﻿ 某高压瓷柱式断路器抗震性能分析研究 Analysis of Aseismic Capacity of High Voltage Breaker for Porcelain Column Type

Journal of Electrical Engineering
Vol.05 No.02(2017), Article ID:20863,8 pages
10.12677/JEE.2017.52015

Analysis of Aseismic Capacity of High Voltage Breaker for Porcelain Column Type

Xinfeng Dong1, Tiezheng Huang2, Quanjun Zhu3, Meigen Cao4, Hao Wang1, Jianxing Ren1

1School of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai

2State Grid Shanxi Economic Research Institute, Taiyuan Shanxi

3Global Energy Interconnection Research Institute, Beijing

4China Electric Power Research Institute of SGCC, Beijing

Received: May 17th, 2017; accepted: Jun. 3rd, 2017; published: Jun. 6th, 2017

ABSTRACT

According to the weakness character of seismic capacity of high voltage breaker and ensuring no damage at the time of the earthquake, the breaker is used as research object to carry out the aseismic capacity and seismic Isolation analysis. Firstly, the modal analysis of high voltage brea- ker is carried out, the natural frequency and mode shape of the breaker are calculated, and the easily damaged parts of high voltage breaker are determined. Secondly, according to the standards of the IEEE Std-693-2005 and GB/T 13540-92, natural Elcentro wave and Taft wave are used to carry out the level excitation of the high voltage breaker, and the time history analysis of the displacement and stress of the vulnerable parts of breaker are carried out, and the maximum displacement and maximum stress of vulnerable parts are determined. The above research can provide technical support for the seismic design optimization of the breaker.

Keywords:High Voltage Breaker, Aseismic Capacity, Modal Analysis

1上海电力学院能源与机械工程学院，上海

2国网山西省电力公司经济技术研究院，山西 太原

3全球能源互联网研究院，北京

4中国电力科学研究院，北京

1. 引言

2. 断路器模态分析

2.1. 断路器外形简图及有限元模型

2.2. 模态分析

Figure 1. Schematic diagram of circuit breaker

Figure 2. Finite element model of circuit breaker

Table 1. Mechanical properties of main materials

Table 2. The first two natural frequencies of circuit breaker

(a) 第1阶X、Y方向的模态振型 (b) 第2阶X、Y方向的模态振型 (c) 第3阶X、Y方向的模态振型(d) 第1阶X、Y方向的模态振型

Figure 3. The modal shapes corresponding to the first two natural frequencies of the circuit breaker in different directions

Figure 4. Acceleration seismic response curve of electrical equipment [3]

3. 断路器危险部位的时程分析

Figure 5. Waveform of El-centro wave and Taft wave

Table 3. The peak value of displacement and stress

“高压开关设备抗震性能试验”GB/T13540-2009的要求进行地震波的选择，本文主要选择天然El-centro波、Taft波，其波形如图5所示。

4. 结论

1) 文中以某型高压断路器为分析对象，通过有限元模型获得高压断路器在X、Y方向前四阶固有频率和模态振型，通过模态振型获得断路器易破坏的部位主要集中在：箱体与瓷支座以及支架与箱体连接处。

2) 文中选择El-centro波和Taft波对断路器进行激励，开展断路器危险部位的时程分析，提取相应位置的最大应力峰值，结果表明该断路器可以达到抗震要求。

Analysis of Aseismic Capacity of High Voltage Breaker for Porcelain Column Type[J]. 电气工程, 2017, 05(02): 126-133. http://dx.doi.org/10.12677/JEE.2017.52015

1. 1. 刘洋. 变电站电气设备抗震、基础减隔震分析研究[D]: [硕士学位论文]. 石家庄: 石家庄铁道大学, 2015.

2. 2. 范荣全, 曹枚根, 卓越, 等. 高压断路器抗震能力分析及抗震减震措施[J]. 高压电器, 2012, 48(3): 12-16.

3. 3. 邵锡杰. 高压瓷柱式断路器的抗震性能分析与隔震研究[D]: [硕士学位论文]. 苏州: 苏州科技学院, 2015.

4. 4. Rolf, H. (1991) Evaluation of the Effect of Mechanical Operations on Seismic Qualification Test of SF6 Circuit Breakers. Proceedings of the 1991 IEEE Power Engineering Society Transmission and Distribution Conference, Dallas, 473-477.

5. 5. Girodet, A. (1989) Seismic Behavior of “CANDLE” Type SF6 Outdoor Circuit Breakers and Associated SF6 Insulated Current Transformers. IEEE Transactions on Power Delivery, 4, 2100-2108. https://doi.org/10.1109/61.35636

6. 6. Amir, M., Kuhner, A., Reinhardt, M. and Manea, I. (1998) Seismic Qualification of High-Voltage Substations (420KV Circuit Breakers with Coupled Poles). Optimization of Electrical and Equip-ments.

7. 7. Robin-Jouan, P., Dufournet, D. and Montillet, G.F. (2006) Digital Analysis of the Breakdown Process in High-Voltage Circuit Breakers. 2005/2006 IEEE PES Transmission and Distribution Conference and Exhibition, Dallas, 986-991.

8. 8. Mosalam, K.M. (2014) Seismic Performance Evaluation of High Voltage Disconnect Switches Using Real-Time Hybrid Simulation: I. System Development and Validation. Earthquake Engineering & Structual Dynamics, 43, 1205- 1222. https://doi.org/10.1002/eqe.2395

9. 9. 李亚琦. 电瓷型高压电气设备体系抗震性能分析[D]: [博士学位论文]. 北京: 中国地震局地球物理研究所, 2002.

10. 10. 郭振岩. 变压器抗地震性能的研究[D]: [博士学位论文]. 沈阳: 沈阳工业大学, 2005.

11. 11. 尤红兵, 赵凤新. 瓷柱式SF6高压断路器抗震性能分析[J]. 震灾防御技术, 2010, 5(4): 418-427.

12. 12. 张雪松, 代泽兵, 曹枚根, 等. 安装新型铅减震器的220kV断路器振动台试验[J]. 高压电器, 2011, 47(8): 14-17.

13. 13. 谢强, 朱瑞元, 周勇, 等. 220kV隔离开关地震模拟振动台试验[J]. 电网技术, 2012, 36(9): 262-267.

14. 14. 武胜斌, 金松安, 陈刚, 等. 252kV瓷柱式断路器在AG5条件下的抗震研究[J]. 高压电器, 2013(8): 96-101.