Journal of Organic Chemistry Research
Vol.05 No.02(2017), Article ID:20535,8 pages
10.12677/JOCR.2017.52010

Synthesis of 3,4-Dihydropyrimidine-2-(1H)- Ones/Thiones Catalyzed by Ionic Liquid [C2O2BBTA][TFA]

Zengpeng Zhang, Rong Ma, Lei Guo, Chenjiang Liu*

The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Physics and Chemistry Detecting Center, Xinjiang University, Urumqi Xinjiang

*通讯作者。

Received: Apr. 26th, 2017; accepted: May 14th, 2017; published: May 17th, 2017

ABSTRACT

Carboxyl functional ionic liquid with benzotriazole cation and trifluoroacetate anion can be used as environmental-friendly catalyst for the efficient synthesis of 3,4-dihydropyrimidin-2(1H) ones /thiones under solvent-free conditions. Moreover, the ionic liquid [C2O2BBTA][TFA] can be easily recycled and reused for at least four cycles without obvious loss of catalytic activity.

Keywords:Ionic Liquids, Catalysis, Solvent-Free, 3,4-Dihydropyrimidin-2(1H)-Ones/Thiones

离子液体[C2O2BBTA][TFA]催化合成3,4-二氢嘧啶-2-(1H)-酮/硫酮

张增鹏,麻荣,郭磊,刘晨江*

石油天然气精细化工教育部&自治区重点实验室,新疆大学理化测试中心,新疆 乌鲁木齐

收稿日期:2017年4月26日;录用日期:2017年5月14日;发布日期:2017年5月17日

摘 要

无溶剂条件下,阳离子为苯并三唑、阴离子为三氟乙酸根的羧基功能化离子液体作为环境友好的催化剂,高效地合成了一系列3,4-二氢嘧啶-2(1H)-酮或硫酮。此外,离子液体[C2O2BBTA][TFA]循环使用至少4次,且催化活性没有明显降低。

关键词 :离子液体,催化,无溶剂,3,4-二氢嘧啶酮-2(1H)-酮/硫酮

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

众所周知,3,4-二氢嘧啶-2(1H)-酮/硫酮化合物具有抗过敏、降压、杀菌、消炎、抗病毒 [1] - [6] 及抑制有丝分裂驱动蛋白 [7] [8] 等重要的药理和生物活性。100多年前,意大利化学家Biginelli首次提出了浓盐酸催化苯甲醛、尿素和乙酰乙酸乙酯三组分反应合成3,4-二氢嘧啶-2(1H)-酮/硫酮的方法 [9] 。然而该方法存在条件苛刻、反应时间长(18 h)且产率低(20%~50%)的缺点。因此,各种催化体系被用于该反应以改进经典方法的不足,如多组分聚合物1,4-DHP和3,4-DHPM [10] 、纳米共催化剂TiO2-SiO2 [11] 、Cu-EDTA负载的APTMS-Fe3O4@SiO2核-壳体系 [12] 、硅钛铝氧化物MxOy [13] 、微波促进 [14] 等。

离子液体因具有蒸气压低、热稳定性好、毒性低、易于回收等诸多优点,在Biginelli反应中也得到了应用 [15] [16] 。基于本课题组在离子液体合成和催化应用领域的研究基础 [17] [18] ,本文提出了一种Brønsted酸性苯并三唑离子液体催化合成3,4-二氢嘧啶-2(1H)-酮/硫酮的方法。考察了催化剂种类和用量、反应溶剂、反应时间等因素对反应产率的影响,同时对反应底物的普适性进行了研究。此外,还探讨了离子液体的催化循环使用效果。

2. 实验部分

2.1. 试剂与仪器

薄层层析硅胶用GF254硅胶,柱层析硅胶:300-400目(青岛海洋化工厂)。美国Varian inova-400型核磁共振仪(400 MHz, TMS);德国Bruker Equinox 55红外光谱仪(KBr压片);美国HP 1100液相色谱质谱仪;瑞士Büchi B-560型熔点仪。所用试剂均为市售分析纯,用前未经处理。

2.2. 离子液体的合成

离子液体1-丁基-3-羧甲基苯并三唑三氟乙酸盐的合成如式1所示。将0.20 mol的1-丁基苯并三唑和0.24 mol的1-氯乙酸在90℃搅拌反应36 h,冷却至室温,用乙醚和丙酮(V:V = 2:1, 3 × 20 mL)混合溶剂浸泡洗涤所得的棕色固体,抽滤,所得固体在90℃下真空干燥10 h,即得氯化1-丁基-3-羧甲基苯并三唑 [19] ,白色固体,熔点:148℃~149℃。

在室温下,将0.012 mol三氟乙酸缓慢滴加到0.01 mol氯化1-丁基-3-羧甲基苯并三唑中,滴毕升温至80℃回流反应48 h,得到褐色液体,减压旋除过量的三氟乙酸,残余物在90℃下真空干燥10 h,即得离子液体1-丁基-3-羧甲基苯并三唑三氟乙酸盐[C2O2BBTA][TFA]。

离子液体[C2O2BBTA][TFA]表征数据:褐色液体,[C2O2BBTA][TFA]:1H NMR (400 MHz, DMSO) δ: 8.79-8.24 (m, 3H), 8.06-7.96 (m, 2H), 5.93 (s, 2H), 5.08 (t, J = 7.1 Hz, 2H), 2.06-1.99 (m, 2H), 1.39-1.31 (m,

Scheme 1. The synthesis of ionic liquid [C2O2BBTA][TFA]

图式1. 离子液体[C2O2BBTA][TFA]的合成

2H), 0.93 (t, J = 7.4 Hz, 3H), 13C NMR (100 MHz, DMSO) δ: 166.26 134.99, 134.22, 131.13, 130.80, 120.96, 117.76, 114.22, 113.85, 52.66, 51.09, 30.27, 18.81, 13.09. IR (KBr, ν/cm-1): 3106, 2967, 2940, 2879, 2511, 1738, 1505, 1471, 1364, 1190, 1141, 1029, 754, 718, 643, 599. ESI-MS: m/z (%) = 234.1 (100%) [M + H] +.

2.3. 未知化合物4a-4s的合成及结构分析

化合物4a-4r的合成反应如图式2所示。在10 mL圆底烧瓶中加入2 mmol芳香醛、2 mmol β-二羰基化合物和3 mmol脲或硫脲,20 mol%催化剂[C2O2BBTA][TFA],混合均匀后在90℃无溶剂条件下磁力搅拌反应40 min。反应结束后,向混合物中加入大量的碎冰,室温充分搅拌至碎冰融化,过滤即得产物粗品,经过柱层析分离得化合物4a-4r纯品。化合物结构经1H NMR,13C NMR,IR和MS确证结构。

目标化合物的表征如下:

4g:白色固体;1H NMR (400 MHz, DMSO-d6), δ: 9.30 (s, 1H), 7.74 (s, 1H), 7.36 (ddd, J = 15.0, 8.8, 4.4 Hz, 2H), 7.21 (d, J = 2.5 Hz, 1H), 5.60 (d, J = 2.8 Hz, 1H), 3.90 (q, J = 7.1 Hz, 2H), 2.30 (s, 3H), 1.00 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 164.76, 162.01, 159,55, 151.10, 149.30, 138.29, 138.26, 132.28, 130.27, 130.17, 116.34, 116.09, 114.97, 97.63, 58.99, 50.91, 40.02, 17.56, 13.81; IR (KBr, ν/cm-1): 3346, 3225, 3112, 2976, 1697, 1644, 1223, 1093, 903, 805; ESI-MS: m/z (%) = 335.0 (100%) [M +Na] +.

4h:白色固体;1H NMR (400 MHz, DMSO-d6), δ: 9.32 (s, 1H), 7.78 (s, 1H), 7.48 (dd, J = 8.8, 5.2 Hz, 1H), 7.23 – 6.92 (m, 2H), 5.59 (s, 1H), 3.91 (q, J = 7.1 Hz, 2H), 2.30 (s, 3H), 1.00 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, DMSO-d6), δ: 164.71, 162.18, 159.75, 151.00, 149.73, 143.89, 143.83, 131.17, 131.09, 126.86, 116.28, 115.27, 115.03, 97.11, 59.04, 51.76, 17.60, 13.78; IR (KBr, ν/cm-1): 3221, 3098, 2982, 1703, 1650, 1604, 1282, 1237, 1103, 881, 803; ESI-MS: m/z (%) = 335.0 (100%) [M + Na] +.

4i:白色固体;1H NMR (400 MHz, DMSO) δ: 9.30 (s, 1H), 7.79 (s, 1H), 7.49 (dd, J = 6.7, 2.2 Hz, 1H), 7.35 (t, J = 8.7 Hz, 1H), 7.27 (dd, J = 4.9, 2.2 Hz, 1H), 5.15 (d, J = 3.3 Hz, 1H), 4.18 – 3.86 (m, 2H), 2.26 (s, 3H), 1.10 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, DMSO-d6), δ: 165.00, 158.49, 156.06, 151.66, 148.95, 142.90, 142.87, 131.19, 127.48, 127.40, 116.86, 116.64, 107.63, 107.42, 98.42, 59.21, 52.97, 17.72, 13.93, IR (KBr, ν/cm-1): 3342, 3203, 3100, 2984, 1702, 1658, 1232, 1099, 895, 804; ESI-MS: m/z (%) = 379.0 (100%) [M + Na] +.

4m:白色固体;1H NMR (400 MHz, DMSO-d6), δ: 9.15 (s, 1H), 7.70 (s, 1H), 7.24 (t, H), 6.76-6.83 (m, 3H), 5.10 (s, 1H), 4.82 (m, 1H), 3.72 (s, 3H), 2.23 (s, 3H), 1.16 (d, J = 8.0 Hz, 3H), 1.01 (d, J = 8.0, 3H); 13C NMR (100 MHz, DMSO-d6), δ: 164.73, 159.07, 152.07, 148.05, 146.35, 129.37, 118.20, 112.33, 112.00, 99.34, 66.25, 54.86, 53.73, 21.69, 21.40, 17.60, IR (KBr, ν/cm-1): 3234, 3106, 2981, 2948, 1721, 1652, 1599, 1463, 1431, 1374, 1282, 1232, 1092, 1073, 788; ESI-MS: m/z (%) = 327.1 (100%) [M + Na] +.

Scheme 2. Synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones (4a-4r)

图式2. 3,4-二氢嘧啶酮/硫酮(4a-4r)的合成

4n:橙色固体;1H NMR (400 MHz, DMSO-d6), δ: 9.32 (s, 1H), 9.07 (s, 1H), 7.59 (s, 1H), 7.02 (d, J = 4.0 Hz, 2H), 6.68 (d, J = 4.0 Hz, 2H), 5.02 (s, 1H), 4.82-4.78 (m, 1H), 2.22 (s, 3H), 1.15 (d, J = 6.4 Hz, 3H), 1.00 (d, J = 6.4 Hz, 3H); 13C NMR (100 MHz, DMSO-d6), δ: 164.79, 156.39, 152.03, 147.35, 135.47, 127.35, 114.80, 99.92, 66.10, 53.44, 21.69, 21.39, 17.56; IR (KBr, ν/cm-1): 3289, 3227, 3109, 2979, 2808, 1706, 1686, 1651, 1511, 1448, 1371, 1282, 1226, 1173, 1086, 783, 680; ESI-MS: m/z (%) = 313.1 (100%) [M + Na] +.

4o:绿色固体;1H NMR (400 MHz, DMSO-d6), δ: 9.05 (s, 1H), 7.56 (s, 1H), 7.03 (d, J = 4.0 Hz, 2H), 6.65 (d, J = 4.0 Hz, 2H), 5.01 (s, 1H), 4.82-4.80 (m, 1H), 2.84 (s, 6H), 2.22(s, 3H), 1.17 (d, J = 6.0 Hz, 3H), 1.03 (d, J = 6.0 Hz, 3H); 13C NMR (100 MHz, DMSO-d6), δ: 164.87, 152.17, 149.62, 147.15, 132.80, 126.80, 112.04, 100.12, 66.08, 53.25, 21.72, 21.47, 17.56; IR (KBr, ν/cm-1): 3243, 3116, 2980, 2937, 1719, 1648, 1526, 1457, 1363, 1290, 1231, 1090, 789; ESI-MS: m/z (%) = 340.1 (100%) [M + Na] +.

4p:淡黄色固体;1H NMR (400 MHz, DMSO-d6), δ: 9.10 (s, 1H), 7.67 (s, 1H), 7.22-7.26 (m, 2H), 7.13-7.14 (m, 2H), 5.08 (s, 1H), 2.21 (s, 3H), 1.28 (s, 9H); 13C NMR (100 MHz, DMSO-d6), δ: 164.61, 162.38, 159.97, 151.81, 147.44, 141.16, 141.13, 128.20, 128.13, 115.03, 114.82, 100.25, 79.10, 53.60, 27.72, 17.56; IR (KBr, ν/cm-1): 3230, 3107, 2975, 2930, 1697, 1644, 1507, 1452, 1366, 1292, 1230, 1164, 1090, 1035, 837, 798, 759, 658; ESI-MS: m/z (%) = 329.1 (100%) [M + Na] +.

4q:淡黄色固体;1H NMR (400 MHz, DMSO-d6) δ: 9.05 (d, J = 1.6 Hz, 1H), 7.64 – 7.63 (m, 1H), 7.23-7.21 (m, 1H), 7.06 – 7.02 (m, 3H), 5.07 (d, J = 3.2 Hz, 1H), 2.28 (s, 3H), 2.21 (s, 3H), 1.29 (s, 9H); 13C NMR (100 MHz, DMSO-d6), δ: 164.73, 152.06, 147.05, 144.89, 137.07, 128.13, 127.68, 126.80, 123.23, 100.50, 78.99, 54.20, 27.73, 21.01, 17.56; IR (KBr, ν/cm-1): 3226, 3099, 2977, 2935, 1699, 1647, 1489, 1438, 1366, 1294, 1232, 1165, 1087, 859, 813, 774, 745, 697,670,599; ESI-MS: m/z (%) = 325.1 (100%) [M + Na] +.

4r:淡黄色固体;1H NMR (400 MHz, DMSO-d6), δ: 9.08 (s, 1H,); 7.68 – 7.67 (m, 1H), 7.25 (t, J = 8.0 Hz, 1H), 6.83 – 6.78 (m, 3H), 5.08 (d, J = 3.2 Hz, 1H), 3.73 (s, 3H), 2.22 (s, 3H), 1.31 (s, 9H); 13C NMR (100 MHz, DMSO-d6), δ: 164.74, 159.07, 152.14, 147.29, 146.36, 129.35, 118.14, 112.26, 111.98, 100.35, 79.05, 54.85, 53.95, 27.74, 17.57; IR (KBr, ν/cm-1): 3392, 3247, 3111, 2972, 2937, 1707, 1672, 1519, 1463, 1366, 1282, 1240, 1165, 1094, 1038, 849, 801; ESI-MS: m/z (%) = 341.1 (100%) [M + Na] +.

3. 结果与讨论

3.1. 最优反应条件的筛选

以苯甲醛、乙酰乙酸乙酯和脲三组分反应为模型,考察了催化剂种类和用量、溶剂种类、反应时间等因素对反应的影响。首先考察了2种不同阴离子的1-丁基-3-羧甲基苯并三唑离子液体及相应Brønsted酸三氟乙酸对反应的影响(表1, entries 1-3)。从表中可以看出,离子液体[C2O2BBTA][TFA]的催化活性优于离子液体[C2O2BBTA]Cl和三氟乙酸。其次,考察了催化剂的用量对反应体系的影响(表1, entries 4, 5),发现催化剂用量为20 mol%时,产物产率最高为96%。随后考察了H2O、CH3OH、C2H5OH、i-PrOH、

Table 1. Optimization of reaction conditionsa

表1. 反应条件的优化a

a反应条件:苯甲醛(2 mmol),乙酰乙酸乙酯(2 mmol),脲(3 mmol) %,90℃;b分离产率。

CH2Cl2、CH3CN、DMF、甲苯等八种溶剂及无溶剂条件下反应的效果,发现无溶剂条件下反应效果最佳(表1, entries 6-13)。最后我们对反应时间进行了筛选(表1, entries 14-17),结果表明最佳反应时间是40 min。因此,最优的反应条件为:无溶剂条件下,离子液体[C2O2BBTA][TFA](20 mol%)为催化剂,90℃反应40 min。

3.2. 底物普适性研究

在最优条件下,我们对该反应的底物普适性进行了研究,结果见表2。从中可以看出,苯甲醛的苯环上不管是带有供电子基团还是吸电子基团,都能顺利的参与反应,以82%~98%的收率得到相应的3,4-二氢嘧啶-2(1H)-酮产物(表2, entries 4a-4j)。硫脲代替脲也被用于Biginelli三组分反应,成功地合成了相应的产物(表2, entries 4k, 4l)。使用乙酰乙酸异丙酯、乙酰乙酸叔丁酯代替1,3-二羰基化合物参与反应也能得到令人满意的结果,相应产物的产率为89%~99% (表2, entries 4m-4r)。因此,离子液体1-丁基-3-羧甲基苯并三唑三氟乙酸盐催化合成二氢嘧啶-2(1H)-酮/硫酮化合物具有很好的底物普适性。

3.3. 离子液体循环使用性

离子液体的特性之一是循环使用,本文以苯甲醛、乙酰乙酸乙酯和脲三组分反应为模型,在最优条件下考察了离子液体催化剂1-丁基-3-羧甲基苯并三唑三氟乙酸盐的循环使用效果。具体方法为:将反应结束萃取分离的水相减压旋除水,残余物经真空干燥至恒重,即得回收的离子液体[C2O2BBTA][TFA],可直接用于下一次催化循环。从图1可知,离子液体催化剂1-丁基-3-羧甲基苯并三唑三氟乙酸盐循环使用4次后仍能保持较好的催化活性,表明该离子液体具有较好的循环使用效果。

Table 2. Investigation of substrate scopea

表2. 底物普适性研究a

a反应条件:芳香醛(2 mmol),1,3-二羰基化合物(2 mmol),脲或硫脲(3 mmol),[C2O2BBTA][TFA] (20 mol%),90℃,40 min;b分离产率。

Figure 1. Recycling research of ionic liquid [C2O2BBTA][TFA]

图1. 离子液体[C2O2BBTA][TFA]的循环使用研究

4. 结论

本文发展了一种离子液体1-丁基-3-羧甲基苯并三唑三氟乙酸盐催化芳香醛、1,3-二羰基化合物和脲或硫脲绿色、高效合成3,4-二氢嘧啶-2(1H)-酮或硫酮的方法。该方法具有对环境友好、反应时间短、产率高等优点,离子液体催化剂可循环使用4次并且活性没有明显降低。

基金项目

国家自然科学基金(No. 21572195, 21262035, 21162025)。

文章引用

张增鹏,麻 荣,郭 磊,刘晨江. 离子液体[C2O2BBTA][TFA]催化合成3,4-二氢嘧啶-2-(1H)-酮/硫酮
Synthesis of 3,4-Dihydropyrimidine-2-(1H)- Ones/Thiones Catalyzed by Ionic Liquid [C2O2BBTA][TFA][J]. 有机化学研究, 2017, 05(02): 78-85. http://dx.doi.org/10.12677/JOCR.2017.52010

参考文献 (References)

  1. 1. Kefayati, H., Mirfarhadi, S.M. and Kazemi-Rad, R. (2015) Un-expected One-Pot Synthesis of Novel 2-Aminopyrimi- dine-4-Ones under Microwave Irradiation. Journal of the Chemistry Communication, 62, 107-111. https://doi.org/10.1002/jccs.201400248

  2. 2. Mohammadi, K., Shirini, F. and Yahyazadeh, A. (2015) 1,3-Disulfonic Acid Imidazolium Hydrogen Sulfate: A Reusable and Efficient Ionic Liquid for the One-Pot Mul-ti-Component Synthesis of Pyrimido[4,5-b]Quinoline Derivatives. RSC Advances, 5, 23586-23590. https://doi.org/10.1039/C5RA02198G

  3. 3. Elhamifar, D., Nasr-Esfahani, M, Karimi, B., Moshkelgosha, R. and Shábani, A. (2016) Ionic Liquid and Sulfonic Acid Based Bifunctional Periodic Mesoporous Organosilica (BPMO-IL-SO3H) as a Highly Efficient and Reusable Nanocatalyst for the Biginelli Reaction. ChemCatChem, 6, 2593-2599.

  4. 4. Zhang, Y.H., Wang, B., Zhang, X.M., Huang, J.B. and Liu, C.J. (2015) An Efficient Synthesis of 3,4-Dihydropyrimi- din-2(1H)-Ones and Thiones Catalyzed by a Novel Brønsted Acidic Ionic Liquid under Solvent-Free Conditions. Molecules, 20, 3811-3820. https://doi.org/10.3390/molecules20033811

  5. 5. Li, H., Liu, C., Zhang, Y., Sun, Y., Wang, B. and Liu, W. (2015) Green Method for the Synthesis of Chromeno[2,3-c]- Pyrazol-4(1H)-Ones through Ionic Liquid Promoted Directed Annulation of 5-(Aryloxy)-1H-Pyrazole-4-Carbalde- hydes in Aqueous Media. Organic Letters, 17, 932-935. https://doi.org/10.1021/acs.orglett.5b00033

  6. 6. Xue, F., Ma, R., Sun, Y., Abdukader, A., Zhang, Y. and Liu, C. (2015) Syntheses of Carboxyl Functionalized Benzotriazol-Based Ionic Liquids and Their Application in Extraction-Oxidative Desulfurization. Chemical Journal of Chinese Universities, 36, 1298-1303.

  7. 7. Atwalk, K.S., Rovnyak, G.C., Kimball, S.D., et al. (1990) Dihydropyrimidine Calcium Channel Blockers. II. 3-Sub- stituted-4-Aryl-1,4-Dihydro-6-Methyl-5-Pyrimidinecarboxylic Acid Esters as Potent Mimics of Dihydropyridines. Journal of Medicinal Chemistry, 33, 2629-2635. https://doi.org/10.1021/jm00171a044

  8. 8. Rao, G.B.D., Acharya, B.N., Verma, S.K. and Kaushik, M.P. (2011) N,N’-Dichlorobis(2,4,6-Trichlorophenyl)Urea (CC-2) as a New Reagent for the Synthesis of Pyrimidone and Pyrimidine Derivatives via Biginelli Reaction. Tetrahedron Letters, 52, 809-812.

  9. 9. Yadav, J.S., Reddy, B.V.S., Sridhar, P., Reddy, J.S.S., Nagaiah, K., Lingaiah, N. and Saiprasad, P.S. (2004) Green Protocol for the Biginelli Three-Component Reaction: Ag3PW12O40 as a Novel, Water-Tolerant Heteropolyacid for the Synthesis of 3,4-Dihydropyrimidinones. European Journal of Organic Chemistry, 2004, 552-557. https://doi.org/10.1002/ejoc.200300559

  10. 10. Li, W., Zhou, G., Zhang, P., Lai, Y. and Xu, S. (2011) One-Pot Synthesis of Dihydropyrimidiones via Environmentally Friendly Enzyme-Catalyzed Biginelli Reaction. Heterocycles, 83, 2067-2077. https://doi.org/10.3987/COM-11-12267

  11. 11. Gholap, A.R., Venkatesan, K., Daniel, T., Lahoti, R.J. and Srinivasan, K.V. (2004) Ionic Liquid Promoted Novel and Efficient One Pot Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones at Ambient Temperature under Ultrasound Irradiation. Green Chemistry, 6, 147-150. https://doi.org/10.1039/b314015f

  12. 12. Da Silva, D.L., Fernandes, S.A., Sabino, A.A. and De Fatima, A. (2011) p-Sulfonic Acid Calixarenes as Efficient and Reusable Organocatalysts for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones/-Thiones. Tetrahedron Letters, 52, 6328-6330.

  13. 13. Khabazzadeh, H., Saidi, K. and Sheibani, H. (2008) Microwave-Assisted Synthesis of Dihydropyrimidin-2(1H)-Ones Using Graphite Supported Lanthanum Chloride as a Mild and Efficient Catalyst. Bioorganic & Medicinal Chemistry Letters, 18, 278-280.

  14. 14. Kappe, C.O. (1993) 100 Years of the Biginelli Dihydropyrimidine Synthesis. Tetrahedron, 49, 6937-6963.

  15. 15. Overman, L.E., Rabinowitz, M.H. and Renhowe, P.A. (1995) Enantioselective Total Synthesis of (-)-Ptilomycalin A. Journal of the American Chemical Society, 117, 2657-2658. https://doi.org/10.1021/ja00114a034

  16. 16. Chitra, S. and Pandiarajan, K. (2009) Calcium Fluoride: An Efficient and Reusable Catalyst for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones and Their Corresponding 2(1H)Thione: An Improved High Yielding Protocol for the Biginelli Reaction. Tetrahedron Letters, 50, 2222-2224.

  17. 17. Snider, B.B., Chen, J., Patil, A.D. and Freyer, A.J. (1996) Synthesis of the Tricyclic Portions of Batzelladines A, B and D. Revision of the Stereochemistry of Batzelladines A and D. Tetrahedron Letters, 37, 6977-6980.

  18. 18. Kappe, C.O., Fabian, W.M.F. and Semones, M.A. (1997) Conformational Analysis of 4-Aryl-Dihydropyrimidine Calcium Channel Modulators. A Comparison of ab Initio, Semiempirical and X-Ray Crystallographic Studies. Tetrahedron, 53, 2803-2816.

  19. 19. Yang, Z.Y. and Guo, H.Y. (2011) One-Pots Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones Catalyzed by Acidic Ionic Liquid under Solvent-Free Conditions. Journal of Zhejiang University of Technology, 39, 511-515.

  20. 20. Mayer, T.U., Kapoor, T.M., Haggarty, S.J., et al. (1999) Small Molecule Inhibitor of Mitotic Spindle Bipolarity Identified in a Phenotype-Based Screen. Science, 286, 971-974. https://doi.org/10.1126/science.286.5441.971

  21. 21. Deres, K., Schröder, C.H., Paessens, A., et al. (2003) Inhibition of Hepatitis B Virus Replication by Drug-Induced Depletion of Nucleocapsids. Science, 299, 893-896. https://doi.org/10.1126/science.1077215

  22. 22. Li, X., Liu, C, Wang, J. and Li, Y. (2009) Lanthanum Nitrate as an Efficient Catalyst for the Synthesis of 3,4-Dihydro- pyrimidine-2(1H)-(Thio)Ones. Chemistry, 9, 837-840.

  23. 23. Wu, H., Fu, C., Zhao, Y., Yang, B., Wei, Y., Wang, Z. and Tao, L. (2015) Multicomponent Copolycondensates via the Simultaneous Hantzsch and Biginelli Reactions. ACS Macro Letters, 4, 1189-1193. https://doi.org/10.1021/acsmacrolett.5b00637

  24. 24. Titova, Y., Fedorova, O., Rusinov, G., Vigorov, A., Krasnov, V., Murashkevich, A. and Charushin, V. (2015) Effect of Nanosized TiO2-SiO2 Covalently Modified by Chiral Mole-cules on the Asymmetric Biginelli Reaction. Catalysis Today, 241, 270-274.

  25. 25. Sheykhan, M., Yahyazadeh, A. and Rahemizadeh, Z. (2016) Cu-EDTA-Modified APTMS-Fe3O4@SiO2 Core-Shell Nanocatalyst: A Novel Magnetic Re-coverable Catalyst for the Biginelli Reaction. RSC Advances, 6, 34553-34563. https://doi.org/10.1039/C6RA02415G

  26. 26. Fedorova, O.V., Titova, Y.A., Vigorov, A.Y., Toporova, M.S., Alisienok, O.A., Murashkevich, A.N., Krasnov, V.P., Rusinov, G.L. and Charushin, V.N. (2016) Asymmetric Biginelli Reaction Catalyzed by Silicon, Titanium and Aluminum Oxides. Catalysis Letters, 146, 493-498. https://doi.org/10.1007/s10562-015-1666-5

期刊菜单