Medical Diagnosis
Vol.07 No.03(2017), Article ID:22039,5 pages
10.12677/MD.2017.73010

Research Progress of Differentiated Thyroid Carcinoma

Jingju Mo, Junhong Li*, Zhixiao Wei, Xiaonan Zhang

Department of Nuclear Medicine, The First Affiliated Hospital, Guangxi Medical University, Nanning Guangxi

*通讯作者。

Received: Aug. 24th, 2017; accepted: Sep. 8th, 2017; published: Sep. 14th, 2017

ABSTRACT

In endocrine malignancies, the incidence of thyroid cancer is the highest, and the incidence is the fastest growing. Every year the new number of cases accounted for about 1.1% of all malignant tumors, differentiated thyroid carcinoma accounted for more than 90%, consists of 85% papillary carcinomas and 10% papillary carcinoma. DTC patients with 10 year survival rate was 90%, about 10% had metastases. Metastasis of lung was mainly located in the distance, and bone took the second place. The 10 year survival rate of bone metastasis was only 13%~21%, which has become the main reason for the death of patients. Early diagnosis is particularly important, the new progress of DTC diagnosis and treatment are briefly reviewed, including serum thyroglobulin, thyroid stimulating hormone, 131I-Whole Body Scan, 18Fluorodeoxyglucose-Positron Emission Computerized Tomography/ Computed Tomography.

Keywords:Differentiated Thyroid Carcinoma, Research, Progress

分化型甲状腺癌研究进展

莫景菊,李俊红*,韦智晓,张筱楠

广西医科大学第一附属医院核医学科,广西 南宁

收稿日期:2017年8月24日;录用日期:2017年9月8日;发布日期:2017年9月14日

摘 要

在内分泌恶性肿瘤中,甲状腺癌发病率最高、发病率增长最迅速。每一年的新发例数约占全身所有恶性肿瘤的1.1%,DTC占90%以上,DTC中主要包括85%的乳头状癌和10%的滤泡状癌。DTC患者10年生存率为90%,约10%出现转移,远处转移肺为主、骨次之,骨转移患者10年生存率仅13%~21%,这已成为患者死亡的主要原因。早期诊治尤为重要,现对DTC诊疗新进展简要综述,包括血清甲状腺球蛋白、促甲状腺激素、131I-WBS、18FPET/CT。

关键词 :分化型甲状腺癌,研究,进展

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

在人体内分泌恶性肿瘤中,发病率第一的是甲状腺癌 [1] 。尽管它仅占人体恶性肿瘤的1.1%,但近些年的国内外数据分析均表明甲状腺癌的新发病率显著增加,跃居发病率增长最迅速的恶性肿瘤。韩国甲状腺癌发病率年均增长率达24.2%,2002到2010年共增长了193.6% [2] ,北京则为14.2%,2001~2010年共增了225.2%,2010年新发率已达2.70/10万,新发1099例 [3] 。每一年新增的患者数量占全身所有恶性肿瘤的1%左右,90%以上的病理类型是DTC [1] ,乳头状癌和滤泡状癌,均表现为较好的分化型恶性肿瘤的特点:进展缓慢、肿瘤恶性程度低、总体病程较长、预后较好,通常患者的10年生存率可达90%。约有10% DTC患者发生局部及远处转移,远处转移最常见于肺,骨次之,但后者10年生存率仅13%~21% [4] ,成为患者死亡的主要原因。约为3%~5%的DTC可发生骨转移,主要表现为重度癌性骨痛、病理性骨折、脊髓压迫综合征及高钙血症等 [5] [6] ,23.3% DTC患者以骨转移作为首发症状就诊 [7] ,这极其严重的影响了患者的生活质量及生存率,早期诊治骨转移显得尤为重要,现对DTC诊疗新进展简要综述。

2. Tg

血清甲状腺球蛋白(Thyroglobulin, Tg)由甲状腺滤泡上皮细胞分泌,是一种糖蛋白,与分化情况、物理损伤及高浓度TSH密切相关。Tg和TgAb在测定时会出现变异,缺乏一致性,放射免疫法可较大程度的避免TgAb对Tg数值的干扰。新出现的Tg检测法,液相色谱–串联质谱,也许能在TgAb干扰下仍可得到Tg的精确数值,期望其功能性灵敏度在将来的研究中得到进一步证实 [8] 。

术前测到的高浓度血清Tg可能预示术后Tg水平随访的高度敏感性 [9] ,但Tg水平与病人管理或预后的影响程度尚不可知,有待进一步证据。全切后并“清甲”,在避开TgAb影响时,Tg水平的监测有较高的敏感性及特异性,可以在随访中更方便的监测甲状腺癌的持续存在、复发及转移等情况,然而其敏感性及特异性达到最高值却是在甲状腺激素撤退或使用重组人促甲状腺激素刺激时 [10] 。血清Tg与甲状腺癌组织关系密切,每1 g癌组织可使基础状态Tg升高1 ng/ml、刺激状态Tg升高2~10 ng/ml [11] [12] 。术后行或未行放射性碘治疗随访中Tg升高,预示着肿瘤持续存在、复发及远处转移的可能性大,同时预后较差、死亡率增加,且危险度的增加与Tg数值升高呈正相关。当Tg不低于10 ng/ml时,应重新评估病情、制定新的治疗方案。对于高危患者,即使术后第一次Tg < 1 ng/ml,亦无法排除残存聚碘功能灶的可能性,而须行RIT,并且在术后随访的起始数年中,替代抑制治疗同时每半年到一年复查Tg水平。

对甲状腺术式非全切者、全切但未“清甲”者的Tg,仅选择替代抑制治疗,因受残留正常的甲状腺组织的影响,至今无法界定异常Tg的阈值,只能在随访过程中Tg持续升高时,结合TgAb、颈部超声结果,重新评估病情并做出新的治疗决策。

3. TSH

DTC术后,无论是否行放射性碘治疗,应行外源性的甲状腺激素替代抑制促甲状腺激素(Thyroid- stimulating Hormone, TSH)水平的治疗,这是DTC治疗中一个重要的环节,首选L-T4口服制剂,于放射性碘治疗后1~2天开始 [1] 。

美国甲状腺协会(ATA) DTC指南(2015版)和我国指南(2014版)指南均建议TSH抑制目标值应根据危险层度区分,低危者0.1~0.5 mU/L,高危者 < 0.1 mU/L,而前者认为中危者目标是0.1~1.5 mU/L,后者则采用与高危者目标同等的严谨建议。TSH > 2 mU/L会提高癌症复发和相关死亡风险。高危DTC患者TSH抑制 < 0.1 mU/L时,肿瘤复发、转移及病死率均显著降低 [2] [13] 。

包括一项Meta在内的多项研究支持,为了抑制TSH水平,达到降低癌症复发风险,允许替代的甲状腺激素水平超过生理需要量 [14] [15] 。Cooper等的回顾性研究及Pujol等的前瞻性研究证明,当TSH < 0.1 mU/L时有助于改善高危患者的预后,其复发、转移及癌症相关病死率显著降低 [16] [17] ,但也有学者持相反观点,认为年龄、分期、RIT可作为独立因素预测疾病进展,而不是TSH抑制程度 [16] 。Jonklaas等发现TSH并不是被抑制得越低而越好,在NTCTCSG分期的Ⅱ期患者中,TSH水平控制在0.1~0.5 mU/L时可以显著提高整体生存率,但更低水平的TSH并没有使患者获得更多益处,Ⅰ期患者在更严格的TSH抑制治疗中获益的证据不足 [18] ,故TSH抑制替代治疗的获益应与其引起的亚临床甲亢的潜在危险谋取一个平衡。

4. 131I-WBS

诊断性131碘全身扫描(131I-Whole Body Scan, 131I-WBS)利于随访高危患者,可选择123I或低度活性131I作为显像剂,具备解剖定位的单光子发射计算机断层仪/X线体层断层仪(Single-Photon Emission Computerized Tomography/Computed Tomography, SPECT/CT)图像质量明显优于伽马相机的平面图像,尤其是在平面图像上临近组织的区分上:残留甲状腺与颈部淋巴结、肺与胸部骨、肠道与骨盆骨,因此避免因解剖位置所致的模糊诊断。配备的CT还可显示不摄碘的病灶情况,无论是“清甲”或辅助的RIT后,行131I-WBS都是必要的,联合颈部、胸部SPECT/CT对甲状腺残留及肿瘤复发风险的评估起到独特且显著作用,改变患者治疗决策 [19] [20] [21] [22] 。诊断性131I全身SPECT/CT显像时患者需要接受的辐射剂量仅2~5 mSv,部分情况下可免除辐射剂量更高的增强CT、MRI检查。相较于治疗剂量的的131I-WBS,诊断剂量显示的病灶可能不全,特别是当癌性病灶表现为不摄取或低摄取时,此时即使是治疗剂量亦会出现假阴性。

5. PET/CT

18氟脱氧葡萄糖–正电子发射型计算机断层扫描仪/X线体层断层扫描仪(18Fluorodeoxyglucose-Positron Emission Computerized Tomography/Computed Tomography, 18FDG-PET/CT)不作为一线检查方法,主要在DTC高危患者,Tg升高并131I-WBS阴性时应用,Leboulleux等纳入789例无摄碘DTC病例,分析得出18FDG-PET/CT敏感性和特异性分别是83%、84%,也有学者认为这些病人可以行18FDG-PET/CT判断病灶情况,而不是单纯的经验性治疗 [23] [24] ,影响敏感性的因素主要是癌灶失分化情况、较大的肿瘤负荷,受TSH影响较小;此外18FDG-PET/CT在发现侵袭性甲状腺癌上也有较高的敏感性,包括低分化、高细胞及Hürthle细胞癌,特别是当Tg升高并其他影像检查阳性时;发现病情激进型的患者并预测死亡率;确诊远处转移灶,做出疗效评估。18FDG-PET/CT显像中高标准化摄取值病灶往往预示着侵袭性,须额外辅助治疗并严密监测。同时18FDG-PET/CT最高假阳性率近40%,在决定对显像上的微小癌灶行切除术前,细针穿刺细胞学检查(Fine Needle Aspiration Biopsy, FNAB)及测活检处Tg浓度可较好的指导决策。DTC还可选择124I-PET/CT成像,其敏感性高达99%,明显优于诊断性131碘全身扫描的66%,可定位、定量残留病灶,测出各癌灶体积、放射性摄取值及显像剂半衰期,精准评估各癌灶所需的放射剂量。

Tg、TgAb及TSH是DTC重要的监测指标,贯穿整个病程。诊断、评判危险分层、复发风险时可借助123I或131I-SPECT/CT、124I或18FDG-PET/CT等影像检查,后两者还可辅助计算131I个体化剂量。检测Tg的液相色谱–串联质谱法的功能性灵敏度以及124I-PET/CT成像的相关研究较少,这些都期待将来的进一步研究。

基金项目

广西医疗卫生适宜技术研究与开发项目(S201415-06)。

文章引用

莫景菊,李俊红,韦智晓,张筱楠. 分化型甲状腺癌研究进展
Research Progress of Differentiated Thyroid Carcinoma[J]. 医学诊断, 2017, 07(03): 60-64. http://dx.doi.org/10.12677/MD.2017.73010

参考文献 (References)

  1. 1. 中华医学会核医学分会. 131I治疗分化型甲状腺癌指南(2014版) [J] 中华核医学与分子影像杂志, 2014, 34(4): 264-278.

  2. 2. Jung, K.W., Won, Y.J., Kong, H.J., et al. (2013) Cancer Statistics in Korea: Incidence, Mortality, Survival and Preva-lence in 2010. Cancer Research & Treatment, 45, 1-14. https://doi.org/10.4143/crt.2013.45.1.1

  3. 3. Peng, J.H. (2013) Recent Cancer Statistics in China.

  4. 4. Zanotti-Fregonara, P., Rubello, D. and Hindie, E. (2008) Bone Metastases of Differentiated Thyroid Cancer: The Importance of Early Diagnosis and 131I Therapy on Prognosis. Journal of Nuclear Medicine, 49, 1902-1903. https://doi.org/10.2967/jnumed.108.054163

  5. 5. Durante, C., Haddy, N., et a1. (2006) Long-Term Outcome of 444 Patients with Distant Metastases from Papillary and Follicular Thyroid Carcinoma: Benefits and Limits of Radioiodine Therapy. The Journal of Clinical Endocrinology & Metabolism, 91, 2892-2899. https://doi.org/10.1210/jc.2005-2838

  6. 6. Roodman, G.D. (2005) High Bone Turnover Markers Predict Poor Outcome in Patients with Bone Metastasis. Clinical Oncology, 23, 4821-4822. https://doi.org/10.1200/JCO.2005.02.911

  7. 7. 许艳红, 宋红俊, 邱忠领, 陈立波, 罗全勇. 以骨转移为首发症状的分化型甲状腺癌的临床特征与生存分析[J]. 肿瘤, 2011(6): 538-541.

  8. 8. Kushnir, M.M., Rockwood, A.L., Roberts, W.L., et al. (2013) Measurement of Thyroglobulin by Liquid Chromatography-Tandem Mass Spectrometry in Serum and Plasma in the Presence of Antithyroglobulin Autoantibodies. Clinical chemistry, 59, 982-990. https://doi.org/10.1373/clinchem.2012.195594

  9. 9. Spencer, C.A., Bergoglio, L.M., Kazarosyan, M., et al. (2005) Clinical Impact of Thyroglobulin (Tg) and Tg Autoantibody Method Differences on the Management of Patients with Differentiated Thyroid Carcinomas. The Journal of Clinical Endocrinology & Metabolism, 90, 5566-5575. https://doi.org/10.1210/jc.2005-0671

  10. 10. Eustatia-Rutten, C.F.A., Smit, J.W.A., Romijn, J., et al. (2004) Diagnostic Value of Serum Thyroglobulin Measurements in the Follow-Up of Differentiated Thyroid Carcinoma, a Structured Meta-Analysis. Clinical Endocrinology, 61, 61-74. https://doi.org/10.1111/j.1365-2265.2004.02060.x

  11. 11. Spencer, C., Fatemi, S., Singer, P., et al. (2010) Serum Basal Thyroglobulin Measured by a Second-Generation Assay Correlates with the Recombinant Human Thyrotro-pin-Stimulated Thyroglobulin Response in Patients Treated for Differentiated Thyroid Cancer. Thyroid, 20, 587-595. https://doi.org/10.1089/thy.2009.0338

  12. 12. Bachelot, A., Cailleux, A.F., Klain, M., et al. (2002) Relationship between Tumor Burden and Serum Thyroglobulin Level in Patients with Papillary and Follicular Thyroid Carcinoma. Thyroid, 12, 707-711. https://doi.org/10.1089/105072502760258686

  13. 13. Haugen, B.R., Alexander, E.K., Bible, K.C., et al. (2015) American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 26, 1-133. https://doi.org/10.1089/thy.2015.0020

  14. 14. McGriff, N.J., Csako, G., Gourgiotis, L., et al. (2002) Effects of Thyroid Hormone Suppression Therapy on Adverse Clinical Outcomes in Thyroid Cancer. Annals of Medicine, 34, 554-564. https://doi.org/10.1080/078538902321117760

  15. 15. Diessl, S., Holzberger, B., Mäder, U., et al. (2012) Impact of Moderate vs. Stringent TSH Suppression on Survival in Advanced Differentiated Thyroid Carcinoma. Clinical Endocrinology, 76, 586-592. https://doi.org/10.1111/j.1365-2265.2011.04272.x

  16. 16. Cooper, D.S., Specker, B., Ho, M., et al. (1998) Thyrotropin Suppression and Disease Progression in Patients with Differentiated Thyroid Cancer: Results from the National Thyroid Cancer Treatment Coop-erative Registry. Thyroid, 8, 737-744. https://doi.org/10.1089/thy.1998.8.737

  17. 17. Pujol, P., Daures, J.P., Nsakala, N., et al. (1996) Degree of Thyrotropin Suppression as a Prognostic Determinant in Differentiated Thyroid Cancer. The Journal of Clinical Endocrinology & Metabolism, 81, 4318-4323.

  18. 18. Jonklaas, J., Sarlis, N.J., Litofsky, D., et al. (2006) Outcomes of Patients with Differentiated Thyroid Carcinoma Following Initial Therapy. Thyroid, 16, 1229-1242. https://doi.org/10.1089/thy.2006.16.1229

  19. 19. Jeong, S.Y., Lee, S.W., Kim, H.W., et al. (2014) Clinical Applications of SPECT/CT after First I-131 Ablation in Patients with Differentiated Thyroid Cancer. Clinical Endocrinology, 81, 445-451. https://doi.org/10.1111/cen.12460

  20. 20. Grewal, R.K., Tuttle, R.M., Fox, J., et al. (2010) The Effect of Post-Therapy 131I SPECT/CT on Risk Classification and Management of Patients with Differentiated Thyroid Cancer. Journal of Nuclear Medicine, 51, 1361-1367. https://doi.org/10.2967/jnumed.110.075960

  21. 21. Kohlfuerst, S., Igerc, I., Lobnig, M., et al. (2009) Posttherapeutic 131I SPECT-CT Offers High Diagnostic Accuracy When the Findings on Conventional Planar Imaging Are Inconclusive and Allows a Tailored Patient Treatment Regimen. European Journal of Nuclear Medicine and Molecular Imaging, 36, 886. https://doi.org/10.1007/s00259-008-1044-2

  22. 22. Ciappuccini, R., Heutte, N., Trzepla, G., et al. (2011) Postablation 131I Scin-tigraphy with Neck and Thorax SPECT-CT and Stimulated Serum Thyroglobulin Level Predict the Outcome of Patients with Diffe-rentiated Thyroid Cancer. European Journal of Endocrinology, 164, 961-969. https://doi.org/10.1530/EJE-11-0156

  23. 23. Leboulleux, S., Schroeder, P.R., Schlumberger, M., et al. (2007) The Role of PET in Follow-Up of Patients Treated for Differentiated Epithelial Thyroid Cancers. Nature Clinical Practice Endocrinology & Metabolism, 3, 112-121. https://doi.org/10.1038/ncpendmet0402

  24. 24. Rosario, P.W., Mourao, G.F., dos Santos, J.B.N., et al. (2014) Is Empirical Ra-dioactive Iodine Therapy Still a Valid Approach to Patients with Thyroid Cancer and Elevated Thyroglobulin? Thyroid, 24, 533-536. https://doi.org/10.1089/thy.2013.0427

期刊菜单