The ACROSS-China Study (Abnormal Glucose Regulation in Patients with Acute Stroke across China). Stroke, 48, 887-893. https://doi.org/10.1161/STROKEAHA.116.015613
- 7. Bas, D.F., Ozdemir, A.O., Colak, E. and Kebapci, N. (2016) Higher Insulin Resistance Level Is Associated with Worse Clinical Response in Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Translational Stroke Research, 7, 167-171. https://doi.org/10.1007/s12975-016-0453-y
- 8. Kernan, W.N., Inzucchi, S.E., Viscoli, C.M., Brass, L.M., Bravata, D.M. and Horwitz, R.I. (2002) Insulin Resistance and Risk for Stroke. Neurology, 59, 809-815. https://doi.org/10.1212/WNL.59.6.809
- 9. Akhtar, A. and Sah, S.P. (2020) Insulin Signaling Pathway and Relat-ed Molecules: Role in Neurodegeneration and Alzheimer’s Disease. Neurochemistry International, 135, Article ID: 104707. https://doi.org/10.1016/j.neuint.2020.104707
- 10. Howard, G., Wagenknecht, L.E., Kernan, W.N., Cushman, M., Thacker, E.L., Judd, S.E., et al. (2014) Racial Differences in the Association of Insulin Resistance with Stroke Risk: The Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Stroke, 45, 2257-2262. https://doi.org/10.1161/STROKEAHA.114.005306
- 11. Lee, J.E., Shin, D.W., Yun, J.M., Kim, S.H., Nam, Y.S., Cho, B., et al. (2016) Insulin Resistance Is a Risk Factor for Silent Lacunar Infarction. Stroke, 47, 2938-2944. https://doi.org/10.1161/STROKEAHA.116.014097
- 12. Hemphill, J.C., Greenberg, S.M. anderson, C.S., Becker, K., Bendok, B.R., Cushman, M., et al. (2015) Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 46, 2032-2060. https://doi.org/10.1161/STR.0000000000000069
- 13. Kemal, A., Teshome, M.S., Ahmed, M., Molla, M., Malik, T., Mohammed, J., et al. (2020) Dyslipidemia and Associated Factors among Adult Patients on Antiretroviral Therapy in Armed Force Comprehensive and Specialized Hospital, Addis Ababa, Ethiopia. HIV AIDS (Auckl), 12, 221-231. https://doi.org/10.2147/HIV.S252391
- 14. Rajendran, P., Rengarajan, T., Thangavel, J., Nishigaki, Y., Sakthise-karan, D., Sethi, G., et al. (2013) The Vascular Endothelium and Human Diseases. International Journal of Biological Sciences, 9, 1057-1069. https://doi.org/10.7150/ijbs.7502
- 15. Gerhardt, T. and Ley, K. (2015) Monocyte Trafficking across the Vessel Wall. Cardiovascular Research, 107, 321-330. https://doi.org/10.1093/cvr/cvv147
- 16. Gorski, D.H. and Walsh, K. (1995) Mitogen-Responsive Nuclear Factors That Mediate Growth Control Signals in Vascular Myocytes. Cardiovascular Research, 30, 585-592. https://doi.org/10.1016/S0008-6363(96)88508-7
- 17. Norata, G.D. and Catapano, A.L. (2005) Molecular Mecha-nisms Responsible for the Antiinflammatory and Protective Effect of HDL on the Endothelium. Vascular Health and Risk Management, 1, 119-129. https://doi.org/10.2147/vhrm.1.2.119.64083
- 18. Chang, J.J., Katsanos, A.H., Khorchid, Y., Dillard, K., Kerro, A., Burgess, L.G., et al. (2018) Higher Low-Density Lipoprotein Cholesterol Levels Are Associated with Decreased Mortal-ity in Patients with Intracerebral Hemorrhage. Atherosclerosis, 269, 14-20. https://doi.org/10.1016/j.atherosclerosis.2017.12.008
- 19. Liu, J., Sempos, C.T., Donahue, R.P., Dorn, J., Trevisan, M. and Grundy, S.M. (2006) Non-High-Density Lipoprotein and Very-Low-Density Lipoprotein Cholesterol and Their Risk Predictive Values in Coronary Heart Disease. American Journal of Cardiology, 98, 1363-1368. https://doi.org/10.1016/j.amjcard.2006.06.032
- 20. Ingelsson, E., Schaefer, E.J., Contois, J.H., McNamara, J.R., Sullivan, L., Keyes, M.J., et al. (2007) Clinical Utility of Different Lipid Measures for Prediction of Coronary Heart Disease in Men and Women. JAMA, 298, 776-785. https://doi.org/10.1001/jama.298.7.776
- 21. Wang, Y., Zhang, J., Qian, Y.S., Tang, X.F., Ling, H.W., Chen, K.M., Li, Y., Gao, P.J. and Zhu, D.L. (2018) Association of Homocysteine with Aysmptomatic Intracranial and Extracranial Arterial Stenosis in Hypertension Patients. Scientific Reports, 8, Article No. 595. https://doi.org/10.1038/s41598-017-19125-9
- 22. Wu, X., Zhou, Q., Chen, Q., Li, Q., Guo, C., Tian, G., et al. (2020) Association of Homocysteine Level with Risk of Stroke: A Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutrition, Metabolism & Cardiovascular Diseases, 30, 1861-1869. https://doi.org/10.1016/j.numecd.2020.07.026
- 23. Chen, S., Dong, Z.P., Cheng, M., Zhao, Y.Q., Wang, M.Y., Sai, N., Wang, X., Liu, H., Huang, G.W. and Zhang, X.M. (2017) Homocysteine Exaggerates Microglia Activation and Neuroinflammation through Microglia Localized STAT3 Overactivation Following Ischemic Stroke. Journal of Neuroin-flammation, 14, 187. https://doi.org/10.1186/s12974-017-0963-x
- 24. Ye, Z.S., Zhang, Z.Z., Zhang, H., Hao, Y.G., Zhang, J., Liu, W.H., Xu, G.L. and Liu, X.F. (2017) Prognostic Value of C-Reactive Protein and Homocysteine in Large-Artery Ather-osclerotic Stroke: A Prospective Observational Study. Journal of Stroke and Cerebrovascular Diseases, 26, 618-626. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.11.016
- 25. Yuan, K., Zhang, X., Chen, J., et al. (2020) Uric Acid Level and Risk of Symptomatic Intracranial Haemorrhage in Ischaemic Stroke Treated with Endovascular Treatment. European Journal of Neurology, 27, 1048-1055. https://doi.org/10.1111/ene.14202
- 26. Wang, Q., Wen, X. and Kong, J. (2020) Recent Progress on Uric Acid De-tection: A Review. Critical Reviews in Analytical Chemistry, 50, 359-375. https://doi.org/10.1080/10408347.2019.1637711
- 27. Lee, S.W., Kim, H.C., Nam, C., Lee, H.Y., Ahn, S.V., Oh, Y.A., et al. (2019) Age-Differential Association between Serum Uric Acid and Incident Hypertension. Hypertension Re-search, 42, 428-437. https://doi.org/10.1038/s41440-018-0168-4
- 28. Zapolski, T., Wacinski, P., Kondracki, B., Rychta, E., Buraczyn-ska, M.J. and Wysokinski, A. (2011) Uric Acid as a Link between Renal Dysfunction and both Pro-Inflammatory and Prothrombotic State in Patients with Metabolic Syndrome and Coronary Artery Disease. Kardiologia Polska, 69, 319-326.
- 29. Godoy, D.A. and Boccio, A. (2005) Early Neurologic Deterioration in Intracerebral Hemorrhage: Predic-tors and Associated Factors. Neurology, 64, 931-932. https://doi.org/10.1212/WNL.64.5.931-a
- 30. Kimura, Y., Yanagida, T., Onda, A., et al. (2020) Soluble Uric Acid Promotes Atherosclerosis via AMPK (Amp- Activated Protein Kinase)-Mediated Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 570-582. https://doi.org/10.1161/ATVBAHA.119.313224
- 31. Lord, A.S., Gilmore, E., Choi, H.A., et al. (2015) Time Course and Predictors of Neurological Deterioration after Intracerebral Hemorrhage. Stroke, 46, 647-652. https://doi.org/10.1161/STROKEAHA.114.007704
- 32. Lerdal, A., Bakken, L.N., Rasmussen, E.F., Beiermann, C., Ryen, S., Pynten, S., Drefvelin, S.S., Dahl, A.M., Rognstad, G. and Finset, A. (2011) Physical Impairment, Depres-sive Symptoms and Pre-Stroke Fatigue Are Related to Fatigue in the Acute Phase after Stroke. Disability & Rehabilita-tion, 33, 334-342. https://doi.org/10.3109/09638288.2010.490867
- 33. Wang, Y., Li, W., Yang, J., Zhang, M., Tian, C., Ma, M. and Zhang, Q. (2019) Association between Cystatin C and the Risk of Ischemic Stroke: A Systematic Review and Meta-Analysis. Journal of Molecular Neuroscience, 69, 444-449. https://doi.org/10.1007/s12031-019-01373-1
- 34. Zeng, Q., Huang, Z., Wei, L., Fang, J. and Lin, K. (2019) Corre-lations of Serum Cystatin C Level and Gene Polymorphism with Vascular Cognitive Impairment after Acute Cerebral In-farction (Article). Neurological Sciences, 40, 1049- 1054. https://doi.org/10.1007/s10072-019-03777-8
- 35. Zhang, Y. and Sun, L. (2017) Cystatin C in Cerebrovascular Disorders. Current Neurovascular Research, 14, 406-414. https://doi.org/10.2174/1567202614666171116102504
NOTES
*通讯作者。