﻿ 葡萄酒评价模型 Wine Evaluation Model

Statistics and Application
Vol.06 No.01(2017), Article ID:20051,7 pages
10.12677/SA.2017.61012

Wine Evaluation Model

Yuming Xu

Jiangxi University of Finance and Economics, Nanchang Jiangxi

Received: Mar. 10th, 2017; accepted: Mar. 27th, 2017; published: Mar. 30th, 2017

ABSTRACT

Based on large amounts of data which I get from the National Mathematical Modeling Contest, by using cluster analysis and principal component analysis, I established a variance model and regression model to find the relationship between wine grape and wine quality and what indicators can affect the quality of the wine. I get the relevant index system affect wine quality and the equations. The results obtained enable people to learn more about the relationship between wine grapes and wine, much quicker and easier to analyze and evaluate the quality of the wine.

Keywords:Variance Model, Clustering Analysis, Principal Component Analysis, Regression Model

1. 问题的重述

1) 分析两组评酒员的评价结果有无显著性差异？

2) 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3) 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4) 分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响，并论证能否用酿酒葡萄和葡萄酒的理化指标来评价葡萄酒的质量？

2. 问题的假设

1) 假设所有品酒师对酒样品的评价都很可靠。

2) 假设两组品酒师品的样品酒都对应的完全相同。

3) 假设用仪器检测出的成分都真实有效。

4) 假设各样品的测量不考虑附件外的指标影响。

3. 符号说明

4. 模型的建立和求解

4.1. 问题(1)的分析和求解

。其中

Table 1. Symbol description

4.2. 问题(2)的分析和求解

4.3. 问题(3)的分析和求解

Table 2. Red Wine is divided into three classes

Table 3. Red Wine is divided into four classes

Table 4. White Wine is divided into three classes

Table 5. White Wine is divided into four classes

,

.

Figure 1. Relationship of strong correlation index

4.4. 问题(4)的分析与求解

1) 多元线性回归分析分类筛选

2) 多元线性回归模型建立

Table 6. Results of SPSS analysis

5. 模型的评价与应用

Wine Evaluation Model[J]. 统计学与应用, 2017, 06(01): 104-110. http://dx.doi.org/10.12677/SA.2017.61012

1. 1. 张磊, 毕靖, 郭莲英. SPSS实用教程[M]. 北京: 人民邮电出版社, 2008.

2. 2. 司守奎, 孙玺菁. 数学建模算法与应用[M]. 北京: 国防工业出版社, 2011.

3. 3. 李记明, 李华. 葡萄酒成分分析与质量研究[J]. 食品与发酵工业, 1994(2): 30-35.

4. 4. 李丽, 梁芳华, 孙爱东. 葡萄酒中的特征性香气成分的形成及其影响因素[J]. 饮料工业, 2009(5): 13-16.

5. 5. 王学民. 应用多元分析[M]. 上海: 上海财经大学出版社, 2009.