﻿ 基于粒子自旋的原子模型与实验分析 Atomic Model and Experimental Analysis Based on Particle Spin

Modern Physics
Vol.07 No.04(2017), Article ID:21206,12 pages
10.12677/MP.2017.74011

Atomic Model and Experimental Analysis Based on Particle Spin

Xianjin Wu

School of Information and Mathematics, Yangtze University, Jingzhou Hubei

Received: June 12th, 2017; accepted: Jun. 26th, 2017; published: Jun. 30th, 2017

ABSTRACT

The atomic model is the foundation of atomic physics. In this paper, the principle of atomic nucleus interaction with electrons is discussed, and the atomic model based on particle spin is proposed by analysis of experimental particle spin. The nucleus outer gradient energy level, outer electron energy, basic charge and electromagnetic effect principle are described based on analysis of the Planck's constant and related experimental. The interaction between electron and photon and the principle of photoelectric effect are discussed based on the assumption of photon (elementary particle) rest mass constant. Finally, the relationship between hydrogen atom spectra and fine structure constants is discussed. This article discusses some basic problems of atomic model, will open up new ideas for the development of atomic physics, showing broad prospects for application of atomic physics.

Keywords:Particle Spin, Atomic Model, Basic Charge, Photon Rest Mass Constant

1. 引言

2. 基于粒子自旋的原子模型

1925年，乌仑贝克(G.Uhlenbeck)和古兹米特(S.A.Goudsmit)在分析施特恩–格拉赫实验和反常塞曼效应等实验时，提出电子自旋假设。1928年狄拉克提出包含电子自旋的相对论波动方程。在量子力学中，基本粒子的自旋被解释成基本粒子运动的角动量。1940年泡利(Pauli)证明“自旋统计定理”，阐述了费米子具有半整数自旋，玻色子具有整数自旋。1995年，Kw1atet等人 [1] 采用Ⅱ型参量下转换产生极化纠缠光子对，当泵浦光打在BBO晶体上时，一个光子会被劈成两半，产生两个波长相等、出射角度与自旋态相关联的光子。

2.1. 原子核自旋带动电子旋转

2.2. 原子核对电子的吸引力达到最大

2.3. 原子核外层电子在同一时间不可能占居同一位置

2.4. 原子核外底层(离核最近层)电子数决定外层电子能级

2.5. 底层电子数相同的原子形成一个元素周期

(1)

3. 基于普朗克常数的原子核外层梯度能级与外层电子能级

3.1. 原子核自旋能量场的能级从里至外呈梯度分布

3.2. 原子核外层电子的能量随着原子核对电子吸引力的增大而增加

3.3. 电子的能量与电子的运行速度(磁场相对位移)呈正比

3.4. 电子所在核外层磁量子密度与电阻呈正比

3.5. 原子核外层电子受激发而产生能级变化

1900年，马克斯普朗克 [11] 在研究物体热辐射时提出普朗克常数，该常数值为6.626069574 × 10−34J·s [12] 。普朗克常数实际上不是光子的能量常数，而是原子核外层电子的能量常数 [13] 。外层电子在一定能级上有一定的波长，如果电子处于辐射光子态，电子的波长与其辐射的光子波长相等。如果将核外电子的能量作为原子核的束缚能，可以表示为。为了避免歧义，本文用表示电子能量。外层电子能量计算公式为：

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

1916年，密立根光电效应实验 [15] ，也间接地测试了最小电流。下面以光电效应实验数据 [13] ，用式(2)、式(3)、式(11)计算外层电子能量、电子波长、最小电流。计算结果见表2

4. 基于光子静止质量常数的外层电子的光子吸收与辐射

2016年，《普朗克常数与光子静止质量常数统一实验分析》一文 [13] 提出了光子静止质量常数假设，文中公式(2)可用下面公式替代，文中相关公式也应作相应修正。如果将基本粒子看作是一个球体粒子，

Table 1. Element cycle and outer electron distribution table

Table 2. Incident photon wavelength, cutoff voltage, electron wavelength, electron energy, minimum current data table of photoelectric effect

(13)

(14)

4.1. 原子核外层电子与入射光子的弹性碰撞吸收与辐射

(15)

(16)

4.2. 原子核外层电子与入射光子的弹性散射

(17)

5. 氢原子光谱与精细结构常数分析

1853年安德斯∙约纳斯∙埃格斯特朗(Anders Jonas Ångström)从气体放电的光谱中找到氢的红线光谱，并测定其波长为656.21 nm，以后在可见光区又陆续发现了深绿、青、紫几条光谱线，波长分别为486.074 nm、434.01 nm、410.12 nm。1885年巴尔末(J.Balmer)仔细分析这些光谱线的波长，建立巴尔末公式，并计算出与实验吻合很好的巴尔末线系。1890年，里德伯建立氢原子光谱公式和里德伯常数。1906年莱曼(T.Luman)在氢光谱紫外区发现一线系，1908年、1922年和1924年，帕邢(F.Paschen)、布喇开(F.Bradkett)和普丰特(H.Pfund)分别在氢光谱红外区各发现一个线系，以及上世纪50年代初发现汉弗莱斯(Humphreys)线系。氢原子光谱公式：

(18)

5.1. 基态电子吸收能量相等的入射光子产生受激辐射

5.2. 外层电子辐射光子时的波长与其辐射的光子波长相等

5.3. 辐射光子的能量之和等于入射光子的能量

5.4. 里德伯常数是波尔基态电子波长的倒数

(19)

Table 3. Hydrogen atomic spectrum related data table

(20)

5.5. 氢原子光谱与精细结构常数的联系

(21)

(22)

6. 结论

Figure 1. Emission dpectrum of the hydrogen atom in the visible and near violet region [Balmer series, Herzberg (41)]. gives the theoretical on of the series limit

Atomic Model and Experimental Analysis Based on Particle Spin[J]. 现代物理, 2017, 07(04): 94-105. http://dx.doi.org/10.12677/MP.2017.74011

1. 1. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V. and Shih, Y.H. (1995) New High Intensity Source of Polarization Entangled Photon Pairs. Physical Review Letters, 75, 4337-4341. https://doi.org/10.1103/PhysRevLett.75.4337

2. 2. Hall, E.H. (1897) On a New Action of the Magnet on Electric Currents. American Journal of Mathematics, 2, 3.

3. 3. Hall, E.H. (1880) On the New Action of Magnetism on a Permanent Electric Current. Philosophical Magazine, 10, 301. https://doi.org/10.1080/14786448008626936

4. 4. Klitzing, K.V., Dorda, G. and Pepper, M. (1980) New Method for High-Accuracy Determination of the Fin×10-Struc- ture Constant Based Quantized Hall Resistance. Physical Review Letters, 45, 494. https://doi.org/10.1103/PhysRevLett.45.494

5. 5. Murakami, S., Nagaosa, N. and Zhang, S.C. (2003) Dissipa-tionless Quantum Spin Current at Room Temperature. Science, 301, 1348-1351. https://doi.org/10.1126/science.1087128

6. 6. Sinova, J., Culcer, D., Niu, Q., et al. (2004) Universal Intrinsic Spin Hall Effect. Physical Review Letters, 92, 126603. https://doi.org/10.1103/PhysRevLett.92.126603

7. 7. Chang, C.Z., Zhang, J.S. and Feng, X. (2013) Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science, 340, 167. https://doi.org/10.1126/science.1234414

8. 8. Mott, N.F. and Jones, H. (1936) The Theory of the Properties of Metals and Alloys. Oxford University Press, Oxford.

9. 9. Baibieh, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A. and Chazelas, J. (1988) Giant Magneto Resistance of (001)Fe/(001)Cr Magnetic Super Lattices. Physical Review Letters, 61, 2472.

10. 10. Binasch, G., Grünberg, P., Saurenbach, F. and Zinn, W. (1989) Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interflayer Exchange. Physical Review B, 39, 4828. https://doi.org/10.1103/PhysRevB.39.4828

11. 11. Planck, M. (1901) On the Law of Distribution of Energy in the Normal Spectrum. Annalen der Physik, 4, 553. https://doi.org/10.1002/andp.19013090310

12. 12. Mohr, P.J., Taylor, B.N. and Newell, D.B. (2012) CODATA Recommended Values of the Fundamental Physical Constants: 2010. Reviews of Modern Physics, 84, 1586.

13. 13. 吴先金. 普朗克常数与光子静止质量常数统一实验分析[J]. 现代物理, 2016, 6(6): 183-193. https://image.hanspub.org/pdf/MP20160600000_45285564.pdf

14. 14. Millikan, R.A. (1913) On the Elementary Electrical Charge and the Avogadro Constant. Physical Review, 2, 109-143. http://authors.library.caltech.edu/6438/1/MILpr13b.pdf https://doi.org/10.1103/PhysRev.2.109

15. 15. Millikan, R.A. (1916) A Direct Photoelectric Determination of Planck’s “H”. Physical Review, 7, 355-388. https://doi.org/10.1103/PhysRev.7.355

16. 16. Haurs,S.E., Field, J.E. and Kasapi, A. (1992) Dispersive Properties of Electromagnetically Induced Transparency. Physical Review, 46, 29. https://doi.org/10.1103/PhysRevA.46.R29

17. 17. Hau, L.V., Haurs, S.E., Dutton, Z. and ßehroozi, C.H. (1999) Light Speed Reduction to 17 Metres per Second in an Ultracold Atomic Gas. Nature, 397, 594. https://doi.org/10.1038/17561

18. 18. Haurs, S.E. and Hau, L.V. (1999) Nonlinear Optics at Low Light Levels. Physical Review Letters, 82, 4611. https://doi.org/10.1103/PhysRevLett.82.4611

19. 19. Fleisehhauer, M. and Lukin, M.D. (2000) Dark-State Polaritons in Electromagnetically Induced Transparency. Physical Review Letters, 84, 5094. https://doi.org/10.1103/PhysRevLett.84.5094

20. 20. Herzberg, G. (2007) Atomic Spectra and Atomic Structure. Prentice-Hall, Upper Saddle River, New Jersey.