﻿ 电子器件散热器综合性能评估 Comprehensive Performance Evaluation of Electronic Device Radiator

Operations Research and Fuzziology
Vol.06 No.04(2016), Article ID:18504,6 pages
10.12677/ORF.2016.64013

Comprehensive Performance Evaluation of Electronic Device Radiator

Ranran Sheng, Junjie Zhou*, Xueli Li

School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou Henan

Received: Aug. 17th, 2016; accepted: Sep. 6th, 2016; published: Sep. 9th, 2016

ABSTRACT

In this paper, the comprehensive performance of fin radiator is studied by the theory of fuzzy mathematics. The model is built with the help of MATLAB fuzzy toolbox, which has the following features: when the heat transfer coefficient, thermal resistance and pressure drop of the radiator are known, the comprehensive performance level of it can be obtained. The results elucidate that the discrete performance is better than that of the integrated and in this example, the best overall performance of the radiator is four of the subsection numbers. This research has certain directive significance to the comprehensive performance evaluation and selection of radiator.

Keywords:Radiator, Fuzzy Mathematics Theory, Comprehensive Performance, MATLAB

1. 引言

2. 散热器综合性能模糊综合评价模型

2.1. 建立因素集

2.2. 隶属度函数的建立

(1)

Gauss型隶属函数：该函数有两个特征参数sig、c，数学形式如下：

(2)

2.3. 模糊规则的建立

(a) If换热系数很好(较好、一般、较差) and热阻很好(较好、一般、较差) and压降很好(较好、一般、较差) then综合性能很好(较好、一般、较差)。

(b) If换热系数很好(较差) then综合性能较好(较差)。

(c) If压降很好(较差) then综合性能较好(较差)。

3. 系统建模与仿真

(1) 确定模糊系统结构：换热系数、热阻和压降为系统输入，综合性能为系统输出。所建立的模糊系统结构如图1所示。

(2) 输入输出变量的模糊化：即把输入输出的精确量转化为对应语言变量的模糊集合，也即选择隶度函数。输入、输出变量的分级标准如表1所示。

(3) 模糊推理决策算法设计：即根据模糊规则进行模糊推理，并决策出模糊输出量。本例中模糊规则见2.3中模糊规则的建立，6条规则依次加入。

Figure 1. Fuzzy system structure

(4) 对输出模糊量的解模糊：模糊系统的输出量是一个模糊集合，通过反模糊化方法判决出一个确切的精确量，反模糊化方法很多，本文选取重心法。运行结束后，可得结果如图2所示。

(5) 不同分段翅片散热器综合性能比较：通过有限元分析软件COMSOL Multiphysics计算得到当风速为3 m/s时，某型号电子器件不同分段翅片散热器的基本性能参数如表2所示。

>> MonitorData=[65.8771 0.1116 10.1173];

>> PJ=evalfis(MonitorData,Fis)

Figure 2. Fuzzy rule browser

Table 1. The classification standards of CPU radiator comprehensive performance

Table 2. The related data of simulation calculation under different structures

4. 结论

(1) 本模型在已知散热器换热系数、热阻和压降的条件下，可以评估出其综合性能。

(2) 分段翅片散热器的综合性能均优于平直翅片的综合性能。

(3) 本研究中分段数为4的散热器综合性能最好。

Comprehensive Performance Evaluation of Electronic Device Radiator[J]. 运筹与模糊学, 2016, 06(04): 101-106. http://dx.doi.org/10.12677/ORF.2016.64013

1. 1. Horiuchi, M., Yamagata, Y., et al. (2015) Development of Junction Temperature Estimation System for Light-Emitting LED Using Pulsed-Laser Raman Scattering. Journal of Solid State Lighting, 2, 1-7. http://dx.doi.org/10.1186/s40539-015-0026-9

2. 2. 孔亚楠. 大功率LED结温预测模型的研究[D]: [硕士学位论文]. 河北: 燕山大学, 2015.

3. 3. Fu, X., Hu, R. and Luo, X.B. (2014) An Engineering Method to Estimate the Junction Temperatures of Light-Emitting Diodes in Multiple LED Application. Journal of the Korean Physical Society, 65, 176-184. http://dx.doi.org/10.3938/jkps.65.176

4. 4. 陈全. 大功率LED结温测试及其在封装热管理中的应用研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2012.

5. 5. 聂春晖. 工程车辆散热器散热机理及选型方法研究[D]: [硕士学位论文]. 重庆: 重庆交通大学, 2014.

6. 6. 刘瑞. 板翅式、叉排式散热器综合性能分折及实验研究[D]: [硕士学位论文]. 天津: 天津科技大学, 2006.

7. 7. Wang, C.-C. and Chi, K.-Y. (2000) Heat Transfer and Friction Characte-ristics of Plain Fin-and-Tube Heat Exchangers, Part I: New Experimental Data. International Journal of Heat and Mass Transfer, 43, 2681-2691. http://dx.doi.org/10.1016/S0017-9310(99)00332-4

8. 8. 郭春生, 程林, 杜文静. 换热器新评价标准——火积耗散均匀性系数[J]. 哈尔滨工业大学学报, 2012, 44(3): 144- 148.

9. 9. 冯辉君, 陈林根, 孙丰瑞. 基于火积耗散率最小的叶形肋片构形优化[J]. 中国科学, 2012, 42(4): 456-466.

10. 10. 顾念祖, 张子馨. 模糊综合评判在选择换热器中的应用[J]. 化学工程, 1990, 18(2): 70-73.

11. 11. 赵宇, 张红. 模糊综合评判在热管换热器可靠性评估中的应用[J]. 石油和化工设备, 2006, 9(3): 13-15.

12. 12. 赵宇. 热管换热器可靠性模糊综合评判研究[J]. 能源研究与利用, 2006(3): 36-38.