Advances in Applied Mathematics
Vol.
08
No.
01
(
2019
), Article ID:
28619
,
10
pages
10.12677/AAM.2019.81015
Periodic and Asymptotically Periodic Solutions on Nonlinear Coupled Integro-Differential Systems with Impulses
Qiufeng Chen, Jianli Li
School of Mathmatics and Statistics, Hunan Normal University, Changsha Hunan

Received: Jan. 2nd, 2019; accepted: Jan. 17th, 2019; published: Jan. 24th, 2019

ABSTRACT
In this paper, we study the existence of periodic and asymptotically periodic solutions for a coupled nonlinear Volterra integro-differential equation with impulses. By using Schauder’s fixed point theorem, we obtain that the system has at least one periodic solution and an asymptotically periodic solution.
Keywords:Impulsive Differential Equation, Schauder’s Fixed Point Theorem, Periodic Solutions, Asymptotic Periodic Solutions
具有脉冲的非线性耦合积分–微分系统 的周期性
陈秋凤,李建利
湖南师范大学,数学与统计学院,湖南 长沙

收稿日期:2019年1月2日;录用日期:2019年1月17日;发布日期:2019年1月24日

摘 要
该文研究了具有脉冲的非线性耦合积分—微分系统的周期性。利用Schauder不动点定理,证明了具有脉冲的非线性耦合积分—微分系统至少存在一个周期解和一个渐近周期解,我们的结果推广和改进了相关文献的结果。
关键词 :脉冲微分方程,Schauder不动点定理,周期解,渐近周期解

Copyright © 2019 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

1. 引言
脉冲效应指在一定时间内状态突然发生改变,脉冲微分方程广泛应用于种群生物学,医学,工程,化学等领域 [1] [2] [3] [4] [5] 。耦合积分-微分方程也广泛应用于生物和环境科学的许多领域。该文中,我们研究一类具有脉冲的非线性耦合积分-微分方程周期解和渐近周期解的存在性。
在文献 [6] [7] [8] [9] 中,作者研究了Volterra积分–微分方程线性系统渐近周期解的存在性。在文献 [10] 中,作者考虑了无脉冲时周期解和渐近周期解的存在性,该文改进了文献 [10] 中的一些条件,进而得到周期解和渐近周期解的存在性结果。
该文考虑下面的耦合Volterra脉冲微分方程
(1.1)
其中a,b,f,g,
,
是连续函数。
假设存在一个正常数
,使得对
有
(1.2)
且存在常数
,使得
(1.3)
此外,假设
(1.4)
定义
,其中
是实值连续函数。定义范数
那么,
是Banach空间。
引理1.1 假设(1.2)~(1.4)成立,如果
,那么
和
是(1.1)的一个周期解当且仅当
其中
证明:设
是(1.1)的解,对(1.1)的第一个方程从
积分得
由
得
同理可证,
反之亦然,因此,引理1.1得证。
2. 周期解
定理2.1 (Schuder不动点定理)设X是Banach空间,K是X中有界闭凸子集。如果
是全连续的,则T在K中有一个不动点。
本文给出以下假设。
假设存在正常数
,使得
(2.1)
(2.2)
(2.3)
(2.4)
设
是
的子集,则
是
中的有界闭子集。
定义算子
其中
定理2.2 假设(1.2)~(1.4),(2.1)~(2.4)成立,且
(2.5)
则(1.1)至少有一个T-周期解。
证明:若
是(1.1)的周期解,由引理1.1可知,
。设
对于
有
所以,
。
下证F连续。取
中的一个序列
,且
因为
是闭的,我们有
。由F的定义,有
由
的连续性和Lebesgue控制收敛定理,有
同理可证,
所以,F是连续映射。因为
,所以
是一致有界的。易证对任意的
存在一个常数
,使得
,即
。所以,
是拟等度连续的。由Arzela-Ascoli’s定理,
是列紧的。综上,F是全连续的。
由定理2.1可知,F在
中有一个不动点,即存在
,使得
。由引理1.1可知,(1.1)有一个T-周期解。
定理2.3 假设(1.2)~(1.4),(2.3)~(2.5)成立,且存在连续函数
,及正常数
使得
那么(1.1)至少有一个T-周期解。
证明:令
对
有
类似地,
其余的证明类似定理2.2的证明。
3. 渐近周期解
定义3.1 一个函数
称为渐近T-周期的,如果存在两个函数
和
,使得
,其中
是T-周期的,
。
假设
是T-周期的,且
(3.1)
从而存在常数
,使得
(3.2)
假设存在正数A,B使得
(3.3)
另外,假设
(3.4)
(3.5)
定理3.1 假设(2.4),(3.1)~(3.5)成立,存在正常数
,使得
且
则系统(1.1)有渐近T-周期解
,满足
其中,
为固定的非零常数,
.
证明:定义
。定义范数
则
是一个Banach空间。记
,则
是
中的有界闭凸子集。
对
,定义算子
其中
下证映射E在
中有一个不动点。由(3.5)可知,存在正常数
使得
设
同理,
因此,
设
计算可知,
由(3.4)~(3.5)可知,
因此,
。故
。
类似定理2.2可证E是全连续的。因此,由Schauder不动点定理,存在一个不动点
,使得
易知该不动点是(1.1)的解。所以
是(1.1)的解,定理3.2得证。
例3.1 考虑下面的系统
经过简单的计算知,定理3.1中的条件均满足,因此,该系统有一个渐近2π-周期解。
基金项目
国家自然科学基金(No. 11571088, No. 11471109);
浙江省自然科学项目(No. LY14A010024);
湖南省教育厅项目(No. 14A098)。
文章引用
陈秋凤,李建利. 具有脉冲的非线性耦合积分–微分系统的周期性
Periodic and Asymptotically Periodic Solutions on Nonlinear Coupled Integro-Differential Systems with Impulses[J]. 应用数学进展, 2019, 08(01): 135-144. https://doi.org/10.12677/AAM.2019.81015
参考文献
- 1. Li, J., Nieto, J.J. and Shen, J. (2007) Impulsive Periodic Boundary Value Problems of First-Order Differential Equations. Journal of Mathematical Analysis and Applications, 325, 226-236. https://doi.org/10.1016/j.jmaa.2005.04.005
- 2. Gao, S., Chen, L., Nieto, J.J. and Terres, A. (2006) Analysis of a Delayed Epidemic Model with Pulse Vaccination and Staturation Incidence. Vaccine, 24, 6037-6045. https://doi.org/10.1016/j.vaccine.2006.05.018
- 3. Dai, B. and Su, H. (2009) Periodic Solution of a Delayed Ra-tio-Dependent Predator-Prey Model with Monotonic Functional Response and Impulse. Nonlinear Analysis: Theory, Methods & Applications, 70, 126-134.
https://doi.org/10.1016/j.na.2007.11.036
- 4. Georescu, P. and Morosanu, G. (2007) Pest Regulation by Means of Impulsive Controls. Applied Mathematics and Computation, 190, 790-803. https://doi.org/10.1016/j.amc.2007.01.079
- 5. Lenci, S. and Rega, G. (2000) Periodic Solutions and Bifurcations in an Impact Inverted Pendulum under Impulsive Excitation. Chaos Solutions Fractals, 11, 2453-2472. https://doi.org/10.1016/S0960-0779(00)00030-8
- 6. Diblik, J., Schmeidel, E. and Ruzickova, M. (2010) As-ymptotically Periodic Solutions of Volterra System of Difference Equations. Computers & Mathematics with Applica-tions, 59, 2854-2867.
https://doi.org/10.1016/j.camwa.2010.01.055
- 7. Diblik, J., Schmeidel, E. and Ruzickova, M. (2009) Existence of Asymptotically Periodic Solutions of System of Volterra Difference Equations. Journal of Difference Equations and Applications, 15, 1165-1177.
https://doi.org/10.1080/10236190802653653
- 8. Islam, M.N. and Raffoul, Y.N. (2014) Periodic and Asymptot-ically Periodic Solutions in Coupled Nonlinear Systems of Volterra Integro-Differential Equations. Dynamic Systems and Applications, 23, 235-244.
- 9. Myslo, Y.M. and Tkachenko, V.I. (2017) Asymptotically Almost Periodic Solutions of Equations with Delays and Nonfixed Times of Pulse Action. Journal of Mathematical Sciences, 228, 1-16.
- 10. Raffoul, Y. (2018) Analysis of Periodic and Asymptotically Periodic Solutions in Nonlinear Coupled Volterra Integro-Differential Systems. Turkish Journal of Mathematics, 42, 108-120. https://doi.org/10.3906/mat-1611-123