Advances in Applied Mathematics
Vol.
12
No.
06
(
2023
), Article ID:
66663
,
9
pages
10.12677/AAM.2023.126264
马尔可夫调制的中立型随机动力系统的 p阶稳定性
张新文
广州商学院信息技术与工程学院,广东 广州
收稿日期:2023年5月5日;录用日期:2023年5月28日;发布日期:2023年6月6日
摘要
本文研究了一类马尔可夫调制的中立型随机动力系统的p阶稳定性。主要通过使用巴拿赫不动点定理、一些不等式、解算子和随机分析技术,得出了这类由马尔可夫调制的中立型随机动力系统的p阶稳定性的充分条件。提高和改进了一些相关文献的结论。
关键词
巴拿赫不动点,稳定性,中立型随机动力系统,马尔可夫调制
p-Moment Stability of Neutral Stochastic Dynamic Systems with Markovian Switching
Xinwen Zhang
School of Information Technology and Engineering, Guangzhou College of Commerce, Guangzhou Guangdong
Received: May 5th, 2023; accepted: May 28th, 2023; published: Jun. 6th, 2023
ABSTRACT
In this paper, we consider the p-moment stability of neutral stochastic differential systems with Markovian switching. A set of conditions proving the p-moment stability of the of the stochastic neutral stochastic differential systems with Markovian switching are derived by employing of the Bnanch fixed point theorem, some inequality, solution operator and stochastic analysis technique. Some well-known results are generalized and improved.
Keywords:Banach Fixed Points, Stability, Neutral Stochastic Systems, Markovian Switching
Copyright © 2023 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
1. 引言
当前,国内外研究较为复杂的随机动力系统稳定性主要采用李雅普诺夫直接法、不动点方法等。李雅普诺夫直接法是上世纪俄国数学力学家Lyapunov院士给出的运动稳定性的一般理论。然而,100多年以来,人们在利用此方法研究时遇到了一些困难,譬如,在研究变时滞微分动力系统的稳定性时,李雅普诺夫条件常常要求时滞有界等。Burton等学者 [1] - [6] 利用不动点理论研究微分动力系统稳定性时,克服了用李雅普诺夫直接法研究时带来的部分困难,得到了较好的结论.在研究随机微分方程的稳定性时,Luo [7] 首次利用Banach不动点方法研究了一类随机微分动力系统的稳定性,同样得到了较好的结论。后来,诸多专家和学者也采用Banach不动点方法研究了各种随机微分动力系统解的稳定性 [8] - [13] 。
近十几年来,中立型随机动力系统稳定性在很多重要领域得到了广泛的关注 [7] - [15] ,其理论主要应用于工程控制、通信设备、军事技术、生物学、金融学等。另一方面,马尔可夫调制影响也广泛存在于上述重要领域,马尔可夫调制系统的稳定性也同样得到了广泛的研究 [16] [17] [18] [19] [20] 。然而据作者所知,目前尚未有学者利用不动点方法研究马尔可夫调制的中立型随机微分动力系统零解的p阶稳定性。故本文将采用Banach不动点方法研究一类马尔可夫调制的中立型随机微分动力系统p阶稳定性,得出一类马尔可夫调制的中立型随机微分动力系统p阶稳定性的充分条件。
2. 预备知识及随机动力模型介绍
2.1. 一些预备知识
设 是具有范数 两个实值可分的希尔伯特空间, 是具有自然流 的完备概率空间。设U和V是两个具有内积 和范数 的希尔伯特空间, 是从V到U的有界线性算子空间。在 中Q-维纳过程有协方差算子 使 。
假设在V里的存在一个完备的正交系统 ,存在一个独立布朗运动序列 和一个非负实数 的有界序列满足 , 使得
并且 ,其中 是由 生成的 代数。假设所有从 到U且具有内积 的希尔伯特–施密茨算子空间为 。
2.2. 马尔可夫调制的中立型随机动力模型
本文考虑如下形式的一类马尔可夫调制的中立型随机微分动力系统的p阶稳定性:
(1)
其中, 都是Borel可测的函数,U是实可分的希尔伯特空间;A是有界线性算子半群 的无穷小生成元; 是取值于有限状态空间 上的右连续马尔可夫链; ,脉冲时刻 满足 , 与 分别表示 在 时的右极限和左极限, 表示x在 时由 来决定的跳跃的大小; 是一个具有增量协方差的V值维纳过程,它取决于定义在完备概率空间上的算子Q; 满足当 时 , , , ; 是所有有界的连续随机变量的族, 是由 表示的范数, 是从 到U上可测的。
2.3. 相关条件的引入
假设函数D、F和G满足 , 。当 时,系统(1)有平凡解。设W是由所有 -适应过程 构成的空间, 对定点 在t处是几乎处处连续的。此外当 时 和 。W是一个具有范数 的巴拿赫空间。
定义1 随机过程 称为系统(1)的温和解,如果满足:
(i) 是 适应的;
(ii) 在 有 路径,且对任何 , , 都满足积分方程
(2)
引理1 (Da and Zabczyk [21] )如果对任意 和任意 值可料过程 ,那么
为了得到主要结果,引入如下条件:
(I) A是在可分希尔伯特空间U中有界线性半群算子 的无穷小生成元,其中对一些常数 和 ,使得 。
(II) 函数 满足以下条件:对任意 , 和 ,存在常数 ,使得
(III) 函数F、G满足利普希茨条件,即存在常数C,对任意 , 和 ,使得
引理2 (Pazy [22] )假设条件(I)满足,则对任意 有
(i) 对任意 ,有
(ii) 存在 使得
3. 主要结果
定理1 假设条件(I)~(IV)成立, 且是整数,如果不等式
成立,则脉冲中立型随机动力系统(1)是p阶矩渐近稳定的,其中 , 是引理2中的常数, 是伽马函数。
证明 定义一个非线性算子 ,
(3)
首先,我们证明 在 上是p阶连续的,令 和 充分小,则由 不等式得,
当 时,有
(4)
同理可得,当 时,有
(5)
当 时,由引理1和 不等式有
(6)
其中 , 。
综合(4)、(5)和(6)知,当 时,有
因此, 在 上p阶连续,故在 在 上均方连续。
其次,证明 。由(3)得
(7)
根据条件(I)可得
(8)
根据条件(II)和 可得
(9)
利用Hölder不等式,条件(II)和引理2可得
因为 和当 时, ,则对任意 存在 和 ,使得 ,有
因为当 时 ,则对任意 存在 ,得
故有,
(10)
根据条件(I)、(II)和Hölder不等式可得
(11)
因为对任意 和 存在 和 ,使得 ,则由(11)可得
(12)
根据当 时 ,对任意 存在 ,得
(13)
利用(12)和(13),对任意的 可得
因此,
(14)
因为对任意 ,利用条件(I)、(III)及引理1有
(15)
类似于(12),由(15)可得
(16)
根据 时 ,对任意 存在 ,有
(17)
利用(16)和(17),对任意的 可得
因此,
(18)
综合(8~10)、(14)和(18)有,当 时有
这样就证明了 。
最后,证明 是压缩的。对于 ,使用条件(I~III)则对 有
所以, 也是压缩的。从而由压缩映射原理知, 在空间W中有唯一不动点 ,在 上系统(1)的解为 ,且当 时, 。因此系统(1)是p阶稳定的,定理1得证。
4. 结论
文章采用Banach不动点方法研究了一类马尔可夫调制的中立型随机微分动力系统零解的p阶稳定性,得到了该系统零解的p阶稳定性的定理。主要有以下创新点:一是文章研究的是一类较为复杂的马尔可夫调制的中立型随机微分动力系统,填补并推广了不动点方法在研究复杂非线性随机动力系统方面的理论。二是文章改进并推广了已有文献 [12] ,得到较好的结论,丰富了马尔可夫调制的中立型随机微分动力系统稳定性方面的成果。
基金项目
广东省特色创新项目(自然科学) (2020KTSCX168)资助。
文章引用
张新文. 马尔可夫调制的中立型随机动力系统的p阶稳定性
p-Moment Stability of Neutral Stochastic Dynamic Systems with Markovian Switching[J]. 应用数学进展, 2023, 12(06): 2630-2638. https://doi.org/10.12677/AAM.2023.126264
参考文献
- 1. Burton, T.A. (2004) Fixed Points and Stability of a Nonconvolution Equation. Proceedings of the American Mathemati-cal Society, 132, 3679-3687. https://doi.org/10.1090/S0002-9939-04-07497-0
- 2. Burton, T.A. and Furumochi T. (2002) Krasnoselskii’s Fixed Point Theorem and Stability. Nonlinear Analysis: Theory Methods & Applications, 49, 445-454. https://doi.org/10.1016/S0362-546X(01)00111-0
- 3. Burton, T.A. (2005) Fixed Points, Stability, and Exact Linearization. Nonlinear Analysis: Theory Methods & Applications, 61, 857-870. https://doi.org/10.1016/j.na.2005.01.079
- 4. Burton, T.A. and Zhang, B. (2004) Fixed Points and Stability of an Integral Equation: Nonuniqueness. Applied Mathematics Letters, 17, 839-846. https://doi.org/10.1016/j.aml.2004.06.015
- 5. Raffoul, Y.N. (2004) Stability in Neutral Nonlinear Differential Equations with Functional Delays Using Fixed Point Theory. Mathematical and Computer Modelling, 40, 691-700. https://doi.org/10.1016/j.mcm.2004.10.001
- 6. Zhang, B. (2005) Fixed Points and Stability in Differential Equa-tions with Variable Delays. Nonlinear Analysis: Theory Methods & Applications, 63, e233-e242. https://doi.org/10.1016/j.na.2005.02.081
- 7. Luo, J.W. (2007) Fixed Points and Stability of Neutral Stochastic Delay Differential Equations. Journal of Mathematical Analysis and Applications, 334, 431-440. https://doi.org/10.1016/j.jmaa.2006.12.058
- 8. Wu, M., Huang, N.J. and Zhao, C.W. (2008) Fixed Points and Stability in Neutral Stochastic Differential Equations with Variable Delays. Fixed Points Theory and Applications, 2008, Article No. 407352. https://doi.org/10.1155/2008/407352
- 9. Boufoussi, B. and Hajji, S. (2012) Neutral Stochastic Functional Differ-ential Equations Driven by a Fractional Brownian Motion in a Hilbert Space. Statistics and Probability Letters, 82, 1549-1558. https://doi.org/10.1016/j.spl.2012.04.013
- 10. Diop, M.A., Sakthivel, R. and Ndiaye, A.A. (2016) Neutral Sto-chastic Integrodifferential Equations Driven by a Fractional Brownian Motion with Impulsive Effects and Time-Varying Delays. Mediterranean Journal of Mathematics, 13, 2425-2442. https://doi.org/10.1007/s00009-015-0632-1
- 11. Zhang, X.W. and Ruan, D.H. (2018) Exponential Stability for Neutral Stochastic Functional Partial Differential Equations Driven by Brownian Motion and Fractional Brownian Mo-tion. Journal of Inequalities and Applications, 2018, Article No. 201. https://doi.org/10.1186/s13660-018-1793-9
- 12. Sakthivel, R. and Luo, J.W. (2009) Asymptotic Stability of Non-linear Impulsive Stochastic Differential Equations. Statistics and Probability Letters, 79, 1219-1223. https://doi.org/10.1016/j.spl.2009.01.011
- 13. 王春生. 中立多变时滞Volterra型随机动力系统的稳定性[J]. 应用数学和力学, 2021, 42(11): 1190-1202.
- 14. Randjelović, J. and Janković, S. (2007) On the pth Moment Exponential Stability Criteria of Neutral Stochastic Functional Differential Equations. Journal of Mathematical Analysis and Applica-tions, 326, 266-280. https://doi.org/10.1016/j.jmaa.2006.02.030
- 15. Mao, X.Y. (1997) Stochastic Differential Equations and Applica-tions. Horwood, Chichestic.
- 16. Wu, X.T., Zhang, W.B. and Yang, T. (2013) Pth Moment Stability of Impulsive Sto-chastic Delay Differential Systems with Markovian Switching. Communications in Nonlinear Science & Numerical Sim-ulation, 18, 1870-1879. https://doi.org/10.1016/j.cnsns.2012.12.001
- 17. Wang, B. and Zhu, Q.X. (2017) Stability Analysis of Markov Switched Stochastic Differential Equations with both Stable and Unstable Subsystems. Systems and Control Letters, 105, 55-61. https://doi.org/10.1016/j.sysconle.2017.05.002
- 18. Zhu, F.B., Han, Z.Z. and Zhang, J.F. (2016) Stability Analysis of Stochastic Differential Equations with Markovian Switching. Systems and Control Letters, 61, 1209-1214. https://doi.org/10.1016/j.sysconle.2012.08.013
- 19. Tran, K.Q. and Nguyen, D.H. (2022) Exponential Stability of Impulsive Stochastic Differential Equations with Markovian Switching. Systems and Control Letters, 162, Article ID: 105178. https://doi.org/10.1016/j.sysconle.2022.105178
- 20. Mao, X.Y. (1999) Stability of Stochastic Differential Equations with Markovian Switching. Stochastic Process and Application, 79, 45-67. https://doi.org/10.1016/S0304-4149(98)00070-2
- 21. da Prato, G. and Zabczyk, J. (1992) Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511666223
- 22. Pazy, A. (1983) Semigroups of Linear Operator and Applica-tions to Partial Differential Equation. Springer, Berlin. https://doi.org/10.1007/978-1-4612-5561-1