Advances in Clinical Medicine
Vol. 13  No. 12 ( 2023 ), Article ID: 76525 , 8 pages
10.12677/ACM.2023.13122625

肠道菌群在治疗老年抑郁患者认知功能障碍中的理论基础及应用前景

陈雪婷1,张永东2*

1济宁医学院精神卫生专业,山东 济宁

2青岛市精神卫生中心四科,山东 青岛

收稿日期:2023年11月1日;录用日期:2023年11月28日;发布日期:2023年12月5日

摘要

抑郁症目前是最常见的精神疾病之一,在抑郁症患者的群体中,约三分之二的抑郁症患者存在不同程度的认知功能受损,研究表明抑郁症的认知缺陷可能是阿尔茨海默病的前驱症状,但其发生机制尚不明确,目前国内外尚缺乏有效的治疗方案。近年来研究显示肠道菌群在认知功能障碍中可能起到了重要作用。本文旨在从肠道菌群的角度,对抑郁症患者发生认知功能障碍的相关研究进行综述,为肠道菌群在预防或治疗老年抑郁症患者认知功能障碍中提供理论依据。

关键词

老年抑郁症,肠道菌群,认知功能,肠道微生物制剂,粪菌移植

Theoretical Basis and Application Prospect of Intestinal Flora in the Treatment of Cognitive Dysfunction in Elderly Patients with Depression

Xueting Chen1, Yongdong Zhang2*

1Mental Health Department, Jining Medical University, Jining Shandong

2Qingdao Mental Health Center, Department 4, Qingdao Shandong

Received: Nov. 1st, 2023; accepted: Nov. 28th, 2023; published: Dec. 5th, 2023

ABSTRACT

Depression is currently one of the most common mental diseases. In the group of patients with depression, about two-thirds of patients with depression have varying degrees of cognitive impairment. Research shows that the cognitive deficit of depression may be a precursor symptom of Alzheimer’s disease, but its mechanism is not clear, and there is a lack of effective treatment at home and abroad. Recent studies have shown that gut flora may play an important role in cognitive dysfunction. The purpose of this paper is to review the relevant studies on cognitive dysfunction in patients with depression from the perspective of intestinal flora, and to provide theoretical basis for the prevention or treatment of cognitive dysfunction in elderly patients with depression.

Keywords:Depression, Intestinal Flora, Cognitive Function, Intestinal Microbiotics, Fecal Bacteria Transplantation

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

抑郁症是以情绪低落、思维迟缓、意志活动减退为核心症状的常见的精神疾病之一。据世界卫生组织统计的数据表明,全球约有3.8%的人口受到这一疾病的影响 [1] 。在这一群体中,约三分之二的抑郁症患者存在不同程度的认知功能受损,因此如何预防及治疗认知功能障碍成为改善抑郁症患者预后的一大难题 [2] 。目前抑郁症患者出现认知功能障碍的机制并不明确,已有的研究结果表明,其发生可能与抑郁症相关的大脑结构和功能变化、神经递质失衡、内分泌及免疫系统功能改变等之间存在关联。目前心理疗法和抗抑郁药物是抑郁症的主要治疗方法,但都不能完全解决管理认知能力下降的问题,甚至可能增加安全风险 [3] [4] 。因此,需要更新且更有效的治疗策略来解决抑郁症的认知功能下降。随着微生物肠脑轴概念的提出,肠道菌群受到更广泛的关注 [5] [6] [7] ,许多研究发现肠道菌群可能通过神经内分泌、神经免疫、代谢及神经递质系统等途径对患者的记忆、执行功能、注意力及情绪方面产生影响 [8] [9] [10] [11] 。因此,本文旨在从肠道菌群的角度,对抑郁症患者发生认知功能障碍的相关研究进行综述,为肠道菌群在预防或治疗老年抑郁症患者认知功能障碍中提供理论依据。

2. 肠道菌群与抑郁症认知功能之间的联系

随着肠道微生物组研究的兴起,研究者提出抑郁症患者出现认知功能障碍可能是由肠道菌群介导的,因此肠道菌群可能是抑郁症认知功能障碍的潜在靶点及可能机制,值得深入研究,以开发出新的治疗抑郁症认知功能障碍的方法。

2.1. 抑郁症患者肠道菌群的变化

John R. Kelly等将抑郁症患者的肠道微生物群转移到肠道微生物群耗尽的大鼠体内,检测其肠道菌群及行为变化,结果显示这些大鼠的肠道菌群中放线菌相对丰度降低,双歧杆菌科、卟啉单胞菌科、科氏杆菌科相对比例降低,丙酸杆菌科增加。除了上述菌群的变化外,同时在受体动物身上诱导出了抑郁的行为和生理特征,包括快感缺乏和焦虑样行为 [12] 。Haiyin Jiang等人通过对比了重度抑郁症患者与非抑郁症患者的菌群分布,结果显示与非抑郁症患者相比,重度抑郁症患者的拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)和放线菌门(Actinobacteria)水平显著升高,而厚壁菌门(Firmicutes)水平显著降低 [13] 。与之不一致的是,在Naseribafrouei等人对抑郁症患者和非抑郁症患者的菌群对比中,结果显示这两类人群在微生物群多样性方面没有显著的组间差异 [14] 。目前对于抑郁症患者菌群分布的相关研究仍较少,未来开展涉及更大规模抑郁症群体并结合宏基因组学、甚至代谢组学的研究,可能会有助于我们进一步明确肠道微生物群与抑郁症、甚至抑郁症具体症状之间的时间和因果关系。

2.2. 认知功能障碍与肠道菌群的相关性

研究表明,抑郁症的发展与年龄相关,认知缺陷的程度及范围随着抑郁症的一次次发作而逐渐增加。有研究表明,抑郁症的认知缺陷可能是阿尔茨海默病的前驱症状 [15] 。因此,越来越多的研究将抑郁症与阿尔兹海默症联系到了一起 [16] [17] 。Annamaria Cattaneo等人通过检测认知受损的老年人的肠道菌群,发现相较于正常老年人来说,认知功能受损的老年人肠道菌群丰度发生了变化,这一变化可能导致外周炎症,从而引起脑淀粉样变,最终导致AD的神经退行性变和认知症状 [18] 。Nicholas M. Vogt等人在AD参与者的微生物组中确定了细菌丰度的门–属差异,包括厚壁菌门、双歧杆菌减少,拟杆菌门增加 [19] 。类似的结果也出现在动物模型中,Ling Zhang等人通过比较不同年龄野生型和AD模型小鼠的粪便微生物群,发现AD小鼠的微生物群的组成和多样性受到干扰 [20] 。综上所述,认知功能与肠道菌群存在基本联系,且部分菌群分布结果与抑郁症患者的肠道菌群改变存在一定相似性,但尚不清楚两者之间是否存在必然联系。

3. 肠道菌群在抑郁症患者发生认知功能障碍中可能存在的机制

3.1. 肠道菌群与氧化应激

目前,有学说提出抑郁症认知功能障碍可能是由氧化应激所致的海马体受损,以及脑源性神经营养因子(BDNF)的靶点原肌凝蛋白受体激酶B (Trk B)的表达减少或功能降低导致的神经可塑性改变引起的 [21] [22] 。益生菌可能通过改善抗氧化系统的功能和减少自由基的生成来实现抗氧化,从而减少氧化应激反应 [23] 。Mahmoud A.O. Dawood等人通过给予大Pagrus sea鲷鼠李糖乳杆菌,结果显示与其他组相比,实验组的生物抗氧化潜能及过氧化物酶含量均优于对照组。在其后续的研究中,也进一步验证了这一观点 [24] [25] 。除动物实验外,Martarelli D等人在临床实验中也发现了类似的结果,研究人员发现剧烈的体育活动会诱导氧化应激,而补充益生菌可以增加血浆抗氧化水平,从而中和活性氧,在这种机制下,可能会达到减少氧化应激的作用 [26] 。

3.2. 肠道菌群与免疫炎症

越来越多的研究表明,错误折叠的蛋白和炎症反应因子的变化可能会干扰大脑的免疫过程,进一步促进认知功能障碍的进展 [27] [28] [29] ,而肠道菌群及其代谢产物可以通过影响免疫系统并矫正肠道屏障。Abildgaard等人发现益生菌可以改变细胞因子的比例,且这一比例的变化存在一定联系:促炎IL-6和TNFα的水平随着IL-2、IL-4和IFN-γ水平的增加而降低 [30] 。同时,还有研究表明TNFα增高的患者认知能力下降的速度远远高于TNFα降低的患者 [31] 。此外,双歧杆菌产生纤连蛋白III型结构域(FN3)蛋白,该蛋白能够通过结合TNF-α从而降低TNF-α的水平 [32] 。脆弱拟杆菌(Bacteroides fragilis)和大肠杆菌(Escherichia coli)分泌脂多糖(LPS)会导致促炎细胞因子水平升高,从而可能会损害由星形胶质细胞维持的神经元的完整性。在Garcez等人的研究中表明,细菌衍生代谢产生的丁酸钠和吲哚-3-丙酸可以降低由lps激活的星形胶质细胞产生的促炎细胞因子水平 [33] 。

3.3. 肠道菌群与神经调控

长期补充益生菌可以通过改变大脑中5-羟基吲哚乙酸(5-HIAA)和二羟基苯乙酸(DOPAC)的水平来提高外周色氨酸浓度。同时还可以通过改变c-Fos、多巴胺和5-HT水平来影响中枢神经系统的生物化学。益生菌干预后,海马区c-Fos mRNA表达增加,多巴胺和5-HT水平增加 [34] 。淀粉样蛋白斑块沉积聚集后,小胶质细胞受损无法清除Aβ,导致突触功能丧失、神经元凋亡、氧化应激、神经炎症,最终导致记忆丧失。Mehrabadi和Sadr在动物实验研究中揭示,益生菌可以抑制β淀粉样蛋白在大鼠海马中的沉积,甚至在预防淀粉样蛋白斑块沉积方面比通常用于AD的药物利vastigmine更有效 [35] 。另一项对大鼠的类比研究显示,使用益生菌的大鼠表现出炎性反应减轻,β淀粉样蛋白斑块数量减少,空间记忆能力得到了改善 [36] 。这表明肠道菌群在神经调控中发挥着重要作用。

3.4. 肠道菌群与内分泌

肠道菌群及其代谢产物改变可以影响机体内分泌活动,从而间接影响中枢神经系统的活动。在一项抑郁大鼠实验中显示,与对照组相比,双歧杆菌处理的大鼠血浆色氨酸显著升高,益生菌可能通过增加血清素前体色氨酸的水平从而提高血清素的利用率,从而对情绪产生有益的影响。同时具有神经保护特性的犬尿氨酸(KA)水平升高,犬尿氨酸通路中IDO活性降低,血浆色氨酸的利用率增加,再加上该通路下游产生神经保护KA的趋势增加,这表明双歧杆菌具有潜在的神经保护和抗抑郁特性 [37] 。在对自闭症谱系障碍(ASD)小鼠模型的研究中也出现了类似的结果,MIA后代的血清吲哚丙酮酸(色氨酸代谢途径的关键分子)水平显著升高,经脆弱芽孢杆菌处理后恢复到控制水平 [38] 。

4. 肠道菌群在预防或治疗抑郁症认知功能障碍中的潜在价值

截止目前,国内外仍无明确的治疗抑郁症认知功能障碍的方法。当前有研究提出药理学方法如多奈哌齐、认知增强剂,及非药理学方法如心理、行为和躯体疗法,但治疗效果均不明显或易增加更多的不良反应 [39] [40] [41] 。越来越多的证据表明肠道菌群对于认知功能的重要性,尤其益生菌和益生元可以通过改变中枢系统生物化学来防止学习和记忆障碍,其前景辽阔。

4.1. 肠道微生态制剂

微生态制剂一种由活性微生物组成的产品,通常包括益生菌、双歧杆菌、乳酸菌等。这些微生物能够在人体肠道内生长和繁殖,帮助维持肠道内菌群的平衡和稳定,从而有助于保持肠道健康和免疫系统的正常功能。

目前国内外尚缺乏针对肠道菌群对抑郁症患者认知功能作用的相关研究,Rudzki等人对79名应用SSRIS药物治疗的重度抑郁症(MDD)患者进行了随机双盲安慰剂对照试验。结果表明,相比于安慰剂组,接受了8周益生菌植物乳杆菌299v补充的患者在注意力、感知能力和语言学习方面的认知表现均得到了改善。同时,通过测量患者血浆中色氨酸、犬尿氨酸及其代谢物、炎症细胞因子和皮质醇的水平发现,患者的犬尿氨酸水平的显著降低,这可能有助于认知功能的改善。犬尿氨酸由色氨酸通过平行途径发展到血清素生物合成。当特定的酶被激活时,色氨酸转变为犬尿氨酸。这些酶的激活由促炎细胞因子、细菌脂多糖、糖皮质激素或氧化应激和亚硝化应激触发。这些发现支持了本研究中讨论的假设,证明了补充益生菌可以改善抑郁症患者的认知功能 [42] 。

另一项双盲对照试验选取了39名MDD患者(100名)。结果表明,与对照组相比,补充益生菌的患者c反应蛋白水平下降,抗氧化谷胱甘肽水平增加。该研究选择了贝克抑郁量表来评估患者的抑郁症状,虽然没有直接测试认知功能,但该工具包括了工作效率或决策能力等与认知相关的问题 [43] 。在一个有关精神疾病(从抑郁症、AD到精神分裂症)的研究的荟萃分析中也显示,补充益生菌可以导致神经精神患者的CRP和丙二醛水平降低,抗炎IL-10水平增加。结合四项关于抑郁症的研究,发现在补充益生菌后,再次应用汉密尔顿抑郁评分量表对患者进行评估,评分较前显著降低。同样,该研究并没有直接测试认知功能。但其使用的工具评估了智力迟钝(思维和语言迟钝,集中能力受损和运动活动减少)以及工作和日常活动的能力等与认知相关的问题 [44] 。这两项研究侧面证明了益生菌在改善认知功能障碍中的潜在价值。

4.2. 粪菌移植

虽然有一些初步证据表明粪便微生物群移植可能有潜力作为认知功能障碍的治疗方法,但目前仍缺乏针对以抑郁症认知功能障碍为研究对象进行的实验,这一领域的研究仍处于早期阶段,目前仍没有确凿的证据表明粪便细菌移植是抑郁症或认知功能障碍的有效治疗方法。Jing Sun等人在对小鼠的研究中发现,粪菌移植显著改善了小鼠的认知缺陷,减轻了小鼠大脑中的阿尔茨海默氏症病理,缓解了突触功能障碍和神经炎症,同时检测到小鼠的淀粉样蛋白-β减少 [45] 。有研究结果表明,粪菌移植可以通过增加SCFA水平的FMT调节肠道菌群,不仅可以缓解LPS暴露引起的神经炎症,还可以通过抑制海马神经元凋亡来改善BCCAO后的认知能力下降和抑郁样行为 [46] 。在粪菌移植的安全性问题上,在其他疾病领域进行的已有研究表明,可能存在腹部不适等副作用,但无重大不良反应的相关报告,这说明在风险评估方面是有利的。但进行粪菌移植时,供体的选择,其可能导致的潜在感染性疾病、肠道炎症、自身免疫疾病和伦理问题都仍是需要仔细考虑的问题。

5. 结语

综上,肠道菌群的改变与抑郁症认知功能障碍密切相关。抑郁症患者的肠道菌群构成较常人发生了改变,肠道菌群相关的实验性治疗有望改善抑郁症认知功能障碍。然而目前对于肠道菌群在抑郁症认知功能中的作用仍然存在争议:到底是由于肠道菌群的变化引起了患者认知功能障碍还是认知功能障碍引起了肠道菌群的变化,即肠道菌群与抑郁症发生认知功能障碍的因果关系尚不明确。另一方面,关于肠道菌群在抑郁症认知功能障碍的作用的相关研究较少,尤其是缺乏人类受试者的相关研究,大多数研究也只表明了相关性而非因果关系。因此以后还需要建立更完善的大规模的临床队列研究。目前对于改善抑郁症患者认知功能的干预措施也十分有限,还需要更加安全有效的方法来减轻认知功能障碍,以期改善患者的长远预后。根据现有的研究,肠道微生态制剂对于认知功能障碍可以起到一定的改善作用,但以抑郁症伴认知功能障碍患者作为实验对象的研究较少,所以其中是否有区别还不明确。并且,个体间的菌群构成也存在差异,菌群功能间也存在一定差异,未来可联合多组学协同研究,筛选出更具备针对性的菌群构成,并将其应用至抑郁症患者的认知功能障碍的作用的研究中,或许可以成为预防或治疗抑郁症患者认知功能障碍的重要手段,服务更多的患者。

文章引用

陈雪婷,张永东. 肠道菌群在治疗老年抑郁患者认知功能障碍中的理论基础及应用前景
Theoretical Basis and Application Prospect of Intestinal Flora in the Treatment of Cognitive Dysfunction in Elderly Patients with Depression[J]. 临床医学进展, 2023, 13(12): 18674-18681. https://doi.org/10.12677/ACM.2023.13122625

参考文献

  1. 1. Depression. https://www.who.int/news-room/fact-sheets/detail/depression

  2. 2. Rock, P.L., Roiser, J.P., Riedel, W.J., et al. (2014) Cognitive Impairment in Depression: A Systematic Review and Meta-Analysis. Psychological Medi-cine, 44, 2029-2040. https://doi.org/10.1017/S0033291713002535

  3. 3. Nicholson, P.J. and Wilson, N. (2017) Smart Drugs: Implications for General Practice. British Journal of General Practice, 67, 100-101. https://doi.org/10.3399/bjgp17X689437

  4. 4. Hitchcock, C., Gormley, S., Rees, C., Rodrigues, E., Gillard, J., Panesar, I., Wright, I.M., Hammond, E., Watson, P., Werner-Seidler, A. and Dalgleish, T. (2018) A Randomised Con-trolled Trial of Memory Flexibility Training (MemFlex) to Enhance Memory Flexibility and Reduce Depressive Symp-tomatology in Individuals with Major Depressive Disorder. Behaviour Research and Therapy, 110, 22-30. https://doi.org/10.1016/j.brat.2018.08.008

  5. 5. Lyte, M. (2014) Microbial Endocrinology: Host-Microbiota Neu-roendocrine Interactions Influencing Brain and Behavior. Gut Microbes, 5, 381-389. https://pubmed.ncbi.nlm.nih.gov/24690573/ https://doi.org/10.4161/gmic.28682

  6. 6. Cryan, J.F., O’Riordan, K.J., Cowan, C.S.M., et al. (2019) The Microbi-ota-Gut-Brain Axis. Physiological Reviews, 99, 1877-2013. https://doi.org/10.1152/physrev.00018.2018

  7. 7. Paley, E.L. (2019) Discovery of Gut Bacteria Specific to Alzheimer’s Associated Diseases Is a Clue to Understanding Disease Etiology: Meta-Analysis of Population-Based Data on Human Gut Metagenomics and Metabolomics. Journal of Alz-heimer’s Disease, 72, 319-355. https://doi.org/10.3233/JAD-190873

  8. 8. McCormick, C.M., Smith, K., Baumbach, J.L., et al. (2020) Adolescent Social Instability Stress Leads to Immediate and Lasting Sex-Specific Changes in the Neuroendocrine-Immune-Gut Axis in Rats. Hormones and Behavior, 126, Article ID: 104845. https://doi.org/10.1016/j.yhbeh.2020.104845

  9. 9. Li, J., Pu, F., Peng, C., et al. (2022) Antibiotic Cocktail-Induced Gut Microbiota Depletion in Different Stages Could Cause Host Cognitive Impairment and Emotional Disorders in Adulthood in Different Manners. Neurobiology of Disease, 170, Article ID: 105757. https://doi.org/10.1016/j.nbd.2022.105757

  10. 10. Schneider, E., Doll, J.P.K., Schweinfurth, N., et al. (2023) Effect of Short-Term, High-Dose Probiotic Supplementation on Cognition, Related Brain Functions and BDNF in Patients with Depression: A Secondary Analysis of a Randomized Controlled Trial. Journal of Psychiatry & Neuroscience JPN, 48, E23-E33. https://doi.org/10.1503/jpn.220117

  11. 11. Morais, L.H., Schreiber, H.L. and Mazmanian, S.K. (2021) The Gut Microbiota-Brain Axis in Behaviour and Brain Disorders. Nature Reviews Microbiology, 19, 241-255. https://doi.org/10.1038/s41579-020-00460-0

  12. 12. Kelly, J.R., Borre, Y., O’Brien, C., et al. (2016) Transferring the Blues: Depression-Associated Gut Microbiota Induces Neurobehavioural Changes in the Rat. Journal of Psychiatric Re-search, 82, 109-118. https://doi.org/10.1016/j.jpsychires.2016.07.019

  13. 13. Jiang, H., Ling, Z., Zhang, Y., et al. (2015) Altered Fecal Microbiota Composition in Patients with Major Depressive Disorder. Brain, Behavior, and Immunity, 48, 186-194. https://doi.org/10.1016/j.bbi.2015.03.016

  14. 14. Naseribafrouei, A., Hestad, K., Avershina, E., et al. (2014) Correla-tion between the Human Fecal Microbiota and Depression. Neurogastroenterology & Motility, 26, 1155-1162. https://doi.org/10.1111/nmo.12378

  15. 15. Ownby, R.L., Crocco, E., Acevedo, A., et al. (2006) Depression and Risk for Alzheimer Disease: Systematic Review, Meta-Analysis, and Meta-Regression Analysis. Archives of General Psychi-atry, 63, 530-538. https://doi.org/10.1001/archpsyc.63.5.530

  16. 16. Semkovska, M., Quinlivan, L., O’Grady, T., et al. (2019) Cognitive Function Following a Major Depressive Episode: A Systematic Review and Meta-Analysis. The Lancet Psychiatry, 6, 851-861. https://doi.org/10.1016/S2215-0366(19)30291-3

  17. 17. Miskowiak, K.W., Ott, C.V., Petersen, J.Z., et al. (2016) Systematic Review of Randomized Controlled Trials of Candidate Treatments for Cognitive Impairment in Depression and Methodological Challenges in the Field. European Neuropsychopharmacology, 26, 1845-1867. https://doi.org/10.1016/j.euroneuro.2016.09.641

  18. 18. Cattaneo, A., Cattane, N., Galluzzi, S., et al. (2017) Associa-tion of Brain Amyloidosis with Pro-Inflammatory Gut Bacterial Taxa and Peripheral Inflammation Markers in Cogni-tively Impaired Elderly. Neurobiology of Aging, 49, 60-68. https://doi.org/10.1016/j.neurobiolaging.2016.08.019

  19. 19. Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., et al. (2017) Gut Microbiome Alterations in Alzheimer’s Disease. Scientific Reports, 7, Article No. 13537. https://doi.org/10.1038/s41598-017-13601-y

  20. 20. Zhang, L., Wang, Y., Xiayu, X., et al. (2017) Altered Gut Mi-crobiota in a Mouse Model of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 60, 1241-1257. https://doi.org/10.3233/JAD-170020

  21. 21. Kapogiannis, D. and Mattson, M.P. (2011) Disrupted Energy Metabo-lism and Neuronal Circuit Dysfunction in Cognitive Impairment and Alzheimer’s Disease. The Lancet Neurology, 10, 187-198. https://doi.org/10.1016/S1474-4422(10)70277-5

  22. 22. Romo-Araiza, A. and Ibarra, A. (2020) Prebiotics and Probi-otics as Potential Therapy for Cognitive Impairment. Medical Hypotheses, 134, Article ID: 109410. https://doi.org/10.1016/j.mehy.2019.109410

  23. 23. Wang, Y., Wu, Y., Wang, Y., et al. (2017) Antioxidant Proper-ties of Probiotic Bacteria. Nutrients, 9, Article No. 521. https://doi.org/10.3390/nu9050521

  24. 24. Dawood, M.A.O., Koshio, S., Ishikawa, M., et al. (2016) Effects of Die-tary Supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the Growth, Gut Microbiota and Immune Responses of Red Sea Bream, Pagrus Major. Fish & Shellfish Immunology, 49, 275-285. https://doi.org/10.1016/j.fsi.2015.12.047

  25. 25. Dawood, M.A.O., Koshio, S., Ishikawa, M., et al. (2016) Probiotics as an Environment-Friendly Approach to Enhance Red Sea Bream, Pagrus Major Growth, Immune Response and Oxida-tive Status. Fish & Shellfish Immunology, 57, 170-178. https://doi.org/10.1016/j.fsi.2016.08.038

  26. 26. Martarelli, D., Verdenelli, M.C., Scuri, S., et al. (2011) Effect of a Probiotic Intake on Oxidant and Antioxidant Parameters in Plasma of Athletes during Intense Exercise Training. Current Microbiology, 62, 1689-1696. https://doi.org/10.1007/s00284-011-9915-3

  27. 27. Heneka, M.T., Carson, M.J., El Khoury, J., et al. (2015) Neuroin-flammation in Alzheimer’s Disease. The Lancet Neurology, 14, 388-405. https://doi.org/10.1016/S1474-4422(15)70016-5

  28. 28. Czirr, E. and Wyss-Coray, T. (2012) The Immunology of Neurodegeneration. Journal of Clinical Investigation, 122, 1156-1163. https://doi.org/10.1172/JCI58656

  29. 29. Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Ham-shere, M.L., Pahwa, J.S., et al. (2009) Genome-Wide Association Study Identifies Variants at CLU and PICALM Asso-ciated with Alzheimer’s Disease. Nature Genetics, 41, 1088-1093. https://doi.org/10.1038/ng.440

  30. 30. Abildgaard, A., Elfving, B., Hokland, M., et al. (2017) Probiotic Treatment Reduces Depressive-Like Behaviour in Rats Inde-pendently of Diet. Psychoneuroendocrinology, 79, 40-48. https://doi.org/10.1016/j.psyneuen.2017.02.014

  31. 31. Holmes, C., Cunningham, C., Zotova, E., et al. (2009) Sys-temic Inflammation and Disease Progression in Alzheimer Disease. Neurology, 73, 768-774. https://doi.org/10.1212/WNL.0b013e3181b6bb95

  32. 32. Poluektova, E., Yunes, R. and Danilenko, V. (2021) The Putative Antidepressant Mechanisms of Probiotic Bacteria: Relevant Genes and Proteins. Nutrients, 13, Article No. 1591. https://doi.org/10.3390/nu13051591

  33. 33. Garcez, M.L., Tan, V.X., Heng, B., et al. (2020) Sodium Butyrate and Indole-3-Propionic Acid Prevent the Increase of Cytokines and Kynurenine Levels in LPS-Induced Human Primary As-trocytes. International Journal of Tryptophan Research, 13, 1-9. https://doi.org/10.1177/1178646920978404

  34. 34. Wang, H., Lee, I.-S., Braun, C., et al. (2016) Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review. Journal of Neurogastroenterolo-gy and Motility, 22, 589-605. https://doi.org/10.5056/jnm16018

  35. 35. Mehrabadi, S. and Sadr, S.S. (2020) Assessment of Probiotics Mixture on Memory Function, Inflammation Markers, and Oxidative Stress in an Alzheimer’s Disease Model of Rats. Iranian Bio-medical Journal, 24, 220-228. https://doi.org/10.29252/ibj.24.4.220

  36. 36. Athari Nik Azm, S., Djazayeri, A., Safa, M., et al. (2018) Lactobacilli and Bifidobacteria Ameliorate Memory and Learning Deficits and Oxidative Stress in β-Amyloid (1-42) Injected Rats. Applied Physiology, Nutrition, and Metabolism, 43, 718-726. https://doi.org/10.1139/apnm-2017-0648

  37. 37. Desbonnet, L., Garrett, L., Clarke, G., et al. (2008) The Probiotic Bifidobacteria Infantis: An Assessment of Potential Antidepressant Properties in the Rat. Journal of Psychiatric Research, 43, 164-174. https://doi.org/10.1016/j.jpsychires.2008.03.009

  38. 38. Hsiao, E.Y., McBride, S.W., Hsien, S., et al. (2013) Micro-biota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders. Cell, 155, 1451-1463. https://doi.org/10.1016/j.cell.2013.11.024

  39. 39. Cornara, L., Borghesi, B., Canali, C., et al. (2013) Smart Drugs: Green Shuttle or Real Drug? International Journal of Legal Medicine, 127, 1109-1123. https://doi.org/10.1007/s00414-013-0893-9

  40. 40. Bingham, K.S., Flint, A.J. and Mulsant, B.H. (2019) Management of Late-Life Depression in the Context of Cognitive Impairment: A Review of the Recent Literature. Current Psychiatry Reports, 21, 74. https://doi.org/10.1007/s11920-019-1047-7

  41. 41. Devanand, D.P., Pelton, G.H., D’Antonio, K., et al. (2018) Donepezil Treatment in Patients with Depression and Cognitive Impairment on Stable Antidepressant Treatment: A Ran-domized Controlled Trial. The American Journal of Geriatric Psychiatry, 26, 1050-1060. https://doi.org/10.1016/j.jagp.2018.05.008

  42. 42. Rudzki, L., Ostrowska, L., Pawlak, D., et al. (2019) Probiotic Lactobacillus plantarum 299v Decreases Kynurenine Concentration and Improves Cognitive Functions in Patients with Major Depression: A Double-Blind, Randomized, Placebo Controlled Study. Psychoneuroendocrinology, 100, 213-222. https://doi.org/10.1016/j.psyneuen.2018.10.010

  43. 43. Akkasheh, G., Kashani-Poor, Z., Tajabadi-Ebrahimi, M., et al. (2016) Clinical and Metabolic Response to Probiotic Administration in Patients with Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrition (Burbank, Los Angeles County, Calif.), 32, 315-320. https://doi.org/10.1016/j.nut.2015.09.003

  44. 44. Amirani, E., Milajerdi, A., Mirzaei, H., et al. (2020) The Effects of Probiotic Supplementation on Mental Health, Biomarkers of Inflammation and Oxidative Stress in Patients with Psychiat-ric Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Complementary Therapies in Medicine, 49, Article ID: 102361. https://doi.org/10.1016/j.ctim.2020.102361

  45. 45. Sun, J., Xu, J., Ling, Y., et al. (2019) Fecal Microbiota Transplan-tation Alleviated Alzheimer’s Disease-Like Pathogenesis in app/ps1 Transgenic Mice. Translational Psychiatry, 9, Arti-cle No. 189. https://doi.org/10.1038/s41398-019-0525-3

  46. 46. Xiao, W., Su, J., Gao, X., et al. (2022) The Microbiota-Gut-Brain Axis Participates in Chronic Cerebral Hypoperfusion by Disrupting the Metabolism of Short-Chain Fatty Acids. Micro-biome, 10, Article No. 62. https://doi.org/10.1186/s40168-022-01255-6

  47. NOTES

    *通讯作者。

期刊菜单