﻿ 水刺入液态金属水力学数值模拟 Numerical Simulation of Hydraulic Behavior in Coolant Jet-Melt Interaction

Applied Physics
Vol.07 No.08(2017), Article ID:21586,10 pages
10.12677/APP.2017.78028

Numerical Simulation of Hydraulic Behavior in Coolant Jet-Melt Interaction

Yuan Zhou, Jingtan Chen, Yangle Wang

Sichuan University, College of Physical Science and Technology, Chengdu Sichuan

Received: Jul. 15th, 2017; accepted: Jul. 28th, 2017; published: Aug. 3rd, 2017

ABSTRACT

Pouring coolant into molten material is one of the patterns in fuel coolant interaction which is affected by jet velocity and density ratio. The hydraulic behaviors of coolant jet-melt interaction are simulated by VOF method based on FLUENT15.0. The simulation results agree with Park’s experiments well. The parameter effects on hydraulic behaviors are discussed. As jet velocity and density ratio increase, the final depth increases. The conclusions are helpful to understand the parameter influence and the fluctuation mechanism of final penetration depth.

Keywords:Severe Accident, Fuel Coolant Interaction, Numerical Simulation, Final Depth

1. 前言

2. 数值分析方法

2.1. 数值方法

(1)

2.2. 数值模型

Table 1. Physical parameters

Table 2. Geometrical parameters of real model

Figure 1. 3D calculation model and mesh number scheme

3. 数值计算结果及分析

3.1. Park实验数值模拟

3.2. Park模拟结果分析

Hirokazu等人采用MPS方法完成了第一阶段模拟，但并未成功对第二阶段进行模拟。本文通过数值模拟，得到了第二阶段的模拟结果(如下图7所示)。第一阶段结束后，射流达到最大深度，之后由于水在向上浮力和不断下落的熔融物重力作用下，最终达到稳定位置，称为最终深度。通过定性和定量分析，验证了本模型的可行性。本文进一步对最终深度的参数效应进行探究。

Figure 2. Numerical results of jet behaviors

Figure 3. Experimental results [7]

Figure 4. Comparison of melt surface level

Figure 5. Comparison of coolant penetration depth

Figure 6. The sketch map of the histories of jet leading position [7]

Figure 7. Histories of jet leading position

3.3. 参数影响

(2)

(3)

3.3.1. 密度比影响

3.3.2. 射流速度影响

3.3.3. 表面张力影响

3.3.4. 粘性系数影响

4. 结论

1) 射流水进入液态金属现象可分为两个阶段：① 射流向下挤压熔融金属，使其周围形成空腔；②

Figure 8. The fluctuation phenomenon of final depth

Figure 9. Parameter effect of density ratio on jet final depth

Figure 10. Parameter effect of velocity on jet final depth

Figure 11. Parameter effect of surface tension on jet final depth

Figure 12. Parameter effect of melt viscosity on jet final depth

2) 公式3和模拟结果表明密度比和射流速度对最终深度有规律性影响，其中密度比越大，射流最终深度越小，且近似正比于1/(ρpj)0.5。而对于射流速度，射流速度越大，最终深度越大，且近似正比于射流速度。

3) 液态金属粘性系数对射流最终深度影响不明显。

Numerical Simulation of Hydraulic Behavior in Coolant Jet-Melt Interaction[J]. 应用物理, 2017, 07(08): 213-222. http://dx.doi.org/10.12677/APP.2017.78028

1. 1. Fletcher, D.F. (1995) Steam Explosion Triggering: A Review of Theoretical and Experimental Investigations. Nuclear Engineering and Design, 155, 27-36.

2. 2. Sibamoto, Y., Kukita, Y. and Nakamura, H. (2012) Small-Scale Experiment on Subcooled Water Jet Injection into Molten Alloy by Using Fluid Temperature-Phase Coupled Measurement and Visualization. Journal of Nuclear Science and Technology, 44, 1059-1069. https://doi.org/10.1080/18811248.2007.9711347

3. 3. Park, H.S., Yamano, N. and Maruyama, Y. (1998) Study on Energetic Fuel-Coolant Interaction in the Coolant Injection Mode of Contact. Proceedings of the 6th International Conference on Nuclear Engineering (ICONE-6), San Diego, 10-15 May 1998, Article ID: 16813.

4. 4. Songbai, C., Ken-ichi, M. and Mikio, I. (2014) An Experimental Study on Local Fuel-Coolant Interactions by Delivering Water into a Simulated Molten Fuel Pool. Nuclear Engineering and Design, 275, 133-141. https://doi.org/10.1016/j.nucengdes.2014.05.003

5. 5. Songbai, C., Ken-ichi, M. and Mikio, I. (2015) The Effect of Coolant Quantity on Local Fuel-Coolant Interactions in a Molten Pool. Annals of Nuclear Energy, 75, 20-25. https://doi.org/10.1016/j.anucene.2014.07.042

6. 6. Sachin, T., Louis, M. and Weimin, M. (2015) A Numerical Simulation of Jet Breakup in Melt Coolant Interactions. Annals of Nuclear Energy, 80, 467-475. https://doi.org/10.1016/j.anucene.2015.02.038

7. 7. Hirokazu, I., Seiichi, K. and Yoshiaki, O. (2001) Numerical Analysis of Jet Injection Behavior for Fuel Coolant Interaction Using Particle Method. Journal of Nuclear Science and Technology, 38, 174-182. https://doi.org/10.1080/18811248.2001.9715019

8. 8. Yuan, Z., Mingjun, Z. and Xing, F. (2016) A Numerical Simulation of water jet injection Behavior in Fuel-Coolant Interaction. Journal of Nuclear Science and Technology, 54, 174-181.

9. 9. 沈正祥, 李金柱, 吕中杰, 黄风雷. 水动力作用下低速射流碎化的数值模拟[J]. 计算力学学报, 2013, 30(2): 308- 312.