Optoelectronics
Vol.07 No.01(2017), Article ID:19525,7 pages
10.12677/OE.2017.71001

Design for High-Gain Microwave Photonic Link

Shengxing Yao1,2,3, Jun Hong1,2, Xiaohu Wang1,2,3, Zulin Li1,2, Huaqing Liu1, Lixiang Li1, Wenhua He4

1School of Electrical and Information Engineering, Hunan Institute of Technology, Hengyang Hunan

2Hengyang Key Laboratory of Optoelectronic Information Detection and Processing, Hengyang Hunan

3Hengyang Sanlian Surveying and Mapping Services Limited, Hengyang Hunan

4Hengyang Administration of Quality and Technology Supervision, Hengyang Hunan

Received: Dec. 25th, 2016; accepted: Jan. 13th, 2017; published: Jan. 16th, 2017

ABSTRACT

Microwave photonic link is widely used based on optical fiber’s low loss, large bandwidth, anti-electromagnetic interference and other advantages. The effects of the intensity of the laser, the half wave voltage and the bias voltage of electro-optic modulator on the gain of the microwave link are analyzed. Then, based on the theoretical analysis and simulation, combined with the performance index of practical devices, the implementation scheme of high gain link is proposed.

Keywords:Microwave Photonic Link, Electro-Optic Modulator, Gain

高增益微波光子链路的设计

姚胜兴1,2,3,洪俊1,2,王小虎1,2,3,李祖林1,2,刘华清1,李理想1,贺文华4

1湖南工学院,电气与信息工程学院,湖南 衡阳

2衡阳市光电信息检测与处理重点实验室,湖南 衡阳

3三联测绘服务有限公司,湖南 衡阳

4衡阳市质量技术监督局,湖南 衡阳

收稿日期:2016年12月24日;录用日期:2017年1月13日;发布日期:2017年1月16日

摘 要

微波光子链路基于光纤的低损耗、大带宽、抗电磁干扰等优点而得到广泛地应用。一方面,分析了激光器的输出功率与电光调制器的偏置电压对微波光链路增益的影响,通过优化系统参数提高链路增益;另一方面,基于理论分析与仿真,结合实际器件的性能指标,提出了实现高增益链路的具体实施方案。

关键词 :微波光子链路,电光调制器,增益

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

传统微波链路是许多商用与军用通信系统的重要组成部分,能在航空航天、雷达、电子战、高频通信、遥感遥测以及精确测量等领域得到广泛地应用 [1] [2] [3] [4] 。然而,随着传输距离的增加,电缆与波导等传统传输介质的插入损耗迅速增加,特别在微波、毫米波频段,大插损的瓶颈对微波链路的限制越来越明显,典型同轴电缆在X波段损耗要高于1.8 dB/m (1.8 × 103 dB/Km),而商用SMF-28通信光纤在1.5 um波长处损耗仅接近0.2 dB/Km。

微波光子链路是解决传统微波链路大插损瓶颈的最佳方式,特别适合于长距离传输。典型的强度调制–直接解调(Intensity Modulation-Direct Demodulation, IM-DD)光链路已经在雷达、电子战、精确测量等领域得到广泛应用 [4] [5] [6] [7] [8] 。其基本原理在于:输入端微波信号对光强度进行调制,已调光信号通过光纤传送到接收端,然后通过光电探测器进行平方律检波还原该微波信号。由于光纤的低损耗,采用微波光链路来传送或者处理微波信号时能够克服传统微波链路大插损的缺点。不仅如此,光链路还具有体积轻、抗电磁干扰等优点,具有光明的应用前景。

微波光子链路是将微波信号转换成光信号之后,再采用低损耗光纤传输,最后再通过光电探测器还原微波信号,虽然光纤的传输损耗较小(0.2 dB/km),但其电/光与光/电转换会产生较大的转换损耗 [9] 。本文首先分析了激光器的强度、电光调制器的半波电压与偏置电压对微波光链路增益的影响,进行系统优化,然后基于理论分析与仿真,结合实际器件的性能指标,提出了实现高增益链路的具体实施方案。

2. 理论分析

典型的IM-DD微波光子链路的结构如图1所示。链路主要包括一个激光器,提供被调制光源;一个电光调制器,实现微波–光转换;一个光电探测器,实现光–微波转换。通过电光调制器将微波信号调制到光载波的幅度上,在光纤中传输后在光电探测器输出端还原成微波信号。

Figure 1. Typical IM-DD microwave photonic link topology

图1. 典型IM-DD微波光子链路拓扑

增益是衡量通过微波光子链路后的微波信号的输入与输出功率变化的情况的一个重要的性能参数指标。增益的大小将直接影响到接收机对信号的处理能力。在本文中,作者将重点分析研究增益,进行相关公式推导和理论分析,完成设计方案 [10] [11] 。

首先按照从激光器→光调制器→光电探测器→接收机的顺序依次搭建一个微波光子链路,将所有器件都视为理想化元器件,忽略噪声系数、非线性失真等对增益的影响。下面对链路系统的增益进行理论计算研究。

MZM电光调制器的输出光功率的表达式为:

(1)

其中,为MZM调制器的损耗系数,为MZM调制器的半波电压,为其电输入端输入电压,包括直流偏置电压与微波驱动电压部分;为调制器的输入光功率;为系统消光比系数,一般情况

消光比值为,在文章研究中令

假设微波输入信号为,其中为微波输入信号的幅值,那么直流偏置电压相移和微波驱动电压相移幅值分别为:

(2)

(3)

其中为MZM调制器的直流偏置电压。把公式(1)利用第一类贝塞尔函数进行展开可得:

(4)

在不考虑探测器非线性的理想条件下,光电探测器的输出信号以及各次谐波的表达式为:

(5)

为探测器的响应度,此时得出增益表达式分别为:

(6)

其中分别为系统的输出阻抗和输入阻抗,均为匹配。

3. 仿真与讨论

3.1. 调制器输入光功率

直接调制链路和外调制链路增益的差别主要是由两种链路结构对光功率不同的依赖程度而引起。在本文仅针对外调制链路分析系统增益与的关系。首先搭建一个典型的微波光子链路,假设其间没有光功率损耗,并且器件输出全都匹配,那么设置在理想条件下调制器的损耗系数为1,探测器响应度为0.8 A/W,系统输入阻抗和输出阻抗均为,MZM电光调制器的直流偏置相移的取值范围为0~π,半波电压的取值范围通常为2~8 V。

对调制器的输入光功率从0.01 w到0.5 w进行遍历,可得链路的增益变化情况如下图2图3所示,当直流偏置相移时,其中,蓝线为当半波电压为2 V时,增益随调制器的输入光功率的变化情况;红线为当半波电压为5 V时,增益随调制器的输入光功率的变化情况;绿线为当半波电压为8 V时,增益随调制器的输入光功率的变化情况。当半波电压为2 V时,增益值最大,此时约为−6.5 dB。较另外两条曲线相比较,增益最大提高近7 dB。

Figure 2. The influence of laser power on gain (the phase shifts to a fixed value)

图2. 激光功率对增益的影响(相移为定值)

Figure 3. The influence of laser power on gain (the half-wave voltage to a fixed value)

图3. 激光功率对增益的影响(半波电压为定值)

当半波电压时,其中,蓝线为当直流偏置相移时,增益随调制器的输入光功率的变化情况;红线为当直流偏置相移时,增益随调制器的输入光功率的变化情况;绿线为当直流偏置相移时,增益随调制器的输入光功率的变化情况。当直流偏置相移时,增

益值最大,此时约为−11 dB。较另外两条曲线相比较,增益最大提高约4 dB。

从两个图中可以直观看出MZM调制器的输入光功率与增益之间的变化关系。当输入光功率越大,增益也会随之增加。但实际操作中,提高输入光功率的同时往往会要求电光调制器和光电探测器有更大的输入光功率的处理能力。而对于探测器,一旦提高输入光功率将会限制其带宽范围。因此利用提高输入光功率来增大增益是具有一定瓶颈限制的。

3.2. 直流偏置相移

设理想条件下调制器的损耗系数为1,探测器响应度为0.8 A/w,系统输入阻抗和输出阻抗均为,半波电压的取值范围通常为2~8 V,调制器的输入光功率取值范围为0.01~0.5 w。对调制器的直流偏置相移从0到进行遍历,可得链路的增益变化情况如图4图5所示。

1) 当调制器的输入光功率时,其中蓝线为当半波电压为2 V时,增益G随调制器的直流偏置相移的变化情况;红线为当半波电压为5 V时,增益G随调制器的直流偏置相移的变化情况;绿线为当半波电压为8 V时,增益G随调制器的直流偏置相移的变化情况。当半波电压

2 V时,在直流偏置相移处,增益值最大,此时G约为−12 dB。较另外两条曲线相比较,增益最

大提高近6 dB。

2) 当半波电压时,其中,蓝线为当调制器的输入光功率为0.1 w时,增益G随调制器的直流偏置相移的变化情况;红线为当调制器的输入光功率为0.3 w时,增益G随调制器的直流偏置相移的变化情况;绿线为当调制器的输入光功率为0.5 w时,增益G随调制器的直流偏置相移

Figure 4. Influence of DC bias phase shift on gain (the output of laser’s power to a fixed value)

图4. 直流偏置相移对增益的影响(激光器输出功率为定值)

Figure 5. Influence of DC bias phase shift on gain (the half-wave voltage to a fixed value)

图5. 直流偏置相移对增益的影响(半波电压为定值)

Figure 6. Influence of DC bias phase shift and laser output power on gain

图6. 直流偏置相移和激光器输出功率对增益的影响

变化情况。当调制器的输入光功率为0.5 w时,在直流偏置相移处,增益值最大,此时约为

−11 dB。较另外两条曲线相比较,增益最大提高近9 dB。

从上述仿真分析中可知,存在两个主要性能参数会对增益的变化产生影响。通过Matlab仿真针对每两个变量同时变化,绘制三维图进行分析,如图6所示。

4. 总结

基于以上的理论研究和仿真分析,在一定误差允许范围内设计出高增益微波光子链路的方案。首先构建典型的微波光链路系统框架,链路系统中采用外调制链路方案,光源采用DFB激光器,电光调制器选用单驱动的MZM调制器,而光电探测器选用PIN管探测器。选取系统最佳参量用来实现高增益的目的。

对于参数值选择中,当MZM调制器的直流偏置相移工作在正交偏置点时,激光器输出功率的取值范围一般在10 mw至100 mw之间,半波电压的取值范围一般在2 v至8 v之间时,增益值可达到一个较好状态。由于调制器的输入功率与增益G成正比关系,因此选择。此时经计算,理论增益值达到最佳值,约为−10 dB。链路性能可达最优化,完成高增益微波光链路的设计要求。

基金项目

湖南省教育厅科研重点项目(15A046, 16A054)、衡阳市科技计划衡阳市产学研项目(2015kc10)与湖南省大学生创新项目课题资助。

文章引用

姚胜兴,洪 俊,王小虎,李祖林,刘华清,李理想,贺文华. 高增益微波光子链路的设计
Design for High-Gain Microwave Photonic Link[J]. 光电子, 2017, 07(01): 1-7. http://dx.doi.org/10.12677/OE.2017.71001

参考文献 (References)

  1. 1. Yao, X.S. and Maleki, L. (2000) Multiloop Optoelectronic Oscillato. IEEE Journal of Quantum Electronics, 36, 79-84. https://doi.org/10.1109/3.817641

  2. 2. Zhou, W.M. and Blasche, G. (2005) Injection-Locked Dual Opto-Electronic Oscillator with Ultra-Low Phase Noise and Ultra-Low Spurious Level. IEEE Transactions on Microwave Theory and Techniques, 53, 79-84.

  3. 3. Levy, E., Horowitz, M., Okusaga, O., et al. (2009) Study of Dual-Loop Optoelectronic Oscillators. Frequency Control Symposium, 505-507. https://doi.org/10.1109/freq.2009.5168231

  4. 4. Lance, A. and Wendell, D.S. and Labaar, F. (1984) Phase Noise and AM Noise Measurements in the Frequency Domain. Infrared and Millimeter Waves, 11, 239-289.

  5. 5. Zhou, W.M. and Blasche, G. (2005) Injection-Locked Dual Opto-Electronic Oscillator with Ultra-Low Phase Noise and Ultra-Low Spurious Level. IEEE Transactions on Microwave Theory and Techniques, 53, 79-84.

  6. 6. Hong, J., Yao, S.X., Li, Z.L., et al. (2013) Fiber-Length Dependence Phase Noise of Injection-Locked Optoelectronic Oscillator. Microwave and Optical Technology Letters, 55, 2568-2571. https://doi.org/10.1002/mop.27853

  7. 7. Rubiola, E. (2009) Phase Noise and Frequency Stability in Oscillator. Cambridge University Press, New York.

  8. 8. Hong, J., Liu, A.M. and Guo, J. (2013) Study on Low-Phase-Noise Opto-Electronic Oscillator and High-Sensitivity Phase Noise Measurement System. Journal of the Optical Society of America A, 30, 1557-1562. https://doi.org/10.1364/JOSAA.30.001557

  9. 9. Hong, J., Liu, A., Wang, X.H., et al. (2015) New Kind of Injec-tion-Locked Oscillator and Its Corresponding Long-Term Stability Control. Applied Optics, 54, 8187-8191. https://doi.org/10.1364/AO.54.008187

  10. 10. Hong, J., Yao, S.X., Li, Z.L., et al. (2014) The Effect of Flicker Noise on the Phase Noise of Opto-Electronic Oscillator. International Journal for Light and Electron Optics, 125, 1572-1574. https://doi.org/10.1016/j.ijleo.2013.09.006

  11. 11. Rubiola, E., Salik, E., Huang, S.H., et al. (2005) Photonic-Delay Technique for Phase-Noise Measurement of Microwave Oscillators. Journal of the Optical Society of America B, 22, 987-996. https://doi.org/10.1364/JOSAB.22.000987

期刊菜单