Journal of Physiology Studies
Vol.03 No.04(2015), Article ID:16781,8 pages
10.12677/JPS.2015.34004

Autophagy and Autosomal Dominant Polycystic Kidney Disease

Ming Huang, Baoxue Yang*

State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing

Received: Jan. 1st, 2016; accepted: Jan. 15th, 2016; published: Jan. 19th, 2016

Copyright © 2015 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

Autophagy is the process that cytoplasmic components are transported into lysosomes and degraded to primary components, maintaining the cellular homeostasis and energy production. The three pathways of autophagy include macroautophagy, chaperone-mediated autophagy, and microautophagy. Autophagy is involved in pathogenesis of several important renal diseases, such as acute kidney injury, diabetic nephropathy and autosomal dominant polycystic kidney disease (ADPKD). ADPKD is caused by mutations of Pkd1 or Pkd2, resulting in the imbalance of intracellular calcium and furthermore the formation and growth of cysts. Several pathways involved in cyst growth also play a role in autophagy, thus implying the association of pathogenesis of PKD and autophagy. Overall, we reviewed the suppressed autophagy in PKD, and the relation between autophagy and apoptosis, mTOR signaling pathway, and ciliary function in PKD.

Keywords:Autophagy, Autosomal Dominant Polycystic Kidney Disease, Apoptosis, mTOR, Cilia

自噬与ADPKD

黄明,杨宝学*

北京大学基础医学院药理学系,天然药物及仿生药物国家重点实验室,北京

收稿日期:2016年1月1日;录用日期:2016年1月15日;发布日期:2016年1月19日

摘 要

自噬是胞质内成分被转运至溶酶体内降解为初级成分的过程,以维持细胞内稳态和能量产生,其三条通路包括巨自噬、分子伴侣介导的自噬和微自噬。自噬参与到某些肾脏疾病的病理过程中,如急性肾损伤、糖尿病肾病和常染色体显性遗传多囊肾病(autosomal dominant polycystic kidney disease, ADPKD)。ADPKD由Pkd1或Pkd2基因的突变引起,致使细胞内钙离子稳态失衡,进而导致肾囊泡的形成及生长。一些涉及囊泡生长的信号通路也参与自噬的调节,因此PKD的病理机制与自噬存在密切联系。本文主要对PKD与自噬的调节以及自噬与凋亡、mTOR信号通路及纤毛功能之间的关系等方面的研究进展进行综述。

关键词 :自噬,常染色体显性遗传多囊肾病,凋亡,mTOR,纤毛

1. 引言

自噬是胞质内成分被转运至溶酶体内降解为初级成分的过程,以维持细胞内稳态和能量产生,是一种高度保守的生理性代谢过程。自噬在多数细胞中以基础水平发生,通过消除蛋白质聚集体和损伤的细胞器以维持胞质内稳态 [1] 。它亦包含功能异常的线粒体的降解即线粒体自噬,限制活性氧(ROS)的产生和线粒体内毒性蛋白的释放,启动细胞内保护过程。

近年来的研究表明,自噬在正常的机体生理过程中发挥重要作用,在对外界应激的状态下保持细胞存活。在正常情况下哺乳动物体内存在自噬,而在饥饿或其他病理状况如缺血、中毒、免疫和氧化应激情况下能激活自噬 [2] 。自噬的刺激剂如大环内酯类抗生素雷帕霉素,可通过抑制哺乳动物类雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR),诱发自噬产生。另外,自噬缺陷与多种病理过程相关,如神经退行性疾病、心肌病、肿瘤,以及对运动和衰老的生理性应激反应 [2] 。

2. 自噬的信号通路

自噬的三条通路包括:巨自噬、分子伴侣介导的自噬(chaperone-mediated autophagy, CMA)和微自噬。巨自噬是研究最多的一条自噬通路,它组成了一个较为完整的长寿命胞质蛋白和功能失常细胞器的降解系统。巨自噬的发生水平随年龄下降,致使与细胞寿命相关的废物聚积 [3] 。此过程开始于内质网上的一种结构扩张为吞噬泡或隔离膜,即自噬体的一种前体。在吞噬泡伸长时,胞质内成分被吞噬入该结构中。接下来,它闭合形成一个双层膜的囊泡称作自噬体。自噬体与酸性溶酶体融合形成自噬性溶酶体,包含的胞质内成分被降解 [1] 。其中,自噬体的形成是由III型磷脂酰肌醇-3-激酶(Class III phosphatidylinositol-3-kinase, PI-3K)和atg-6(Beclin-1)所起始。另外,自噬可由丝氨酸/苏氨酸蛋白激酶mTOR所控制,整合多种因素如细胞营养、生长因子和细胞内氧化还原状态的影响,进而抑制自噬体的形成 [4] 。

分子伴侣介导的自噬涉及到可溶性胞质蛋白依赖于分子伴侣的选择性降解。胞质分子伴侣热休克同源蛋白70kDa(Hsc70)识别底物蛋白中CMA的靶向序列,并将Hsc70和蛋白复合物靶向于溶酶体表面。复合物结合溶酶体相关的2A型膜蛋白(lysosome-associated membrane protein type 2A, LAMP-2A),导致底物蛋白的解聚和LAMP-2A的变构。后者形成一种有活性的易位复合物,底物蛋白通过此复合物进入到溶酶体,继而发生溶酶体内蛋白酶的降解 [5] 。这种自噬类型的特征是对降解蛋白具有选择性,且底物蛋白通过溶酶体膜直接易位,并不需要其他小泡的形成。

微自噬是一种非选择性的降解过程。它通过溶酶体膜直接吞噬胞质内物质,内陷为自噬管。维持细胞器的大小、细胞膜的内稳定性和在氮气限制情况下细胞的存活是微自噬的主要功能。然而,微自噬在哺乳动物细胞内的确切生理功能尚不完全明确 [6] 。

3. 自噬与ADPKD

目前有研究表明自噬与某些肾脏疾病如急性肾损伤、糖尿病肾病和多囊肾病的病理进程相关。然而,对于自噬如何发挥作用仍在探究之中。

常染色体显性遗传多囊肾病(autosomal dominant polycystic kidney disease, ADPKD)由Pkd1或Pkd2基因的突变引起,两个基因分别编码多囊蛋白1 (polycystin-1, PC1)和多囊蛋白2 (polycystin-2, PC2)。Pkd1突变约占ADPKD患者的80%~85%,而Pkd2占15%~20% [7] 。PC1和PC2均定位于初级纤毛上,膜蛋白PC1可以与瞬时感受器电位(transient receptor potential, TRP)家族非选择性钙离子通道蛋白PC2相互作用,形成跨膜受体离子通道复合物,感受液体流动。液体流经肾小管上皮细胞的顶面使纤毛弯曲,并引发钙内流,继而诱发Ca2+胞内的释放 [8] [9] 。而PKD患者由于基因突变使得纤毛感受液体流动异常,Ca2+内流减少,通过刺激Ca2+抑制的腺苷酸环化酶6或抑制Ca2+依赖的磷酸二酯酶使得cAMP浓度增多,cAMP激活肾脏上皮细胞MAPK/ERK等信号通路,促进细胞异常增殖,并增加液体分泌,进而导致囊泡的形成和生长 [10] 。

囊泡的生长机制涉及到mTOR、血管加压素、环腺苷酸、生长因子、caspases和凋亡等 [11] ,这些信号通路也参与自噬和凋亡的调节。抑制囊泡的化合物如mTOR抑制剂、二甲双胍 [3] 、雷公藤甲素 [12] 和姜黄素 [11] 等也是自噬的诱导剂。因此,PKD的病理机制与自噬之间存在密切联系。以下主要从PKD动物模型中自噬的缺陷以及自噬与凋亡、mTOR信号通路和纤毛功能之间的关系等方面进行讨论。

3.1. PKD动物模型中的自噬缺陷

在ADPKD中由于囊泡扩张,组织存在局部低氧。ADPKD终末期肾病患者红细胞生成素水平升高,肾脏囊泡表皮细胞缺氧诱导因子(hypoxia-inducible factor-1α, HIF-1α)表达亦升高 [13] 。而自噬能被生理刺激如低氧所诱导 [14] 。

Belibi等通过电镜、免疫荧光和免疫印迹法检测LC3-II和BECN1,观察到大鼠和小鼠的多囊肾中自噬的存在,同时也探究了HIF-1α与自噬的关系 [13] 。电镜可以观察到野生型大鼠和小鼠肾脏及Han:SPRD多囊肾大鼠和cpk多囊肾小鼠肾脏中均出现自噬体、线粒体自噬和自溶酶体。而自噬体在肾小管细胞中的存在并不意味着自噬增加。因此,作者又检测了一种调节自噬体形成和成熟的蛋白BECN1以及自噬的标志蛋白LC3-II,这两种蛋白在同源性Han:SPRD大鼠和cpk小鼠的PKD晚期表达增加,代表了自噬增强,同时HIF-1α在PKD晚期阶段表达也升高,表明其与自噬之间可能存在的联系。而在软骨细胞中HIF-1α表达沉默导致BECN1表达及自噬降低,说明增高的HIF-1α能诱导自噬 [15] [16] 。

溶酶体抑制剂菌丝霉素A1对于cpk小鼠肾脏LC3-II的水平并无影响,从而证明PKD的自噬缺陷源于自噬体–溶酶体的融合与降解受到阻滞。另外,在异源性Han:SPRD大鼠肾脏PKD的早期阶段出现凋亡,而LC3-II的水平并未增加,反而是在同源性PKD肾脏疾病的晚期阶段发现有增加。表明凋亡延缓了Han:SPRD大鼠PKD肾脏中自噬的发生。

3.2. PKD中凋亡和自噬的关系

在ADPKD囊泡的发生发展过程中,细胞凋亡发挥了重要作用。研究表明,凋亡促进了PKD囊泡的形成 [17] :1) 凋亡的药理性抑制(使用caspase抑制剂治疗小鼠 [18] )或凋亡的基因抑制(Casp3敲除 [19] )导致PKD发生减少;2) Bcl2敲除小鼠凋亡增加,且在肾脏部位发生囊泡 [20] 。BCL2下调在人类白血病细胞中通过激活caspase诱发自噬 [21] 。另外,自噬的诱导可以被其他BCL2家族成员如BCL211/BIM,BAD和BCL2L1所调节 [22] 。目前还未发现Bcl2敲除小鼠的多囊肾中是否存在自噬。3) 凋亡对于1型胶原基质胶中MDCK细胞囊泡的形成十分重要,囊泡形成可由抗凋亡基因Bcl2的过表达所抑制 [23] ;4) 细胞周期抑制剂roscovitine致使囊泡形成受阻,且凋亡减少 [24] 。

近年来,有研究对PKD中突变的基因Pkd1与凋亡之间的关系进行了探讨,发现敲降Pkd1基因的细胞凋亡增加,且形成囊泡,而人类Pkd1基因的表达减缓囊泡增大并降低其细胞凋亡水平 [25] 。Rowe等研究了Pkd1基因、凋亡和自噬之间的关系 [26] 。野生型细胞经葡萄糖剥夺后LC3-II表达上调,且电镜观察到的自噬小体数目增加,表明激活自噬。而Pkd1敲降的细胞葡萄糖剥夺后并未激活自噬反应,而是凋亡应答增加。由于自噬效应部分依赖于mTORC1,因此用雷帕霉素处理细胞后可部分恢复自噬,且增加葡萄糖剥夺后的细胞存活率。这项研究表明Pkd1基因与自噬间的联系。Pkd1敲除细胞自噬减少和凋亡增加提示自噬减少与凋亡增加是PKD的一个特征。

而调节PKD中凋亡的许多信号分子如BCL2家族蛋白同时也调控自噬 [27] 。但对于细胞应对相似的刺激时,发生自噬还是凋亡目前尚未明确,如Caspase抑制剂抑制凋亡,但也诱发自噬 [28] 。凋亡和自噬的关系十分复杂,这取决于细胞类型、损伤的本质或发生时期 [29] 。例如,自噬会导致凋亡延迟 [30] ,而正常细胞和癌细胞对凋亡或自噬诱导的刺激反应有所不同。编码重要自噬蛋白的基因敲除会增加凋亡细胞死亡 [4] ,因此可推测PKD中自噬的抑制与凋亡增加及囊泡生长相关。

3.3. PKD中mTOR信号通路和自噬的关系

一般来说,mTOR的激活会抑制自噬潮,mTOR及自噬信号通路亦与细胞内溶酶体的定位相关 [31] 。而在啮齿动物和人类PKD中均存在mTORC1信号通路的激活 [31] 。

mTORC1抑制剂雷帕霉素或其类似物在Han:SPRD大鼠和Pkd1或Pkd2敲除的PKD动物模型中具有保护PKD及预防肾衰的作用 [32] [33] 。雷帕霉素在多种细胞中会诱导自噬 [34] ,其对自噬的影响依赖于对PKD的凋亡作用。Shillingford JM等发现高剂量的雷帕霉素会增加PKD囊泡上皮细胞的凋亡 [33] 。然而,其他研究发现低剂量雷帕霉素能有效抑制PKD,而对凋亡无影响 [35] [36] 。研究发现,雷帕霉素对PKD动物模型并无完全的保护作用,且并未能改善临床患者的肾功能 [37] 。

除了在PKD中mTORC1的信号传导增强,mTORC2活性标志物pAKT1 Ser473表达增加反映出mTORC2的信号通路也激活 [38] 。直接抑制mTORC1和mTORC2的mTOR激酶抑制剂(TORKs)能有效地诱导自噬 [39] 。TORKs对凋亡、自噬、PKD的效应仍需探讨。

3.4. 纤毛功能缺陷与自噬的抑制

纤毛是一种指状微管结构,从肾小管上皮细胞的顶膜伸入肾小管腔,与尿液有直接接触。PKD中两种突变蛋白PC1和PC2即位于初级纤毛上,感受液体流动变化出现异常从而导致病变 [8] 。

PKD中mTOR信号通路激活,而纤毛弯曲下调了mTOR信号通路,且不依赖于钙离子内流和Akt [40] 。Pampliega等 [41] 证明参与纤毛形成的信号分子亦参与到自噬过程的起始步骤中。与纤毛作用相关的信号通路如Hedgehog信号通路通过直接作用于纤毛底部的自噬相关蛋白诱导自噬,而纤毛受损部分抑制自噬,反过来自噬抑制却增强初级纤毛的生长和纤毛相关的信号通路。这项研究表明基础状态的自噬通过降解鞭毛内运输所需蛋白而调节纤毛的生长,进而提出假说即自噬水平降低与纤毛缺陷相关疾病如PKD相关。

Tang等 [41] 证明自噬促进初级纤毛形成。Wang等 [42] 研究发现,纤毛短的细胞中自噬受到抑制,且纤毛发育不全的细胞mTOR活性增强,使用雷帕霉素处理可逆转自噬的抑制作用。另外,在人的近曲小管上皮细胞(HK-2)中,自噬的诱导与纤毛伸长相关,相反,抑制自噬导致纤毛变短。由此证明纤毛与自噬可通过mTOR信号通路相互调节。

3.5. PKD中自噬的其他相关研究

在ADPKD中,除了凋亡、mTOR信号通路及纤毛功能缺陷与自噬存在联系之外,已知可调控自噬的蛋白在PKD肾脏或细胞中也具有一定作用 [43] 。如一种转录因子——信号传导子与转录激活子1 (STAT1)在Pkd1敲除的多囊肾和ADPKD患者肾脏中的持续激活能够调节凋亡、坏死和自噬。然而,Stat1敲除小鼠并无多囊肾表型,表明STAT1并不是PKD的调控者。

MAPK8是凋亡和自噬的调节因子。在PC-1敲除的MDCK细胞中可见MAPK8介导的凋亡增加,提示PKD中MAPK8与自噬的联系 [44] 。另外,AMPK也是自噬的一个调控信号分子,AMPK的激动剂二甲双胍能增加自噬,在体内外均能缓解囊泡的形成,证明由二甲双胍诱导的自噬在PKD中可能具有一定的治疗效应 [45] [46] 。未来有关PKD动物模型中STAT1、MAPK8和AMPK与自噬的关系的研究可能会成为热点。

Cebotaru等研究发现PC1以一种自噬依赖的途径控制了PC2的降解,而PC1突变体并无此功能,但PC1一般并不激活自噬。当PC1表达时,不结合PC1的PC2靶向于聚集体,通过自溶酶体依赖的自噬途径所降解,进而在ADPKD的病理进程中发挥作用 [47] 。

此外,ADPKD是结节性硬化症(tuberous sclerosis, TSC)和Von Hippel-Lindau综合征(VHL)的一个特征。在TSC中肿瘤发生是自噬依赖性的,抑制自噬相关蛋白ATG4或BECN1能降低肿瘤发生 [48] 。在VHL基因敲降的肾癌细胞中,小分子化合物STF-62247能诱导自噬性细胞死亡,ATG5下调能减少STF-62247杀伤VHL缺乏细胞的敏感性 [49] 。对于自噬在TSC和VHL中对肿瘤发生的作用是否能应用到PKD的治疗仍需深入探究。

4. 小结

自噬的功能是在细胞受到外界刺激下保持细胞存活,对于维持肾脏细胞内稳态,活性和生理功能十分重要。在PKD病理状态下肾脏中自噬功能出现抑制,Pkd1敲除细胞对自噬应答缺失,且纤毛功能障碍下自噬激活受损,以及自噬诱导剂能减少囊泡生长,这些研究都证明PKD疾病状况下自噬受到了抑制。诱导自噬可能通过减少凋亡和增殖或促进纤毛发生,在抑制囊泡生长方面发挥一定的有利作用。但是关于自噬在PKD病理发展过程中发挥作用的机制,以及与凋亡的关系目前研究尚不明确,期待未来更多研究者对自噬在PKD中的作用进行深入的探究,从而为PKD提供新的治疗靶点。

基金项目

国家自然科学基金(No. 30870921, 81170632, 81261160507)、科技部国际科技合作与交流专项(No. 2012DFA11070)。

文章引用

黄 明,杨宝学. 自噬与ADPKD
Autophagy and Autosomal Dominant Polycystic Kidney Disease[J]. 生理学研究, 2015, 03(04): 19-26. http://dx.doi.org/10.12677/JPS.2015.34004

参考文献 (References)

  1. 1. Ravikumar, B., Sarkar, S., Davies, J.E., et al. (2010) Regulation of Mammalian Autophagy in Physiology and Pathophysiology. Physiological Reviews, 90, 1383-1435. http://dx.doi.org/10.1152/physrev.00030.2009

  2. 2. De Rechter, S., Decuypere, J., Ivanova, E., et al. (2015) Autophagy in Renal Diseases. Pediatric Nephrology, 1-16. http://dx.doi.org/10.1007/s00467-015-3134-2

  3. 3. Huber, T.B., Edelstein, C.L., Hartleben, B., et al. (2014) Emerging Role of Autophagy in Kidney Function, Diseases and Aging. Autophagy, 8, 1009-1031. http://dx.doi.org/10.4161/auto.19821

  4. 4. Hotchkiss, R.S., Strasser, A., Mcdunn, J.E., et al. (2009) Cell Death. New England Journal of Medicine, 361, 1570- 1583. http://dx.doi.org/10.1056/NEJMra0901217

  5. 5. Kaushik, S. and Cuervo, A.M. (2012) Chaperone-Mediated Autophagy: A Unique Way to Enter the Lysosome World. Trends in Cell Biology, 22, 407-417. http://dx.doi.org/10.1016/j.tcb.2012.05.006

  6. 6. Li, W.W., Li, J. and Bao, J.K. (2012) Microautophagy: Lesser-Known Self-Eating. Cellular and Molecular Life Sciences, 69, 1125-1136. http://dx.doi.org/10.1007/s00018-011-0865-5

  7. 7. Torres, V.E., Harris, P.C. and Pirson, Y. (2007) Autosomal Dominant Polycystic Kidney Disease. Lancet, 369, 1287- 1301. http://dx.doi.org/10.1016/S0140-6736(07)60601-1

  8. 8. Kotsis, F., Boehlke, C. and Kuehn, E.W. (2013) The Ciliary Flow Sensor and Polycystic Kidney Disease. Nephrology Dialysis Transplantation, 28, 518-526. http://dx.doi.org/10.1093/ndt/gfs524

  9. 9. Ko, J.Y. and Park, J.H. (2013) Mouse Models of Polycystic Kidney Disease Induced by Defects of Ciliaryproteins. BMB Reports, 46, 73-79. http://dx.doi.org/10.5483/BMBRep.2013.46.2.022

  10. 10. Ong, A.C., Devuyst, O., Knebelmann, B., et al. (2015) Autosomal Dominant Polycystic Kidney Disease: The Changing Face of Clinical Management. Lancet, 385, 1993-2002. http://dx.doi.org/10.1016/S0140-6736(15)60907-2

  11. 11. Ravichandran, K. and Edelstein, C.L. (2014) Polycystic Kidney Disease: A Case of Suppressed Autophagy? Seminars in Nephrology, 34, 27-33. http://dx.doi.org/10.1016/j.semnephrol.2013.11.005

  12. 12. Leuenroth, S.J., Bencivenga, N., Chahboune, H., et al. (2010) Triptolide Reduces Cyst Formation in a Neonatal to Adult Transition Pkd1 Model of ADPKD. Nephrology Dialysis Transplantation, 25, 2187-2194. http://dx.doi.org/10.1093/ndt/gfp777

  13. 13. Belibi, F., Zafar, I., Ravichandran, K., et al. (2011) Hypoxia-Inducible Factor-1 (HIF-1) and Autophagy in Polycystic Kidney Disease (PKD). AJP: Renal Physiology, 300, F1235-F1243. http://dx.doi.org/10.1152/ajprenal.00348.2010

  14. 14. Mizushima, N., Yoshimori, T. and Levine, B. (2010) Methods in Mammalian Autophagy Research. Cell, 140, 313-326. http://dx.doi.org/10.1016/j.cell.2010.01.028

  15. 15. Bellot, G., Garcia-Medina, R., Gounon, P., et al. (2009) Hypoxia-Induced Autophagy Is Mediated through Hypoxia- Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains. Molecular and Cellular Biology, 29, 2570- 2581. http://dx.doi.org/10.1128/MCB.00166-09

  16. 16. Bohensky, J., Shapiro, I.M., Leshinsky, S., et al. (2007) HIF-1 Regulation of Chondrocyte Apoptosis: Induction of the Autophagic Pathway. Autophagy, 3, 207-214. http://dx.doi.org/10.4161/auto.3708

  17. 17. Edelstein, C.L. (2005) What Is the Role of Tubular Epithelial Cell Apoptosis in Polycystic Kidney Disease (PKD)? Cell Cycle, 4, 1550-1554. http://dx.doi.org/10.4161/cc.4.11.2185

  18. 18. Tao, Y., Kim, J., Faubel, S., et al. (2005) Caspase Inhibition Reduces Tubular Apoptosis and Proliferation and Slows Disease Progression in Polycystic Kidney Disease. Proceedings of the National Academy of Sciences of the United States of America, 102, 6954-6959. http://dx.doi.org/10.1073/pnas.0408518102

  19. 19. Tao, Y., Zafar, I., Kim, J., et al. (2008) Caspase-3 Gene Deletion Prolongs Survival in Polycystic Kidney Disease. Journal of the American Society of Nephrology, 19, 749-755. http://dx.doi.org/10.1681/asn.2006121378

  20. 20. Veis, D.J, Sorenson, C.M., Shutter, J.R., et al. (1993) Bcl-2-Deficient Mice Demonstrate Fulminant Lymphoid Apoptosis, Polycystic Kidneys, and Hypopigmented Hair. Cell, 75, 229-240. http://dx.doi.org/10.1016/0092-8674(93)80065-M

  21. 21. Saeki, K., You, A., Okuma, E., et al. (2000) Bcl-2 Down-Regulation Causes Autophagy in a Caspase-Independent Manner in Human Leukemic HL60 Cells. Cell Death & Differentiation, 7, 1263-1269. http://dx.doi.org/10.1038/sj.cdd.4400759

  22. 22. Tsujimoto, Y. and Shimizu, S. (2005) Another Way to Die: Autophagic Programmed Cell Death. Cell Death & Differentiation, 12, 1528-1534. http://dx.doi.org/10.1038/sj.cdd.4401777

  23. 23. Lin, H.H., Yang, T.P., Jiang, S.T., et al. (1999) Bcl-2 Overexpression Prevents Apoptosis-Induced Madin-Darby Canine Kidney Simple Epithelial Cyst Formation. Kidney International, 55, 168-178. http://dx.doi.org/10.1046/j.1523-1755.1999.00249.x

  24. 24. Bukanov, N.O., Smith, L.A., Klinger, K.W., et al. (2006) Long-Lasting Arrest of Murine Polycystic Kidney Disease with CDK Inhibitor Roscovitine. Nature, 444, 949-952. http://dx.doi.org/10.1038/nature05348

  25. 25. Boletta, A., Qian, F., Onuchic, L.F., et al. (2000) Polycystin-1, the Gene Product of PKD1, Induces Resistance to Apoptosis and Spontaneous Tubulogenesis in MDCK Cells. Molecular Cell, 6, 1267-1273. http://dx.doi.org/10.1016/S1097-2765(00)00123-4

  26. 26. Rowe, I., Chiaravalli, M., Mannella, V., et al. (2013) Defective Glucose Metabolism in Polycystic Kidney Disease Identifies a New Therapeutic Strategy. Nature Medicine, 19, 488-493. http://dx.doi.org/10.1038/nm.3092

  27. 27. Zhou, F., Yang, Y. and Xing, D. (2011) Bcl-2 and Bcl-xL Play Important Roles in the Crosstalk between Autophagy and Apoptosis. FEBS Journal, 278, 403-413. http://dx.doi.org/10.1111/j.1742-4658.2010.07965.x

  28. 28. Yu, L., Alva, A., Su, H., et al. (2004) Regulation of an ATG7-Beclin 1 Program of Autophagic Cell Death by Caspase-8. Science, 304, 1500-1502. http://dx.doi.org/10.1126/science.1096645

  29. 29. Giansanti, V., Torriglia, A. and Scovassi, A.I. (2011) Conversation between Apoptosis and Autophagy: “Is It Your Turn or Mine?” Apoptosis, 16, 321-333. http://dx.doi.org/10.1007/s10495-011-0589-x

  30. 30. Kaushal, G.P., Kaushal, V., Herzog, C., et al. (2008) Autophagy Delays Apoptosis in Renal Tubular Epithelial Cells in Cisplatin Cytotoxicity. Autophagy, 4, 710-712. http://dx.doi.org/10.4161/auto.6309

  31. 31. Korolchuk, V.I. and Rubinsztein, D.C. (2011) Regulation of Autophagy by Lysosomal Positioning. Autophagy, 7, 927- 928. http://dx.doi.org/10.4161/auto.7.8.15862

  32. 32. Tao, Y., Kim, J., Schrier, R.W., et al. (2005) Rapamycin Markedly Slows Disease Progression in a Rat Model of Polycystic Kidney Disease. Journal of the American Society of Nephrology, 16, 46-51. http://dx.doi.org/10.1681/ASN.2004080660

  33. 33. Shillingford, J.M., Piontek, K.B., Germino, G.G., et al. (2010) Rapamycin Ameliorates PKD Resulting from Conditional Inactivation of Pkd1. Journal of the American Society of Nephrology, 21, 489-497. http://dx.doi.org/10.1681/asn.2009040421

  34. 34. Huber, T.B., Walz, G. and Kuehn, E.W. (2011) mTOR and Rapamycin in the Kidney: Signaling and Therapeutic Implications beyond Immunosuppression. Kidney International, 79, 502-511. http://dx.doi.org/10.1038/ki.2010.457

  35. 35. Zafar, I., Ravichandran, K., Belibi, F.A., et al. (2010) Sirolimus Attenuates Disease Progression in an Orthologous Mouse Model of Human Autosomal Dominant Polycystic Kidney Disease. Kidney International, 78, 754-761. http://dx.doi.org/10.1038/ki.2010.250

  36. 36. Natoli, T.A., Smith, L.A., Rogers, K.A., et al. (2010) Inhibition of Glucosylceramide Accumulation Results in Effective Blockade of Polycystic Kidney Disease in Mouse Models. Nature Medicine, 16, 788-792. http://dx.doi.org/10.1038/nm.2171

  37. 37. Walz, G., Budde, K., Mannaa, M., et al. (2010) Everolimus in Patients with Autosomal Dominant Polycystic Kidney Disease. The New England Journal of Medicine, 363, 830-840. http://dx.doi.org/10.1056/NEJMoa1003491

  38. 38. Belibi, F., Ravichandran, K., Zafar, I., et al. (2011) mTORC1/2 and Rapamycin in Female Han:SPRD Rats with Polycystic Kidney Disease. American Journal of Physiology—Renal Physiology, 300, F236-F244. http://dx.doi.org/10.1152/ajprenal.00129.2010

  39. 39. Chresta, C.M., Davies, B.R., Hickson, I., et al. (2010) AZD8055 Is a Potent, Selective, and Orally Bioavailable ATP- Competitive Mammalian Target of Rapamycin Kinase Inhibitor with in Vitro and in Vivo Antitumor Activity. Cancer Research, 70, 288-298. http://dx.doi.org/10.1158/0008-5472.CAN-09-1751

  40. 40. Boehlke, C., Kotsis, F., Patel, V., et al. (2010) Primary Cilia Regulate mTORC1 Activity and Cell Size through Lkb1. Nature Cell Biology, 12, 1115-1122. http://dx.doi.org/10.1038/ncb2117

  41. 41. Pampliega, O., Orhon, I., Patel, B., et al. (2013) Functional Interaction between Autophagy and Ciliogenesis. Nature, 502, 194-200. http://dx.doi.org/10.1038/nature12639

  42. 42. Wang, S., Livingston, M.J., Su, Y., et al. (2015) Reciprocal Regulation of Cilia and Autophagy via the MTOR and Proteasome Pathways. Autophagy, 11, 607-616. http://dx.doi.org/10.1080/15548627.2015.1023983

  43. 43. Takakura, A., Nelson, E.A., Haque, N., et al. (2011) Pyrimethamine Inhibits Adult Polycystic Kidney Disease by Modulating STAT Signaling Pathways. Human Molecular Genetics, 20, 4143-4154. http://dx.doi.org/10.1093/hmg/ddr338

  44. 44. Yu, W., Kong, T., Beaudry, S., et al. (2010) Polycystin-1 Protein Level Determines Activity of the Galpha12/JNK Apoptosis Pathway. The Journal of Biological Chemistry, 285, 10243-10251. http://dx.doi.org/10.1074/jbc.M109.070821

  45. 45. Takiar, V., Nishio, S., Seo-Mayer, P., et al. (2011) Activating AMP-Activated Protein Kinase (AMPK) Slows Renal Cystogenesis. Proceedings of the National Academy of Sciences of the United States of America, 108, 2462-2467. http://dx.doi.org/10.1073/pnas.1011498108

  46. 46. Mccarty, M.F., Barroso-Aranda, J. and Contreras, F. (2009) Activation of AMP-Activated Kinase as a Strategy for Managing Autosomal Dominant Polycystic Kidney Disease. Medical Hypotheses, 73, 1008-1010. http://dx.doi.org/10.1016/j.mehy.2009.05.043

  47. 47. Cebotaru, V., Cebotaru, L., Kim, H., et al. (2014) Polycystin-1 Negatively Regulates Polycystin-2 Expression via the Aggresome/Autophagosome Pathway. Journal of Biological Chemistry, 289, 6404-6414. http://dx.doi.org/10.1074/jbc.M113.501205

  48. 48. Parkhitko, A., Myachina, F., Morrison, T.A., et al. (2011) Tumorigenesis in Tuberous Sclerosis Complex Is Autophagy and p62/Sequestosome 1 (SQSTM1)-Dependent. Proceedings of the National Academy of Sciences of the United States of America, 108, 12455-12460. http://dx.doi.org/10.1073/pnas.1104361108

  49. 49. Turcotte, S., Chan, D.A., Sutphin, P.D., et al. (2008) A Molecule Targeting VHL-Deficient Renal Cell Carcinoma That Induces Autophagy. Cancer Cell, 14, 90-102. http://dx.doi.org/10.1016/j.ccr.2008.06.004

*通讯作者。

期刊菜单