Advances in Clinical Medicine
Vol.
13
No.
09
(
2023
), Article ID:
71674
,
9
pages
10.12677/ACM.2023.1391945
高压氧在一氧化碳中毒迟发性脑病治疗中的 研究进展
刘宴廷1,杨俊生2*,张梓莘1
1西安医学院研究生工作部,陕西 西安
2陕西省人民医院康复医学科,陕西 西安
收稿日期:2023年8月1日;录用日期:2023年8月26日;发布日期:2023年9月4日

摘要
急性一氧化碳中毒是一种常见的生活与职业性中毒,部分患者经抢救后病情短暂好转,后出现一氧化碳中毒迟发性脑病(DEACMP),一般发生在急性中毒后2至60天,具体表现为急性中毒患者神志清醒后,经过一段时间假愈期,发生以痴呆、精神症状和锥体外系为主的神经系统疾病,严重影响患者生活质量。该病发病机制并不完全清楚,且治疗周期长,预后相对不良。高压氧治疗(HBOT)防治DEACMP效果显著,下面对其在DEACMP治疗方面的研究进展进行阐述。
关键词
高压氧,一氧化碳,一氧化碳中毒,一氧化碳中毒迟发性脑病

Research Progress of Hyperbaric Oxygen in the Treatment of Delayed Encephalopathy after Carbon Monoxide Poisoning
Yanting Liu1, Junsheng Yang2*, Zishen Zhang1
1Department of Graduate Work, Xi’an Medical University, Xi’an Shaanxi
2Department of Rehabilitation Medicine, Shaanxi Provincial People’s Hospital, Xi’an Shaanxi
Received: Aug. 1st, 2023; accepted: Aug. 26th, 2023; published: Sep. 4th, 2023

ABSTRACT
Acute carbon monoxide poisoning is a common kind of life and occupational poisoning. After rescue, some patients temporarily improved, and then developed delayed encephalopathy after carbon monoxide poisoning (DEACMP), which generally occurred 2 to 60 days after acute CO poisoning. Specifically, after the acute CO poisoning patients became conscious, after a period of false recovery, they developed nervous system disease mainly including dementia, mental symptoms and extrapyramidal system, seriously affecting the quality of life of patients. The pathogenesis of this disease is not entirely clear, and the treatment cycle is long, with a relatively poor prognosis. Hyperbaric oxygen therapy (HBOT) has a significant effect on the prevention and treatment of DEACMP. The research progress of HBOT in the treatment of DEACMP is described below.
Keywords:HBO, CO, Carbon Monoxide Poisoning, DEACMP
Copyright © 2023 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
1. 引言
CO中毒多发生在冬天。CO是一种无色无味、不易被察觉的气体。CO与血红蛋白(Hb)的亲和力是O2的200倍以上。CO从呼吸系统摄入,很快被吸收到血液中,紧接着与Hb形成紧密复合物碳氧血红蛋白(COHb)。COHb的解离速度只有氧合血红蛋白的1/3600。COHb降低了红细胞的携氧能力,又抑制了氧的释放,导致组织缺氧 [1] 。高浓度CO更具破坏性,大量CO促进一氧化氮(NO)形成增加导致低血压,与肌红蛋白结合损伤心肌,与血小板hem蛋白和细胞色素C氧化酶结合中断细胞呼吸链。CO中毒虽全年均可发病,在我国北方广大农村地区仍属于季节性疾病,12月左右发病率最高,此时北方天气寒冷,尤其是农村地区人们用煤炭取暖,煤炭不完全燃烧会产生CO [2] 。在美国,CO中毒每年影响着5万人,死亡率在3%左右,相当一部分存活下来的患者患有长期的神经和精神后遗症,如痴呆、偏瘫、失语、震颤麻痹、情绪改变、大小便失禁等 [3] 。更有数据统计,CO中毒可能导致全球一半以上的致命中毒事件 [4] ,给社会带来了沉重的医疗负担。
在CO中毒早期,患者往往头痛头晕,恶心呕吐,或感到疲倦。吸入时间长、浓度高、病情严重的患者可发生意识丧失、呼吸与循环系统衰竭,甚至死亡。部分幸存患者中毒症状消失的第2天至第6周间歇性清醒,实际处于“假愈期”,后半数左右患者发生CO中毒迟发性脑病(Delayed encephalopathy after carbon monoxide poisoning, DEACMP),颅脑核磁共振下可见脑白质弥漫性脱髓鞘改变 [5] ,70%以上DEACMP患者颅脑核磁还会出现苍白球坏死 [6] 。有的影像结果也显示皮质体积异常和皮质厚度变薄 [7] 。DEACMP是指患者经过假愈期后出现的一系列神经和精神障碍,包括认知障碍、精神症状、锥体外系症状、锥体系症状和大脑皮质局灶性功能障碍等 [8] ,总的来说预后不良 [9] 。
医学界尚无DEACMP特异性治疗方法,目前临床上治疗手段包括高压氧治疗(HBOT)、间充质干细胞移植、丁苯二甲酸等 [10] ,还有纠正低氧血症、激素、营养脑细胞、改善脑部微循环、抗血小板聚集、促醒、针灸等综合治疗,积极防止相关并发症 [11] 。药物研究进展包括抗氧化剂和线粒体底物前药等。DEACMP的一个重要机制是抑制线粒体细胞色素C氧化酶,导致能量衰竭、活性氧(ROS)大量产生。这些药物对含CO在内的各种线粒体抑制剂有效,以琥珀酸前药为例,Janowska等采集健康人类志愿者的外周血进行体外实验,将完整的人类血小板暴露于N-琥珀酰亚胺N-甲基氨基甲酸酯(NSNM)或其载体中30 min。其中一组用细胞通透性琥珀酸前药NV118处理,评估常规耗氧量和耦合耗氧量。实验结果发现暴露于NSNM后使用细胞通透性琥珀酸前药,能改善受损线粒体常规和耦合耗氧量。此外,研究人员在暴露于NSNM的完整人类血小板中测量了乳酸生成,乳酸堆积代表线粒体功能障碍或缺氧。NSNM显著增加了人血小板的乳酸含量,但是用细胞渗透性琥珀酸前药NV118从暴露2 h开始每30 min重复处理NSNM中毒细胞,结果显示细胞通透性琥珀酸前药显著降低了NSNM诱导的乳酸产量。有学者指出线粒体底物前药用于CO中毒等也有同样的效果,能增强琥珀酸向细胞的传递,促进琥珀酸被线粒体摄取,加强细胞代谢,有利于DEACMP患者身体机能恢复 [12] ,但这方面的研究尚处于探索阶段。新兴治疗进展还有体外高氧合治疗(EHT)等方法 [13] 。药物产生不良反应及抗药性不可避免,患者可能会自行减药或停药,医从性较差。HBOT是在大于一个大气压的环境下使用纯氧的医疗手段,它立足于神经机制角度,是一种非侵入性、经济、无创的方法,正在成为当下科研和临床工作的重要参与者。以下将从HBOT的治疗原理、应用现状、安全性等方面,具体阐述其在DEACMP治疗中的应用和前景。
2. 高压氧治疗一氧化碳中毒迟发性脑病的原理
缺血缺氧是DEACMP的主要发病机制。脑组织极易缺血缺氧。CO与Hb高度亲和,生成COHb,携氧能力下降。在线粒体中,CO直接与细胞色素C氧化酶结合,或间接与细胞色素P450超家族的酶结合,造成呼吸链传递障碍,引发组织缺氧,影响中枢神经系统。CO中毒同时还会引起心肌损伤、低血压,造成脑动脉供血不足,损伤大脑皮质、白质、海马、基底核等部位 [14] 。胆碱能系统和海马神经一旦受到影响,记忆能力就会下降 [15] 。HBOT基于亨利定律,增加血浆和组织中的溶解氧 [16] ,显著提高血液和组织中的氧分压,让10倍以上的O2进入血液并到达缺氧组织,纠正脑组织缺血缺氧状态,促进受损脑血管及神经组织修复,改善神经功能。HBOT为机体提供了足够的氧代谢,不再依赖HbO2的解离,还有恢复血管壁通透性、减少渗出、改善脑水肿、降低颅内压的作用;同时促进侧支循环的建立,降低血液粘度,抵抗血小板聚集。
氧化应激也是DEACMP机制之一,体内氧化/抗氧化系统维持着重要的病理生理学作用。CO可与离子通道、NO、线粒体、细胞色素、以及多种酶类作用,生成ROS,ROS水平急剧增加称为氧化应激,它可以破坏正常细胞结构并阻碍细胞信号转导通路,引发体内抗氧化防御系统失衡 [17] 。具体可能与ROS导致脂质过氧化,损伤线粒体有关;ROS还会引起髓鞘碱蛋白修饰,激活自身免疫系统,导致脱髓鞘,T淋巴细胞活化释放炎症因子,最终引起脑血管病变 [18] 。而HBOT可在细胞水平上维持线粒体氧化还原平衡,保持线粒体完整性,激活转录因子,缓解氧化应激状态以发挥神经保护作用 [19] 。在全身水平上,还可通过诱导血管生成、增加神经营养因子的释放来减轻疾病的不良影响。
神经炎症也是DEACMP的机制之一 [20] 。在动物模型中,HBOT可以减少肿瘤坏死因子α (TNF-α)、促炎细胞因子白介素6 (IL-6)的产生,增加抗炎细胞因子白介素10 (IL-10),调节免疫反应 [21] 。脂质过氧化产物会诱导淋巴细胞免疫反应和小胶质细胞激活。有研究显示p38-MAPK-CCL2信号通路可介导神经炎症,HBOT治疗可通过调节p38-MAPK-CCL2信号通路来调节神经炎症 [22] 。
HBOT可以改善意识障碍。DEACMP的主要病理机制还涉及海马、皮层、纹状体和丘脑神经细胞的过度凋亡。田晓飞等建立了CO中毒体外模型,观察到CO对少突胶质细胞的直接细胞毒性在DEACMP病情发展中起作用,DEACMP可能是由于少突胶质细胞对CO毒性高敏感性所致 [23] 。还有研究发现CO中毒引起的少突胶质细胞功能障碍和再生失败可导致髓鞘持续受损,轴突的完整性被破坏,轴突没有获得充足营养,这导致了DEACMP一系列神经系统症状 [24] 。赵林珊等人建立大鼠模型后发现,急性CO中毒可以诱发高迁移率族蛋白B1 (HMGBI)、IL-6、TNF-α及胱天蛋白酶3 (Caspase-3蛋白)的表达,HBOT通过下调HMGB1抑制IL-6、TNF-α和Caspase-3蛋白的表达,减轻大鼠神经细胞凋亡,从而治疗DEACMP,为DEACMP治疗提供了新的理论依据和治疗靶点 [25] 。林月荣等运用轻度认知障碍(MCI)大鼠模型,阐明了HBOT对MCI大鼠早期认知功能障碍保护作用的机制,可能通过细胞外调节激酶(ERK)信号通路抑制细胞凋亡而保护认知功能 [26] 。还有研究发现基质金属蛋白酶(MMP)能够溶解细胞表面粘附分子,与神经元凋亡和肿瘤细胞迁移密切相关,HBOT可降低由CO引发的大鼠海马中MMP-9的表达,减少神经元凋亡 [27] 。
DEACMP发病机制的相关学说层出不穷,当前研究也在不断深入。有学者还发现其发病机制与血管壁变性、血管运动神经麻痹有关;还有的研究发现发病机制涉及神经递质异常 [28] 。DEACMP的发生与许多因素有关,确切作用机制医学界尚无统一学说。综合来说,HBOT的作用可以覆盖相当一部分DEACMP的发病机制,有效改善DEACMP患者认知功能和日常生活能力 [29] 。
3. 高压氧治疗一氧化碳中毒迟发性脑病的应用现状
HBOT是改善脑组织缺氧状态的非侵入性技术,具有无创、相对安全、操作简便等优点,目前已经得到较为广泛的应用 [30] 。CO中毒及DEACMP一般建议使用HBOT,因为COHb解离半衰期空气中超过4 h,HBOT运用后这个时间缩短到23 min [31] 。有学者建议HBOT应在发病6 h内启动,所有CO中毒的患者都应被告知发生DEACMP的风险 [32] 。
HBOT是CO中毒及DEACMP最有效的临床治疗方法。早期识别筛选更易发生DEACMP的患者是临床上的难题,也是当前研究热点之一。刘珊等对314例患者的医疗资料进行了分析,结果显示木炭燃烧中毒发生DEACMP的风险更高 [33] 。有学者认为神经元特异性烯醇化酶(NSE)水平在48 h最高,48 h时间节点测得NSE > 20.98 ng/mL可作为DEACMP的独立预测因子,对这类患者提倡尽早使用HBOT [34] 。一项前瞻性观察性研究显示,高水平的血清肌酐激酶(CK)和异常的脑成像结果是DEACMP发生的重要预测因素,建议结果异常患者早期行HBOT等综合干预 [35] 。Kokulu等在一项前瞻实验中证明血清轴突导向因子1 (netrin-1)可以预测急性CO中毒后是否有发生DEACMP的可能 [36] 。刘佐龙等建立了大鼠模型,发现长链非编码RNA CRNDE基因与和核不均一性核糖核蛋白A1 (hnRNPA1)通过抑制泛素羧基端酯酶L5 (uchl5)介导的平滑蛋白(SMO)去泛素化,促进DEACMP病情发展,CRNDE可能是治疗DEACMP的一个潜在的治疗靶点 [37] 。Hafez等研究发现入院时血清S100钙结合蛋白β (S-100β)水平是DEACMP病情发展的预测因子,可指导HBO治疗的应用 [38] 。Demirtas等研究发现血清葡萄糖/钾比值可能是一个简便的参数,可用于急诊科预测DEACMP发生 [39] 。有的研究还建立并验证了一个计算DEACMP发生概率的预测公式,有助于更好地决策治疗策略 [40] 。有研究还证明了DEACMP的发生发展还与肌钙蛋白I、脑钠肽(BNP)、年龄、CO暴露时长和格拉斯哥昏迷量表(GCS)评分有关 [41] 。早期HBOT介入越来越被用于这些高危人群的治疗,但对于HBOT介入时间也众说纷纭,并没有统一的共识。有数据表明在中毒后6 h内接受HBOT治疗的患者中,DEACMP发生率约为1%;大于6 h或未接受高压氧治疗的患者中,DEACMP的发生率通常约为13%以上。即便DEACMP已经发生,后续HBOT也显著有效 [42] 。有的研究旨在确定HBOT最佳治疗次数。Han等发现在不同次数HBOT治疗后DEACMP的发生率没有差异 [43] 。对于DEACMP患者的最佳HBO治疗次数还没有明确的共识,仍需进一步探究。
HBOT广泛用于DEACMP的治疗,其阻止DEACMP的病情进展、恢复患者生理机能疗效确切。目前对于HBOT治疗DEACMP的研究越来越细致深入。HBOT对意识障碍患者的注意力和认知控制具有特异性的激活作用,引起初级感觉皮层颞叶和枕叶兴奋。在HBOT治疗过程中,一些脑电图微状态指标显示出有利于患者意识状态改善的变化。有研究发现HBOT能动员CD34+/CD90+和CD34+/CD133+双阳性细胞等循环干细胞,通过上调脑源性神经营养因子、巢蛋白和突触素改善患者认知 [15] 。胡慧君等在一项回顾性研究中选择了46例DEACMP患者,半数患者接受HBOT后症状得到显著改善,疗效不明显的部分可能因为个体差异,老年、并发症多、清醒时间短、日常生活活动能力量表(ADL)评分低的患者预后较差 [9] 。
有部分研究集中于HBOT与其他治疗方式综合起来治疗DEACMP以期待更好的疗效,这也是目前临床实验的研究热点之一。向文平等招募了120例DEACMP患者,给予地塞米松(DXM)和HBOT联合治疗4周后,与对照组相比,实验组平均简易智力状态检查量表(MMSE)评分显著高于对照组,平均神经功能缺损量表(NIHSS)评分显著低于对照组 [44] 。Zhang等招募了171例DEACMP患者评估正丁基邻苯二甲酸(NBP)和DXM联合HBOT治疗DEACMP患者的疗效。实验组的MMSE、蒙特利尔认知评估量表(MoCA)、ADL评分均显著高于对照组,NBP、DXM联合HBOT治疗可以显著改善患者的认知和运动功能,且非常安全 [45] 。卢冠文等证明针刺联合HBOT可明显改善早期DEACMP患者日常生活能力和脑血流灌注情况 [46] 。李琴等研究了益脑颗粒和HBOT对于DEACMP患者认知和运动功能障碍的疗效,纳入了89例DEACMP患者,结果与对照组相比,实验组ADL、MoCA、MMSE结果显著改善,脑白质和认知功能的损伤程度明显减轻,P300波的潜伏期显著缩短,振幅明显增加。说明益脑颗粒与HBOT联合使用可显著改善DEACMP患者的认知功能和运动功能 [47] 。
4. 高压氧治疗一氧化碳中毒迟发性脑病的安全性
HBOT在封闭环境中进行,其安全性一直是医生及患者共同关注的问题。总体来说HBOT好处大于风险。DEACMP治疗中,HBOT是重要的一环。有研究报告了2例试图通过木炭燃烧自杀引起的DEACMP患者,顺利接受了总共超过100次疗程的HBOT,症状改善明显 [48] 。Liao等人研究表明,在DEACMP发生后,接受HBOT,特别是在DEACMP发病3天内开始治疗,症状显著改善,过程中未报告有明显不良反应 [49] 。Spina等报告了一例33岁的女性DEACMP患者,她接受了约40次HBOT,没有出现难以忍受的不良反应 [50] 。Martani等的研究中,DEACMP患者经过10次HBOT,在随访结束时,未报告对药物或HBOT的不良反应 [51] 。
HBOT的安全性也已在治疗其他疾病时被证明了,HBOT可以治疗50种以上疾病,治疗适应症广泛。最近的研究发现,HBOT在COVID-19后遗症治疗方面也表现出了良好的安全性 [52] ,肿瘤患者一般情况较差,HBOT可作为神经胶质瘤患者的辅助治疗抑制肿瘤生长 [53] 。HBOT还用于治疗脑心肺功能障碍的复苏 [54] 和COVID-19引发的严重低氧血症等 [55] 。可持续的包括HBOT在内的综合康复手段可以帮助创伤性脑损伤患者提高日常生活能力和认知能力,强化康复训练联合HBOT治疗可进一步改善脑外伤后的功能障碍,治疗期间没有发现明显的不良反应,早期使用更利于患者恢复 [56] 。李坤等已在小鼠实验中论证,HBOT显著增强体内替尼泊苷诱导的cgas刺痛依赖的肿瘤I型干扰素和核因子kappa-B信号通路传导,这两者都有助于树突状细胞和细胞毒性T细胞激活 [57] 。Engela等人在细胞层面的研究发现,HBOT可在脂肪来源的干细胞和成纤维细胞的伤口样环境中产生免疫调节和促血管生成作用 [58] 。梁建和等建立大鼠模型后发现HBOT可促进体重减轻,治疗高脂血症。3 h/d的HBOT足以保护正常或高脂血症SD大鼠的肝脏。同时证实其对高脂血症SD大鼠有心、肾保护作用 [59] 。HBOT还能提高纳米药物的肿瘤抑制率 [60] 。还有研究人员将HBOT应用于改善基底细胞癌术后切口的愈合,获得了一定疗效 [61] 。HBOT还可作为视网膜中央动脉闭塞患者的一种可行选择,安全且耐受性良好 [62] 。HBOT治疗范围广,除传统治疗适应症以外,其在其他疾病中的治疗最近几年也在不断探索中,整体来说表现出了良好的安全性,不良反应较少。
对于治疗环境的安全,就要求各高压氧舱中心选拔专业人员从事氧舱日常管理工作,相关工作人员要经过培训考核后上岗。工作人员在操作中要严格把握治疗的适应证,在治疗前充分告知患者流程,帮助患者做好准备工作,消除患者紧张情绪,取得患者配合。工作中严格按照操作流程,如使用低于神经毒性阈值的压力,做好开舱前准备,加压过程中掌握速度、询问舱内患者感受,有人员不适停止加压等诸多注意事项等,为患者提供一个安全、舒适的治疗环境。
目前HBOT治疗DEACMP的总体安全性较好,但可能出现一定的不良反应,神经毒性的症状包括视力障碍、耳鸣、恶心、面部痉挛、头晕和定向障碍,应移除氧气面罩恢复大气压力,大部分患者可以迅速缓解。少数患者出现气压伤、氧中毒、减压病等现象,如中耳气压损伤,患者进行瓦尔萨尔瓦动作以有效解决 [63] 。罕见但严重的情况如癫痫发作和意识丧失 [64] ,若停止治疗后患者的意识状态未见好转或生命体征不平稳,应立即进行下一步治疗,并完善脑电图等相关检查,这样才能将不良反应降到最低,提高患者治疗舒适度。也有研究提出异议,认为HBO可能是一种比常压高浓度氧治疗(NBO)更有风险的治疗方法,因为HBO治疗组发生DEACMP的发生率明显高于NBO。但这个结果不能完全排除偏倚的可能性,标准化、个体化的治疗方法还需进一步探讨 [65] 。
HBOT总体上具备安全、廉价、有效的优点,应加强氧舱建设,规范氧舱管理,遵循个体化原则,减少不良反应的发生,在临床上进一步推广。
5. 展望
HBOT广泛应用于DEACMP的防治,有着其他疗法不可替代的效果。但也有研究表明HBOT的临床应用仍有一定局限性,如高压氧舱的建设与管理相对复杂、治疗时间长,可能并发不良反应等。近几年研究也发现HBOT过度治疗反而疗效不佳等问题,对于DEACMP患者的最佳治疗次数还没有明确的共识。单一HBOT的临床疗效也是不完全的,目前往往还要合并其他治疗。DEACMP的相关研究缺乏大量基础实验、临床随机对照实验数据支撑,发病机制尚不十分明确,这需要更多的基础研究探讨确切的分子机制,也需要大量的临床病例进行回顾性研究。HBOT的适应症和方案没有标准化,临床也缺乏DEACMP客观预测标志物与指标,DEACMP尚无有效的预防措施。随着近年来基础实验的大量开展与临床研究的不断推进,相信HBOT治疗DEACMP程序会更加规范,疗效会日益显著。
由于DEACMP致残率极高,应该从根源上避免CO中毒的发生。要从根本上预防DEACMP,就要加强安全宣传,杜绝CO中毒。全球超过27亿人口每年使用固体燃料烹饪和取暖,这些人群集中在发展中国家。在中国农村地区,室内燃烧固体燃料仍然很常见,更容易CO中毒,再加上这些患者由于贫穷和缺乏相关知识延误了最佳治疗时机,或因中毒症状好转放弃后续治疗,发生DEACMP的潜在可能性更高。相关部门要做好基层宣传教育,指导居民落实住所常通风、改善生活条件等相关干预措施,从源头上遏制DEACMP。
文章引用
刘宴廷,杨俊生,张梓莘. 高压氧在一氧化碳中毒迟发性脑病治疗中的研究进展
Research Progress of Hyperbaric Oxygen in the Treatment of Delayed Encephalopathy after Carbon Monoxide Poisoning[J]. 临床医学进展, 2023, 13(09): 13913-13921. https://doi.org/10.12677/ACM.2023.1391945
参考文献
- 1. Yelmo-Cruz, S., Dorta-Gonzalez, J.F. and Tascon-Cervera, J.J. (2022) Delayed Neuropsychiatric Syndrome after Carbon Monoxide Poisoning. Actas Españolas de Psiquiatría, 50, 65-67.
- 2. 刘长林. 急性一氧化碳中毒221例临床分析与探讨[J]. 中国实用医药, 2023, 18(7): 138-141.
- 3. Rose, J.J., Wang, L., Xu, Q., et al. (2017) Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy. American Journal of Respiratory and Critical Care Medicine, 195, 596-606. https://doi.org/10.1164/rccm.201606-1275CI
- 4. Nanagas, K.A., Penfound, S.J. and Kao, L.W. (2022) Carbon Monoxide Toxicity. Emergency Medicine Clinics of North America, 40, 283-312. https://doi.org/10.1016/j.emc.2022.01.005
- 5. Bleecker, M.L. (2015) Carbon Monoxide Intoxication. Handbook of Clinical Neurology, 131, 191-203. https://doi.org/10.1016/B978-0-444-62627-1.00024-X
- 6. Yeh, S.H., Chiu, C.H., Kao, H.W., et al. (2022) Mul-ti-Modal Synergistic 99mTc-TRODAT-1 SPECT and MRI for Evaluation of the Efficacy of Hyperbaric Oxygen Therapy in CO-Induced Delayed Parkinsonian and Non-Parkinsonian Syndromes. Antioxidants, 11, Article 2289. https://doi.org/10.3390/antiox11112289
- 7. Wang, T., Zhang, Y., Nan, J., et al. (2023) Surface-Based Morphom-etry Study of Brain in Patients with Carbon Monoxide Poisoning. European Journal of Radiology, 160, Article ID: 110711. https://doi.org/10.1016/j.ejrad.2023.110711
- 8. Huang, Y.Q., Peng, Z.R., Huang, F.L. and Yang, A.L. (2020) Mechanism of Delayed Encephalopathy after Acute Carbon Monoxide Poisoning. Neural Regeneration Research, 15, 2286-2295. https://doi.org/10.4103/1673-5374.284995
- 9. Hu, H., Pan, X., Wan, Y., Zhang, Q. and Liang, W.B. (2011) Fac-tors Affecting the Prognosis of Patients with Delayed Encephalopathy after Acute Carbon Monoxide Poisoning. The American Journal of Emergency Medicine, 29, 261-264. https://doi.org/10.1016/j.ajem.2009.09.030
- 10. Xu, X.M., Luo, H., Rong, B.B., et al. (2019) Management of Delayed Encephalopathy after CO Poisoning: An Evidence-Based Narrative Review. Medicine, 98, e18199. https://doi.org/10.1097/MD.0000000000018199
- 11. 郑全乐, 付娜, 周顺义, 等. 急性一氧化碳中毒迟发性脑病的诊疗进展[J]. 中华神经创伤外科电子杂志, 2017, 3(1): 48-50.
- 12. Jang, D.H., Piel, S., Greenwood, J.C., et al. (2021) Emerging Cellular-Based Therapies in Carbon Monox-ide Poisoning. American Journal of Physiology-Cell Physiology, 321, C269-C275. https://doi.org/10.1152/ajpcell.00022.2021
- 13. Steuer, N.B., Schlanstein, P.C., Hannig, A., et al. (2021) Extra-corporeal Hyperoxygenation Therapy (EHT) for Carbon Monoxide Poisoning: In-Vitro Proof of Principle. Membranes, 12, Article 56. https://doi.org/10.3390/membranes12010056
- 14. 万琛宜, 黄招君, 杨乐. 高压氧治疗一氧化碳中毒迟发脑病的疗效分析及其机制研究[J]. 中国现代医学杂志, 2021, 31(24): 94-98.
- 15. Zhang, L., Sun, Q., Xin, Q., et al. (2021) Hyperbaric Oxygen Therapy Mobilized Circulating Stem Cells and Improved Delayed Encephalopathy after Acute Carbon Monoxide Poisoning with Up-Regulation of Brain-Derived Neurotrophic Factor. The American Journal of Emergency Medicine, 42, 95-100. https://doi.org/10.1016/j.ajem.2021.01.021
- 16. Jones, M.W., Brett, K., Han, N. and Wyatt, H.A. (2023) Hyperbaric Physics. StatPearls, Treasure Island.
- 17. Akyol, S., Yuksel, S., Pehlivan, S., et al. (2016) Possible Role of Antioxidants and Nitric Oxide Inhibitors against Carbon Monoxide Poisoning: Having a Clear Conscience Because of Their Potential Benefits. Medical Hypotheses, 92, 3-6. https://doi.org/10.1016/j.mehy.2016.04.015
- 18. 郭大志, 冯园, 胡慧军, 等. 高压氧对急性一氧化碳中毒大鼠少突胶质细胞前体细胞ADAM10 mRNA表达的影响[J]. 中国医药导报, 2018, 15(5): 9-12.
- 19. Schottlender, N., Gottfried, I. and Ashery, U. (2021) Hyperbaric Oxygen Treatment: Effects on Mitochondrial Function and Oxidative Stress. Biomolecules, 11, Article 1827. https://doi.org/10.3390/biom11121827
- 20. Du, J.J., Liu, Z.Q., Yan, Y., et al. (2020) The Cannabinoid WIN 55, 212-2 Reduces Delayed Neurologic Sequelae after Carbon Monoxide Poisoning by Promoting Microglial M2 Polarization through ST2 Signaling. Journal of Molecular Neuroscience, 70, 422-432. https://doi.org/10.1007/s12031-019-01429-2
- 21. Paganini, M., Bosco, G., Perozzo, F., et al. (2021) The Role of Hyperbaric Oxygen Treatment for COVID-19: A Review. In: Pokorski, M., Ed., Medical and Biomedical Updates, Springer, Cham, 27-35. https://doi.org/10.1007/5584_2020_568
- 22. Jiang, Y., Chen, Y., Huang, C., et al. (2021) Hyperbaric Oxygen Therapy Improves Neurological Function via the p38-MAPK/CCL2 Signaling Pathway following Traumatic Brain Injury. NeuroReport, 32, 1255-1262. https://doi.org/10.1097/WNR.0000000000001719
- 23. Tian, X., Guan, T., Guo, Y., Zhang, G.H. and Kong, J.M. (2020) Selective Susceptibility of Oligodendrocytes to Carbon Monoxide Poisoning: Implication for Delayed Neurologic Sequelae (DNS). Frontiers in Psychiatry, 11, Article 815. https://doi.org/10.3389/fpsyt.2020.00815
- 24. Guo, D., Hu, H. and Pan, S. (2020) Oligodendrocyte Dysfunction and Regeneration Failure: A Novel Hypothesis of Delayed En-cephalopathy after Carbon Monoxide Poisoning. Medical Hypotheses, 136, Article ID: 109522. https://doi.org/10.1016/j.mehy.2019.109522
- 25. Zhao, L.S., Liu, X., Tang, J.W., et al. (2020) The Mechanism of Hyperbaric Oxygen Regulating HMGB1 in the Prevention and Treatment of Encephalopathy after Acute CO Poisoning. Chinese Journal of Industrial Hygiene and Occupational Diseases, 38, 641-645. (In Chinese)
- 26. Lin, Y., Lin, X., Zheng, X., et al. (2020) Hyperbaric Oxygen Therapy Cognitive Function in a Rat Model of Mild Cognitive Impairment via ERK Signaling. Annals of Palliative Medicine, 9, 3472-3480. https://doi.org/10.21037/apm-20-1716
- 27. Silva, F.S., Canedo, V., Abreu, B.J. and Oliveira, M.F. (2021) Re-sponses of Matrix Metalloproteinases to Hyperbaric Oxygen Treatment: Changing for Good or Ill? Connective Tissue Research, 62, 249-262. https://doi.org/10.1080/03008207.2020.1821675
- 28. Liao, S.C., Mao, Y.C., Yang, K.J., et al. (2019) Targeting Optimal Time for Hyperbaric Oxygen Therapy following Carbon Monoxide Poisoning for Prevention of Delayed Neu-ropsychiatric Sequelae: A Retrospective Study. Journal of the Neurological Sciences, 396, 187-192. https://doi.org/10.1016/j.jns.2018.11.025
- 29. Chen, X., Li, Y., Chen, W., et al. (2016) Protective Effect of Hyper-baric Oxygen on Cognitive Impairment Induced by D-Galactose in Mice. Neurochemical Research, 41, 3032-3041. https://doi.org/10.1007/s11064-016-2022-x
- 30. 李茂新, 赵宏宇. 一氧化碳中毒治疗的研究进展[J]. 医学综述, 2020, 26(13): 2529-2533.
- 31. Angelova, P.R., Myers, I. and Abramov, A.Y. (2023) Carbon Monoxide Neurotoxi-city Is Triggered by Oxidative Stress Induced by ROS Production from Three Distinct Cellular Sources. Redox Biology, 60, Article ID: 102598. https://doi.org/10.1016/j.redox.2022.102598
- 32. Juttner, B., Busch, H.J., Callies, A., et al. (2021) S2k Guideline Diagnosis and Treatment of Carbon Monoxide Poisoning. German Medical Science, 19, c13.
- 33. Liu, S., Liu, Y., Yang, C.J., Xie, D.D. and Zhang, X. (2022) Charcoal Burning Is Associated with a Higher Risk of Delayed Neurological Se-quelae after Domestic Carbon Monoxide Poisoning in South China: A Retrospective Cohort Study. The American Jour-nal of Emergency Medicine, 60, 57-61. https://doi.org/10.1016/j.ajem.2022.06.003
- 34. Nah, S., Choi, S., Kim, G.W., et al. (2021) Prediction of Delayed Neuropsychiatric Sequelae after Carbon Monoxide Poisoning via Serial Deter-mination of Serum Neuron-Specific Enolase Levels. Human & Experimental Toxicology, 40, S339-S346. https://doi.org/10.1177/09603271211043475
- 35. Kim, H.B., Nah, S., Choi, S.W., et al. (2022) Objective Predic-tors of Delayed Neurological Sequelae in Patients with Altered Mental Status after Carbon Monoxide Poisoning. Under-sea and Hyperbaric Medicine, 49, 83-91. https://doi.org/10.22462/01.02.2022.8
- 36. Kokulu, K., Mutlu, H. and Sert, E.T. (2020) Serum Netrin-1 Levels at Presentation and Delayed Neurological Sequelae in Unintentional Carbon Monoxide Poisoning. Clinical Toxicology, 58, 1313-1319. https://doi.org/10.1080/15563650.2020.1743302
- 37. Liu, Z., Bian, M. and Pang, L. (2023) LncRNA CRNDE Binds hnRNPA1 to Facilitate Carbon Monoxide Poisoning-Induced Delayed Encephalopathy via Inhibiting UCHL5-Mediated SMO Deubiquitination. Metabolic Brain Disease, 38, 1097-1113. https://doi.org/10.1007/s11011-022-01157-4
- 38. Hafez, A.S. and El-Sarnagawy, G.N. (2020) S-100β in Predict-ing the Need of Hyperbaric Oxygen in CO-Induced Delayed Neurological Sequels. Human & Experimental Toxicology, 39, 614-623. https://doi.org/10.1177/0960327119897104
- 39. Demirtas, E., Korkmaz, I., Tekin, Y.K., Demirtaş, E. and Çaltekin, İ. (2021) Assessment of Serum Glucose/Potassium Ratio as a Predictor for Delayed Neuropsychiatric Syndrome of Car-bon Monoxide Poisoning. Human & Experimental Toxicology, 40, 207-213. https://doi.org/10.1177/0960327120945773
- 40. Yang, S.J., Liu, H.C., Peng, Q.F., Li, J.L. and Liu, Q.H. (2022) Predicting Scale of Delayed Neuropsychiatric Sequelae in Patients with Acute Carbon Monoxide Poisoning: A Retro-spective Study. The American Journal of Emergency Medicine, 52, 114-118. https://doi.org/10.1016/j.ajem.2021.10.056
- 41. Zhang, Y., Lu, Q., Jia, J., Xiang, D.K. and Xi, Y.N. (2021) Multi-center Retrospective Analysis of the Risk Factors for Delayed Neurological Sequelae after Acute Carbon Monoxide Poi-soning. The American Journal of Emergency Medicine, 46, 165-169. https://doi.org/10.1016/j.ajem.2020.06.090
- 42. Liu, J., Si, Z., Liu, J., et al. (2020) Clinical and Imaging Prognosis in Patients with Delayed Encephalopathy after Acute Carbon Monoxide Poisoning. Behavioural Neurology, 2020, Article ID: 1719360. https://doi.org/10.1155/2020/1719360
- 43. Han, S., Nah, S., Choi, S., Kim, G.W. and Lee, Y.H. (2021) Optimal Sessions of Hyperbaric Oxygen Therapy in Patients with Carbon Monoxide Poisoning: A Prospective Observational Study. The American Journal of Emergency Medicine, 44, 132-136. https://doi.org/10.1016/j.ajem.2020.10.062
- 44. Xiang, W., Xue, H., Wang, B., et al. (2017) Combined Application of Dexamethasone and Hyperbaric Oxygen Therapy Yields Better Efficacy for Patients with Delayed Encephalopathy af-ter Acute Carbon Monoxide Poisoning. Drug Design, Development and Therapy, 11, 513-519. https://doi.org/10.2147/DDDT.S126569
- 45. Zhang, J., Guo, Y., Li, W., Li, G. and Chen, Y. (2020) The Efficacy of N-Butylphthalide and Dexamethasone Combined with Hyperbaric Oxygen on Delayed Encephalopathy after Acute Carbon Monoxide Poisoning. Drug Design, Development and Therapy, 14, 1333-1339. https://doi.org/10.2147/DDDT.S217010
- 46. 卢冠文, 张艳利, 王天红, 等. 磁共振体素内不相干运动成像技术评估针刺结合高压氧治疗一氧化碳中毒迟发性脑病灌注损伤的疗效[J]. 针刺研究, 2020, 45(5): 407-411.
- 47. Qin, L., Meihua, C., Dadong, G., et al. (2017) Efficacy of Combined XingZhi-YiNao Granules and Hy-perbaric Oxygen Therapy for Cognition and Motor Dysfunction in Patients with Delayed Encephalopathy after Acute Carbon Monoxide Poisoning. Evidence-Based Complementary and Alternative Medicine, 2017, Article ID: 1323297. https://doi.org/10.1155/2017/1323297
- 48. Monji, A., Tateishi, H., Murakawa, T., et al. (2021) Hyperbaric Oxy-gen Therapy for Carbon Monoxide-Induced Delayed Neuropsychiatric Sequelae: Case Report of Two Cases and Rele-vant Literature Review. Case Reports in Psychiatry, 2021, Article ID: 6663824. https://doi.org/10.1155/2021/6663824
- 49. Liao, S.C., Shao, S.C., Yang, K.J. and Yang, C.C. (2021) Real-World Effectiveness of Hyperbaric Oxygen Therapy for Delayed Neuropsychiatric Sequelae after Carbon Monoxide Poisoning. Scientific Reports, 11, Article No. 19212. https://doi.org/10.1038/s41598-021-98539-y
- 50. Spina, V., Tomaiuolo, F., Celli, L., et al. (2019) A Case of Car-bon Monoxide-Induced Delayed Neurological Sequelae Successfully Treated with Hyperbaric Oxygen Therapy, N-Acetylcysteine, and Glucocorticoids: Clinical and Neuroimaging Follow-Up. Case Reports in Neurological Medicine, 2019, Article ID: 9360542. https://doi.org/10.1155/2019/9360542
- 51. Martani, L., Giovanniello, A., Bosco, G., et al. (2022) Delayed Neuro-logical Sequelae Successfully Treated with Adjuvant, Prolonged Hyperbaric Oxygen Therapy: Review and Case Report. International Journal of Environmental Research and Public Health, 19, Article 5300. https://doi.org/10.3390/ijerph19095300
- 52. Kjellberg, A., Hassler, A., Bostrom, E., et al. (2023) Hyperbaric Ox-ygen Therapy for Long COVID (HOT-LoCO), an Interim Safety Report from a Randomised Controlled Trial. BMC In-fectious Diseases, 23, Article No. 33. https://doi.org/10.1186/s12879-023-08002-8
- 53. Xue, T., Ding, J.S., Li, B., et al. (2021) A Narrative Review of Adjuvant Therapy for Glioma: Hyperbaric Oxygen Therapy. Medical Gas Research, 11, 155-157. https://doi.org/10.4103/2045-9912.318861
- 54. Rogatsky, G.G. and Stambler, I. (2017) Hyperbaric Oxygenation for Resuscitation and Therapy of Elderly Patients with Cerebral and Cardio-Respiratory Dysfunction. Frontiers in Bio-science, 9, 230-243. https://doi.org/10.2741/s484
- 55. Cannellotto, M., Duarte, M., Keller, G., et al. (2022) Hyper-baric Oxygen as an Adjuvant Treatment for Patients with COVID-19 Severe Hypoxaemia: A Randomised Controlled Trial. Emergency Medicine Journal, 39, 88-93. https://doi.org/10.1136/emermed-2021-211253
- 56. Lu, Y., Zhou, X.S., Cheng, J.C. and Ma, Q. (2021) Early In-tensified Rehabilitation Training with Hyperbaric Oxygen Therapy Improves Functional Disorders and Prognosis of Pa-tients with Traumatic Brain Injury. Advances in Wound Care, 10, 663-670. https://doi.org/10.1089/wound.2018.0876
- 57. Li, K., Gong, Y., Qiu, D., et al. (2022) Hyperbaric Oxygen Facili-tates Teniposide-Induced cGAS-STING Activation to Enhance the Antitumor Efficacy of PD-1 Antibody in HCC. Journal for ImmunoTherapy of Cancer, 10, e004006. https://doi.org/10.1136/jitc-2021-004006
- 58. Engel, P., Ranieri, M., Felthaus, O., et al. (2020) Effect of HBO Therapy on Adipose-Derived Stem Cells, Fibroblasts and Co-Cultures: In vitro Study of Oxidative Stress, Angiogenic Potential and Production of Pro-Inflammatory Growth Factors in Co-Cultures. Clinical Hemorheology and Microcircu-lation, 76, 459-471. https://doi.org/10.3233/CH-209222
- 59. Liang, J., Sun, X., Yi, L. and Lv, J.Y. (2022) Effect of Hyperbaric Oxygen Therapy on Weight Loss and Hyperlipidemia in Rats. Biochemical and Biophysical Research Communications, 599, 106-112. https://doi.org/10.1016/j.bbrc.2022.02.034
- 60. Wang, X., Li, S., Liu, X., et al. (2021) Boosting Nanomedicine Ef-ficacy with Hyperbaric Oxygen Therapy. In: Fontana, F. and Santos, H.A., Eds., Bio-Nanomedicine for Cancer Therapy, Springer, Cham, 77-95. https://doi.org/10.1007/978-3-030-58174-9_4
- 61. Oley, M.H., Oley, M.C., Gunawan, D.F., et al. (2023) Adjunc-tive Hyperbaric Oxygen Therapy with Reconstruction of Lower Eyelid for Basal Cell Carcinoma: A Case Series. Interna-tional Journal of Surgery Case Reports, 103, Article ID: 107890. https://doi.org/10.1016/j.ijscr.2023.107890
- 62. Masters, T.C., Westgard, B.C., Hendriksen, S.M., et al. (2021) Case Series of Hyperbaric Oxygen Therapy for Central Retinal Artery Occlusion. Retinal Cases & Brief Reports, 15, 783-788. https://doi.org/10.1097/ICB.0000000000000895
- 63. Toledo-Blas, M., Franco-Vadillo, A., Somilleda-Ventura, S.A., et al. (2022) Comparative Treatment with Hyperbaric Oxygen Therapy in a Model of Systemic Loxoscelism in Rats. Iranian Journal of Basic Medical Sciences, 25, 1452-1459.
- 64. Marziali, S., Di Giuliano, F., Picchi, E., et al. (2016) Non-Convulsive Status Epilepticus in a Patient with Carbon-Monoxide Poisoning Treated with Hyperbaric Oxygen Therapy. The Neuroradiology Journal, 29, 431-435. https://doi.org/10.1177/1971400916665379
- 65. Yang, C.C., Chuang, Y.F., Chen, P.E., et al. (2021) The Occur-rence of Delayed Neuropsychologic Sequelae in Acute Carbon Monoxide Poisoning Patients after Treatment with Hy-perbaric or Normobaric Oxygen Therapy. Medicine, 100, e24183. https://doi.org/10.1097/MD.0000000000024183
NOTES
*通讯作者。