Advances in Clinical Medicine
Vol.
11
No.
09
(
2021
), Article ID:
45227
,
10
pages
10.12677/ACM.2021.119585
C1侧块螺钉与C1椎弓根螺钉治疗寰枢椎失稳的临床疗效及安全性的Meta分析
郑小龙1*,卿绍攀1,严芳林1,赖仕章2,张锐3,蒋成3#
1川北医学院,四川 南充
2南充市第五人民医院,四川 南充
3川北医学院附属医院,四川 南充
收稿日期:2021年8月9日;录用日期:2021年9月1日;发布日期:2021年9月15日
摘要
目的:对C1侧块螺钉联合C2椎弓根螺钉与C1椎弓根螺钉联合C2椎弓根螺钉治疗寰枢椎不稳的临床疗效及安全性进行meta分析。方法:检索Cochrane图书馆、Pubmed、(EMbase)综合性生物医学文献数据库、万方数据库、中国知网、维普、CBM中国生物医学文献(SinoMed)等网络数据库。检索至2021年05月所有比较C1侧块螺钉(C1LMS)与C1椎弓根螺钉(C1PS)治疗寰枢椎不稳(C2置入椎弓根螺钉,连接棒固定)的对照试验。RCT研究的质量评价使用Cochrane风险因素评估工具,非随机回顾性对照研究用Newcastle-Ottawa scale量表评估,数据处理选用Review Manager 5.4.1统计学软件。结果:最终纳入文献共6篇,共495例患者,C1LMS组254例,C1PS组241例,纳入文献质量均较高。Meta分析研究发现:1) 两种技术在临床疗效方面无明显差异,即术后JOA评分、术后VAS评分(P > 0.05);2) C1LMS组在手术时间、术中出血量方面明显较C1PS组增加(P < 0.0001);3) 虽在总的并发症上并无明显差异(P > 0.05),但C1LMS组更易损伤静脉丛及C2神经根(P < 0.006)。结论:C1LMS与C1PS治疗AAI的meta分析发现,两者的临床疗效并无太大差异,较C1LMS,C1PS在缩短手术时间、减少术中出血量、降低静脉丛和C2神经根损伤风险上更具优势。
关键词
寰枢椎不稳,寰椎椎弓根螺钉,寰椎侧块螺钉,枢椎椎弓根螺钉,寰枢椎融合,Meta分析
Clinical Efficacy and Safety of C1 Lateral Mass Screws versus C1 Pedicle Screws in the Treatment of Atlantoaxial Instability: A Meta-Analysis
Xiaolong Zheng1*, Shaopan Qing1, Fanglin Yan1, Shizhang Lai2, Rui Zhang3, Cheng Jiang3#
1North Sichuan Medical College, Nanchong Sichuan
2Nanchong Fifth People’s Hospital, Nanchong Sichuan
3Affiliated Hospital of North Sichuan Medical College, Nanchong Sichuan
Received: Aug. 9th, 2021; accepted: Sep. 1st, 2021; published: Sep. 15th, 2021
ABSTRACT
Objective: To conduct a meta-analysis of the clinical efficacy and safety of C1 lateral mass screws combined with C2 pedicle screws versus C1 pedicle screws combined with C2 pedicle screws in the treatment of atlantoaxial instability. Methods: Search Cochrane Library, Pubmed, Embase, Wanfang database, China Knowledge Network, Vip database, CBM. The published literature to date was collected to include all controlled trials comparing C1LMS with C1PS for atlantoaxial instability. Quality evaluation of RCT studies, using the Cochrane Risk Factor Assessment Tool. For non-randomized retrospective controlled studies, the Newcastle-Ottawa scale was used. Data analysis was performed using Review Manager 5.4.1. Ending indicator options: 1) Operation-related indicators (operation time, intraoperative blood loss); 2) Clinical efficacy indicators (JOA score after surgery, VAS score after surgery); 3) Safety-related indicators (total complications, venous plexus injury, C2 nerve root injury, cerebrospinal fluid leakage, vertebral artery injury, recurring fractures, etc.). Results: Six articles were included. 254 cases in the C1LMS group, 241 cases in the C1PS group. The quality of the included literature was relatively high. A meta-analysis found that: 1) there were no significant differences between the two surgical techniques in terms of clinical efficacy, i.e., postoperative JOA scores, postoperative VAS scores (P > 0.05). 2) The operation time and blood loss in the C1LMS group were significantly higher than those in the C1PS group (P < 0.0001); 3) There was no significant difference in the total complications between the two methods (P > 0.05), but the venous plexus and C2 nerve roots were more easily injured in the C1LMS group (p < 0.006). Conclusion: There was no significant difference between the two in terms of clinical efficacy. But in terms of security, compared with C1LMS, C1PS has more advantages in shortening the operation time, reducing intraoperative blood loss, and reducing the risk of venous plexus and C2 nerve root injury.
Keywords:Atlantoaxial Instability, Atlas Pedicle Screw, Atlas Lateral Mass Screw, Axis Pedicle Screw, Atlantoaxial Fusion, Meta-Analysis
Copyright © 2021 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
1. 引言
寰枢椎不稳(AAI)多因先天性畸形、创伤及炎症等单个或多个因素导致关节失去正常功能、形态及稳定性,可合并功能障碍和脊髓受压等病理状态 [1]。较为严重的AAI则需要手术来重建稳定性及解除脊髓压迫,恢复正常功能 [2]。随技术发展,后路寰枢椎内固定方式可大致分为六类:线缆捆扎(Gallie技术) [3]、椎板钩固定(Halifax技术) [4]、经关节螺钉(Magerl技术) [5]、钉–板系列(Goel技术) [6]、钉–棒技术(Harms技术) [7]、钉–钩技术 [8]。1939年,Gallie第一次提出经椎板钢丝线缆捆扎技术,但旋转控制欠佳,融合率不高 [3]。至2001年Harms改进后的钉–棒固定(Harms技术) [7],从此C1侧块螺钉技术 [6] 与C1椎弓根螺钉技术 [9] 开始流行,受各国临床医师的好评。
然而,C1侧块螺钉联合C2椎弓根螺钉(C1LMS-C2PS)与C1椎弓根螺钉联合C2椎弓根螺钉(C1PS-C2PS)对寰枢椎不稳(AAI)的治疗效果及安全性尚存在争议,尤其在手术时间、术中出血量以及手术并发症方面 [10]。目前国内外暂无比较此两种手术方式的meta分析,笔者拟检索所有包含了C1侧块螺钉(C1LMS)与C1椎弓根螺钉(C1PS) (用连接棒与C2椎弓根螺钉固定)治疗寰枢椎不稳(AAI)的对比研究文献,并进行meta分析。比较两种手术方式在临床应用中的利弊,为外科医师在治疗AAI时如何选择最优的手术方式提供循证医学证据。
2. 资料与方法
2.1. 纳入标准
纳入文献类型:比较C1侧块螺钉(C1LMS)和C1椎弓根螺钉(C1PS)治疗寰枢椎不稳(AAI) (C2置入椎弓根螺钉并用连接棒与C1螺钉固定)的对照研究。研究对象:明确诊断为寰枢椎不稳(AAI)并且可以行后路钉–棒系统固定融合手术的患者。干预措施:C1LMS组采用C1LMS-C2PS。C1PS组采用C1PS-C2PS。其他干预措施相同。
2.2. 排除标准
1) 无C1LMS与C1PS进行比较,仅单侧固定或手术方式及干预措施描述不清;2) 不能提取规范临床数据的研究;3) 重复研究,专家意见,综述,病例报道,生物力学或动物学研究。
2.3. 检索策略
由2位研究人员独立检索。数据库包含:Cochrane图书馆、Pubmed、(EMbase)综合性生物医学文献数据库、万方数据库、中国知网、维普、CBM中国生物医学文献(SinoMed),中文以“寰枢椎不稳、寰椎椎弓根螺钉、寰椎侧块螺钉、枢椎椎弓根螺钉、寰枢椎融合”,英文检索以“Atlantoaxial instability、Atlas pedicle screw、Atlas lateral mass screw、Axis pedicle screw”等为主题词和关键词进行检索,同时进行同义词替换,力求查全,时间段为建库至2021年05月。见图1。
2.4. 文献筛选及质量评价
文献筛选:详细记录排除文献篇数以及原因,进行质量评价,提取所需数据。防止主观因素影响,隐藏必要信息。2位研究人员相互检查核对数据,有争议交由第3位研究者处理。
质量评价:随机对照研究(RCT)采用Cochrane风险因素评估,非随机回顾性研究采用Newcastle-Ottawa scale量表(NOS评分)进行评估。
资料提取:1) 基本信息。2) 手术相关指标:手术时间、术中出血量。3) 术后结局指标:术后末次随访时JOA评分、VAS评分、并发症例数及详细类型。
2.5. 统计分析
用Review Manager 5.4.1软件进行meta分析。连续性变量数据,选用均数差(mean difference, MD)、95%可信区间(95%CI)作为分析指标。二分类变量选择比值比(Odds Ratio, OR)。用χ2检验分析异质性,P = 0.10为显著性水平;I2对异质性定量分析,显著水平I2 = 50%,(P > 0.10,I2 < 50%),说明研究间同质性较好,选用固定效应模型合并分析。(P ≤ 0.1,I2 ≥ 50%)时,异质性较高,需分析异质性来源。用漏斗图、Begg’s Test、Egger’s test检验是否存在发表偏倚。设定检验水准α = 0.05,P < 0.05时有统计学研究意义。
Figure 1. Flow chart of literature retrieval
图1. 文献检索流程图
3. 结果
3.1. 纳入研究的基本特征及质量评价
最终纳入6篇文献 [11] - [16],文献质量均较高,见图2,表1。共495例患者(男性310例,女性185例),其中C1LMS组254例,C1PS组241例。见表2。
Table 1. Quality assessment results of retrospective controlled studies (NOS)
表1. 回顾性对照研究质量评价表(NOS评分)
Figure 2. Quality assessment results of RCT
图2. 随机对照试验(RCT)质量评价
Table 2. Basic characteristics of included studies
表2. 纳入文献的基本特征表
注:① 手术时间;② 术中出血量;③ 住院时间;④ 术前术后JOA评分;⑤ 术前术后VAS评分;⑥ 神经功能(Frankel分级);⑦ JOA评分术后改善率;⑧ 术后并发症;⑨ 内固定物状态;⑩ 植骨不融合率;RCT,随机对照研究;-,代表文中未报道具体数值。
3.2. Meta分析结果
3.2.1. 手术时间
4篇文献 [11] [12] [14] [16] 报告了手术时间,组间异质性较大(χ2 = 39.73,P < 0.00001,I2 = 92%),选择随机效应模型合并,结果发现C1LMS组较C1PS组的平均手术时间增加,差异有统计学意义(MD = 35.90,95%CI [18.08, 53.72],P < 0.0001)。见图3。
Figure 3. Meta-analysis of surgery time of the C1LMS and C1PS
图3. C1LMS组和C1PS组手术时间的meta分析
3.2.2. 术中失血量
有4篇研究 [11] [12] [14] [16] 比较了术中失血量,组间的异质性较大(χ2 = 75.60,P < 0.00001,I2 = 96%),采用随机效应模型行Meta分析,发现C1LMS组的平均术中出血量更多,该差异具有统计学意义(MD = 264.29,95%CI [133.79, 394.79],P < 0.0001)。见图4。
Figure 4. Meta-analysis of intraoperative blood loss of the C1LMS and C1PS
图4. C1LMS组和C1PS组术中失血量的meta分析
3.2.3. 术后JOA评分
4篇研究 [11] [12] [14] [16] 报告了术后JOA评分,组间异质性较小(χ2 =1.30,P = 0.73,I2 = 0%)。选用固定效应模型,合并结果提示C1LMS组与C1PS组在术后JOA评分上的差异无统计学意义(MD = −0.45,95%CI [−0.89, −0.01],P = 0.05)。见图5。
Figure 5. Meta-analysis of postoperative JOA scores in the C1LMS and C1PS
图5. C1LMS组和C1PS组术后JOA评分的meta分析
3.2.4. 术后VAS评分
其中5篇研究 [11] [13] [14] [15] [16] 报告了术后VAS评分,组间异质性较大(χ2 = 15.87,P = 0.003,I2 = 75%),试用随机效应模型分析,发现两组在术后VAS评分上的差异无统计学意义(MD = −0.07,95%CI [−0.23, 0.09],P = 0.38)。见图6。
Figure 6. Meta-analysis of postoperative VAS scores in the C1LMS and C1PS
图6. C1LMS组和C1PS组术后VAS评分的meta分析
3.2.5. 总的并发症
纳入的6项研究 [11] - [16] 都报告了总的并发症,组间异质性较大(χ2 = 15.28,P = 0.009,I2 = 67%),选用随机效应模型进行分析,发现C1LMS组与C1PS组在总并发症上的差异无统计学意义(MD = 3.05,95%CI [0.78, 11.86],P = 0.11)。检查提取的数据无误,逐一剔除单项研究后再合并,发现各组间的异质性仍较大,合并效应量仍无统计学意义,但有详细的并发症报告,可行亚组分析。见图7。
Figure 7. Total complications meta-analysis for C1LMS and C1PS
图7. C1LMS组和C1PS组总的并发症meta分析
3.2.6. 具体的并发症分析
6篇研究 [11] - [16] 都报告了具体的并发症,共495例研究对象,其中C1LMS组254例,C1PS组241例。发现研究组间异质性都很小,采用固定效应模型合并,结果表明C1LMS组静脉丛损伤、C2神经根损伤更常见,差异有统计学意义。在椎动脉损伤、脑脊液漏和再发骨折方面,差异无统计学意义。见表3。
3.2.7. 敏感性分析
对异质性较大的合并项进行异质性来源探讨。首先由2研究人员分别检查提取的数据,逐一比对,确认数据正确无误,再检查有无亚组,发现除并发症可进行亚组分析外,其他效应量无明显亚组,用去除单项研究法进行敏感性分析,发现各项异质性波动不大,森林图方向一致,提示本次研究稳定性较好,meta分析结果较可靠。
Table 3. Specific complication meta-analysis for the C1LMS and C1PS
表3. C1LMS组和C1PS组具体的并发症meta分析
3.2.8. 发表偏倚
本研究共纳入6篇文献 [11] - [16],以C1LMS组与C1PS组总并发症为例,采用stata15.1绘制漏斗图(对称性尚可),进行Begg’s Test (P = 0.133),Egger’s test (t = 1.62,P = 0.180),都证实无发表偏倚。见图8。
Figure 8. Total complication funnel diagram for C1LMS and C1PS
图8. C1LMS组和C1PS组总的并发症漏斗图
4. 讨论
4.1. 本研究的必要性
颈椎后入路钉棒内固定是治疗AAI主流的手术方式 [17],2001年Harms和Melcher提出了Harms技术 [7],研究发现C1LMS置钉的侧块宽大,安全性好 [18]。2002年Resnick和Benzel第一次报道了C1PS技术,该技术通过C1后弓将螺钉打入C1侧块,即把后弓与侧块移行处视为椎弓根,将侧块当作椎体的C1后弓螺钉固定技术 [9],理论上此螺钉更长,拔出强度超过C1LMS,但后弓窄小,置钉风险大,两者各有利弊 [10]。那么在临床上谁更优,则需循证医学论证,本研究旨在解决此问题。
4.2. 手术相关指标及安全性分析
此两种置钉步骤大致相同,但在暴露进针点和置钉方向上有明显差异,C1LMS的进针点位于C1后弓下界与侧块中点之间,置钉时需先在C1侧块下缘与C2上缘构成的椎间孔中辨认并向尾侧牵开C2神经根,但此处有丰富的静脉窦包绕,形成静脉窦–神经复合体(VNC),极易大出血使手术时间延长,损伤C2导致枕部疼、麻等不适 [19],C1PS不需行此操作。与此次meta分析结果一致,证实了C1LMS置钉时更易损伤静脉丛、C2神经根,延长手术时间和增加术中失血量。
C1PS的进针点在C1后结节外侧18~20 mm,椎动脉沟下方,据后弓上边界下方3 mm [20]。其外侧、上方都有椎动脉通过,C1的后弓狭长,且临近上侧的椎动脉沟,更易致椎动脉损伤,若螺钉选择不恰当或暴力置钉,很容易打出骨性通道,刺破硬脊膜,造成再发骨折、脑脊液漏等并发症 [21]。而侧块宽大,置钉时,进针方向的可调范围大,安全性更高 [22]。但此次meta分析发现,两者在椎动脉损伤、再发骨折、脑脊液漏方面并无明显差异。可能是因为纳入研究较少,手术医师操作熟练度各异,存在阳性结果未发表等所致。
4.3. 临床疗效分析
就解剖而言,和C1LMS相比,C1PS组用的连接棒更长(C2都置入椎弓根螺钉),生物力学稳定性更强,且C1PS要经过后弓打入C1侧块,所以钉道更长,把持力更大,生物力学强度更高 [23],有研究表明C1LMS的平均拔出强度为387~1645N,821 ± 364N,C1PS的平均拔出强度为483~2200N,1403 ± 609N,差异显著(p = 0.009) [24]。但此次Meta分析发现,两种手术方式在术后疗效(术后JOA评分、术后VAS评分)均无显著差异(P > 0.05)。两种置钉方式在生物力学有差异,但就临床疗效来看,差异并无显著影响。可能与本次研究术后随访时间长短、患者劳动强度等因素相关,此结论仍需更高质量的研究进一步论证。
4.4. 本研究的局限性
本研究存在一定的局限性:1) 可能存在隐藏的偏倚;2) 纳入研究的AAI严重程度不一,根据手术医师经验的不同,进针点位置及进针方向总会存在一定程度上的差异;3) 纳入的文献及样本量较少。
4.5. 总结
结合此次研究,有足够的证据可以表明,寰椎侧块螺钉(C1LMS)与寰椎椎弓根螺钉(C1PS)在治疗寰枢椎不稳(AAI)的临床疗效上并无太大差异,但就安全性方面而言,较C1LMS,C1PS在缩短手术时间、减少术中出血量、降低静脉丛及C2神经根损伤风险上,更具优势。
文章引用
郑小龙,卿绍攀,严芳林,赖仕章,张 锐,蒋 成. C1侧块螺钉与C1椎弓根螺钉治疗寰枢椎失稳的临床疗效及安全性的Meta分析
Clinical Efficacy and Safety of C1 Lateral Mass Screws versus C1 Pedicle Screws in the Treatment of Atlantoaxial Instability: A Meta-Analysis[J]. 临床医学进展, 2021, 11(09): 4010-4019. https://doi.org/10.12677/ACM.2021.119585
参考文献
- 1. Lacy, J., Bajaj, J. and Gillis, C.C. (2021) Atlantoaxial Instability. StatPearls Publishing LLC.
- 2. Liao, S., Jung, M.K., Hörnig, L., et al. (2020) Injuries of the Upper Cervical Spine-How Can Instability Be Identified? International Orthopaedics, 44, 1239-1253. https://doi.org/10.1007/s00264-020-04593-y
- 3. Gallie, W.E. (1937) Skeletal Traction in the Treatment of Fractures and Dislocations of the Cervical Spine. Annals of Surgery, 106, 770-776. https://doi.org/10.1097/00000658-193710000-00026
- 4. Holness, R.O., Huestis, W.S., Howes, W.J., et al. (1984) Posterior Stabilization with an Interlaminar Clamp in Cervical Injuries: Technical Note and Review of the Long Term Experience with the Method. Neurosurgery, 14, 318-322. https://doi.org/10.1227/00006123-198403000-00010
- 5. Madawi, A.A., Casey, A.T.H., Solanki, G.A., et al. (1997) Radiological and Anatomical Evaluation of the Atlantoaxial Transarticular Screw Fixation Technique. Journal of Neurosurgery, 86, 961-968. https://doi.org/10.3171/jns.1997.86.6.0961
- 6. Goel, A. and Laheri, V. (1994) Plate and Screw Fixation for Atlanto-Axial Subluxation. Acta Neurochirurgica, 129, 47-53. https://doi.org/10.1007/BF01400872
- 7. Harms, J. and Melcher, R.P. (2001) Posterior C1-C2 Fusion with Polyaxial Screw and Rod Fixation. Spine, 26, 2467-2471. https://doi.org/10.1097/00007632-200111150-00014
- 8. Reis, M.T., Nottmeier, E.W., Reyes, P.M., et al. (2012) Biomechanical Analysis of a Novel Hook-Screw Technique for C1-2 Stabilization. Journal of Neurosurgery: Spine, 17, 220-226. https://doi.org/10.3171/2012.5.SPINE1242
- 9. Resnick, D.K. and Benzel, E.C. (2002) C1-C2 Pedicle Screw Fixation with Rigid Cantilever Beam Construct: Case Report and Technical Note. Neurosurgery, 50, 426-428. https://doi.org/10.1227/00006123-200202000-00039
- 10. Lin, J.M., Hipp, J.A. and Reitman, C.A. (2013) C1 Lateral Mass Screw Placement via the Posterior Arch: A Technique Comparison and Anatomic Analysis. The Spine Journal, 13, 1549-1555. https://doi.org/10.1016/j.spinee.2013.06.006
- 11. 兰东兴. 寰枢椎椎弓根螺钉内固定术治疗寰枢椎不稳的临床疗效观察[D]: [硕士学位论文]. 银川: 宁夏医科大学, 2020.
- 12. 肖逸鹏, 丁焕文, 曾凯生, 等. 寰椎椎弓根钉与侧块钉治疗寰枢椎骨折临床疗效的比较[J]. 成都医学院学报, 2014, 9(2): 195-198.
- 13. 陈语, 项良碧, 于海龙, 等. 寰枢椎失稳后路两种内固定术临床对比观察[J]. 创伤与急危重病医学, 2014, 2(6): 333-336.
- 14. Yan, L., He, B., Liu, T., et al. (2016) A Prospective, Double-Blind, Randomized Controlled Trial of Treatment of Atlantoaxial Instability with C1 Posterior Arches >4 mm by Comparing C1 Pedicle with Lateral Mass Screws Fixation. BMC Musculoskeletal Disorders, 17, Article No. 164. https://doi.org/10.1186/s12891-016-1017-8
- 15. 李健, 彭剑, 胡伟文. 侧块螺钉技术与椎弓根螺钉技术治疗寰枢椎失稳的临床研究[J]. 临床军医杂志, 2015, 43(7): 704-706.
- 16. 郝定均, 贺宝荣, 许正伟, 等. 寰椎椎弓根螺钉和侧块螺钉技术的临床疗效比较[J]. 中华骨科杂志. 2011, 31(12): 1297-1303.
- 17. Takayasu, M., Aoyama, M., Joko, M., et al. (2016) Surgical Intervention for Instability of the Craniovertebral Junction. Neurologia Medico-Chirurgica (Tokyo), 56, 465-475. https://doi.org/10.2176/nmc.ra.2015-0342
- 18. Wang, H.W., Yin, Y.H., Jin, Y.Z., et al. (2019) Morphometric Measurements of the C1 Lateral Mass with Congenital Occipitalization of the Atlas. World Neurosurgery, 121, e1-e7. https://doi.org/10.1016/j.wneu.2018.08.016
- 19. Badhiwala, J.H., Nassiri, F., Witiw, C.D., et al. (2017) Does Transection of the C2 Nerve Roots During C1 Lateral Mass Screw Placement for Atlantoaxial Fixation Result in a Superior Outcome?: A Systematic Review of the Literature and Meta-Analysis. Spine, 42, E1067-E1076. https://doi.org/10.1097/BRS.0000000000002069
- 20. Srivastava, A., Mahajan, R., Nanda, A., et al. (2017) Morphometric Study of C1 Pedicle and Feasibility Evaluation of C1 Pedicle Screw Placement with a Novel Clinically Relevant Radiological Classification in an Indian Population. Asian Spine Journal, 11, 679-685. https://doi.org/10.4184/asj.2017.11.5.679
- 21. Elliott, R.E., Tanweer, O., Boah, A., et al. (2014) Outcome Comparison of Atlantoaxial Fusion with Transarticular Screws and Screw-Rod Constructs: Meta-Analysis and Review of Literature. The Journal of Spinal Disorders & Techniques, 27, 11-28. https://doi.org/10.1097/BSD.0b013e318277da19
- 22. Blagg, S.E., Don, A.S. and Robertson, P.A. (2009) Anatomic Determination of Optimal Entry Point and Direction for C1 Lateral Mass Screw Placement. The Journal of Spinal Disorders & Techniques, 22, 233-239. https://doi.org/10.1097/BSD.0b013e31817ff95a
- 23. Mizutani, J., Inoue, N., Otsuka, Y., Furuya, A., Espinoza Orias, A.A. and Otsuka, T. (2019) Biomechanical and Anatomical Validity of the Short Posterior Arch Screw. Neurospine, 16, 347-353. https://doi.org/10.14245/ns.1836156.078
- 24. Zarro, C.M., Ludwig, S.C., Hsieh, A.H., et al. (2013) Biomechanical Comparison of the Pullout Strengths of C1 Lateral Mass Screws and C1 Posterior Arch Screws. The Spine Journal, 13, 1892-1896. https://doi.org/10.1016/j.spinee.2013.06.015
NOTES
*第一作者。
#通讯作者。