﻿ 基于人机工程的隔离病房通风方案研究 Study on Ventilation Schemes in Isolation Ward Based on Human Factors

Hans Journal of Civil Engineering
Vol.06 No.04(2017), Article ID:21456,6 pages
10.12677/HJCE.2017.64051

Study on Ventilation Schemes in Isolation Ward Based on Human Factors

Haijun Jia1,2, Yanan Wu1,2, Zhi Yang1,2, Wei Zhang1,2, Xiaofeng Liu1,2

1Institute of Hygienic Research in Ordnance Industry, Xi’an Shaanxi

2Key Laboratory of China Ordnance Industry Group, Xi’an Shaanxi

Received: Jul. 6th, 2017; accepted: Jul. 20th, 2017; published: Jul. 24th, 2017

ABSTRACT

Computational model of indoor fluid flow parameters was developed by numerical simulation method. Indoor turbulent flow and heat parameters were studied by this numerical simulation method, and the thermal comfort index PMV values of isolation ward were obtained in different air conditions. By comparison, reasonable ventilation scheme was put forward for isolation ward.

Keywords:Thermal Comfort, Dress Heat Resistance, Isolation Ward, Numerical Simulation

1兵器工业卫生研究所，陕西 西安

2中国兵器工业集团重点实验室，陕西 西安

1. 引言

2. 物理模型

3. 通风换气方案

Figure 1. Geometric model of isolation ward

Table 1. Ventilate schemes and parameters

4. 数学模型

(1)

(2)

(3)

5. 边界条件

6. 结果及分析

(a) Grids at twenty percent span (b) Grids at fifty percent span (c) Grids at eighty percent span(a) 20%高度截面网格 (b) 50%高度截面网格 (c) 80%高度截面网格

Figure 2. Computed grids

Figure 3. Computed PMV distributions for case 1 (50% span )

Figure 4. Computed PMV distributions for case 2 (50% span )

Figure 5. Computed PMV distributions for case 3 (50% span )

Figure 6. Computed PMV distributions for case 4 (50% span )

(a) Case 1(b) Case 2 (c) Case 3 (d) Case 4(a) 方案1 (b) 方案2 (c) 方案3 (d) 方案4

Figure 7. Computed PMV distributions around doctor’s body

7. 结论

Study on Ventilation Schemes in Isolation Ward Based on Human Factors[J]. 土木工程, 2017, 06(04): 432-437. http://dx.doi.org/10.12677/HJCE.2017.64051

1. 1. 中华人民共和国建设部. GBJ19-1987供暖、通风和空调设计规范[S]. 北京: 中国计划出版社, 2004.

2. 2. 中华人民共和国国家技术监督局. GB/T50785-2012民用建筑室内热湿环境评价标准[S]. 北京: 中国建筑工业出版社, 2012.

3. 3. Awbi, H.B. (1989) Application of Computational Fluid Dynamics in Room Ventilation. Building and Environment, 24, 73-83. https://doi.org/10.1016/0360-1323(89)90018-8

4. 4. Ghiaus, C.M. and Ghiaus, A.G. (1999) Evaluation of the Indoor Temperature Field Using a Given Air Velocity Distribution. Building and Environment, 34, 671-679. https://doi.org/10.1016/S0360-1323(98)00051-1

5. 5. Fanger, P.O. (1982) Thermal Comfort. Krieger Publishing Company, Malaber.

6. 6. 陈焕新, 宋耀祖, 任建勋, 等. SARS传染病房内热舒适性研究[J] .华中科技大学学报（自然科学版）, 2005, 33(4): 86-89.

7. 7. 吴小舟. 基于人体工效的低温供暖与新风复合系统设计理论及应用研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2013.