Journal of Advances in Physical Chemistry
Vol. 12  No. 03 ( 2023 ), Article ID: 70919 , 18 pages
10.12677/JAPC.2023.123021

稀土–钴单分子磁体的研究进展

郑祺1,王金1,2*

1南通大学化学化工学院,江苏 南通

2南通市智能与新能源材料及器件重点实验室,江苏 南通

收稿日期:2023年7月12日;录用日期:2023年8月10日;发布日期:2023年8月21日

摘要

稀土–过渡单分子磁体材料不仅磁性能优越,而且稀土和过渡金属具有良好的光、电、催化等性质,使其在高密度信息存储、量子计算以及多功能磁分子材料合成方面具有广阔的应用前景。钴离子具有较大的磁各向异性,是构筑单分子磁体的重要金属离子。因此,本文介绍了近年来典型的稀土–钴单分子磁体的研究进展。

关键词

稀土–钴单分子磁体,结构,磁性

Research Progress of Lanthanide-Cobalt Single-Molecule Magnets

Qi Zheng1, Jin Wang1,2*

1School of Chemistry and Chemical Engineering, Nantong University, Nantong Jiangsu

2Nantong Key Laboratory of Intelligent and New Energy Materials and Devices, Nantong Jiangsu

Received: Jul. 12th, 2023; accepted: Aug. 10th, 2023; published: Aug. 21st, 2023

ABSTRACT

Lanthanide-transition metal complexes exhibiting single-molecule magnet behavior possess exceptional magnetic characteristics, as well as desirable optical, electrical, and catalytic properties associated with lanthanide and transition metals. These multifaceted attributes render them highly promising for applications in high-density information storage, quantum computing, and the synthesis of multifunctional magnetic molecular materials. Among the transition metal ions, cobalt ions are particularly noteworthy due to their significant magnetic anisotropy, making them pivotal for the construction of single-molecule magnets. Consequently, this study aims to provide an overview of the recent advancements in the investigation of representative lanthanide-cobalt single-molecule magnets.

Keywords:Lanthanide-Cobalt Single-Molecule Magnet, Structure, Magnetism

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

大数据时代的到来,对信息存储容量也有了更高的要求。目前我们的信息存储主要依赖于硬盘,而磁性材料作为硬盘信息存储的主要载体,主要采用纳米级的合金和金属氧化物等无机材料。随着磁性纳米颗粒的尺寸逐渐减小,磁性颗粒受温度的扰动越明显,磁极易发生翻转,导致无法正常读写数据 [1] 。因此需要探索新型的磁性存储材料来提升信息存储密度,从而满足更大的存储容量的需求。单分子磁体 [2] 是一种具有纳米尺寸、单个分子组成的磁性材料,因其具有磁性双稳态和慢磁弛豫行为而在量子计算、高密度信息存储设备等方面存在潜在应用 [3] [4] [5] 。

单分子磁体领域的研究始于90年代初,人们为了提高单分子磁体的自旋值,重点多放在多核3d金属单分子磁体上,意大利科学家R. Sessoli等报道了一例具有高自旋的混合价锰的簇合物,并且发现该化合物具有磁体行为,但早期的过渡金属类配合物都是在较低温度下呈现慢磁驰豫行为,在应用方面受到很大限制 [6] 。与3d过渡金属相比,4f稀土金属离子具有特殊的电子结构,由于其未猝灭的轨道角动量使其具有相对较大的磁矩和磁各向异性,且4f稀土金属离子是优良的自旋载体,能够合成出性能良好的单分子磁体 [7] [8] [9] 。稀土金属离子具有大的基态自旋和单轴磁各向异性,而过渡金属离子之间具有更强的磁交换作用,通过一定的合成方法将这两类金属离子结合在一起 [10] ,通过增强过渡金属和稀土金属离子之间的磁交换作用,可以同时获得大的基态自旋和强的磁各向异性,从而得到性能优越的异金属单分子磁体 [11] 。

Table 1. Partially reported rare earth-cobalt single-molecule magnets

表1. 部分报道的稀土–钴单分子磁体

在稀土–过渡单分子磁体中,含有钴的稀土异金属单分子磁体是其中重要的一类。二价的钴离子在d轨道上存在7个电子,其中包括3个未成对的电子,由于具有未猝灭的轨道角动量且自旋–轨道耦合相对较强,使得其具有较大的磁各向异性,成为磁性材料中优异、稳定的自旋载流子 [12] 。人们也利用这些特点合成了许多CoII基单离子或者单分子磁体。同时,CoII容易被氧化成CoIII,CoIII在配位场中往往具有抗磁性,引入到3d-4f单分子磁体中起到磁稀释的作用,能够有效抑制量子隧穿 [13] 。截至目前,有大量稀土–钴单分子磁体被报道(表1)。因此,需要对稀土–钴单分子磁体进行归纳总结,本文简要介绍了稀土–钴单分子磁体近年来的研究进展。

2. 稀土–钴单分子磁体研究进展

2.1. 蝴蝶型单分子磁体

[Co2Ln2]型单分子磁体是稀土–钴单分子磁体中重要的组成部分,尤其是Langley课题组合成了多种带有抗磁性CoIII的[Co2Ln2]型单分子磁体。在2012年,Langley课题组报道了三种具有相同结构的3d-4f簇合物,在每个晶体结构的不对称单元内发现了两种不同的分子,[LnIII2CoIII2(OMe)2(teaH)2(O2CPh)4 (MeOH)4] (NO3)2∙MeOH∙H2O (Ln = Gd (1a),Tb (2a),Dy (3a),teaH = 三乙醇胺,O2CPh = 苯甲酸)和[LnIII2CoIII2(OMe)2(teaH)2(O2CPh)4(MeOH)2(NO3)2]∙MeOH∙H2O (Ln = Gd (1b), Tb (2b), and Dy (3b)),两种不同的分子之间结构几乎相同,由于与DyIII配位的甲醇数量不同,导致配合物1a~3a为阳离子,配合物1b~3b为中性分子(图1)。配合物3的交流磁化率的实部和虚部信号在20 K以下均表现出频率依赖和温度依赖(图2(a)),经过奥巴赫过程的公式拟合得到其有效能垒为88.8 K (图2(b)),除此以外,配合物2在零场下虚部未出现任何信号,但在1 kOe的外场下,其有效能垒提升至14.3 K,而配合物1在磁性研究下未观察到任何相互作用 [13] 。

Figure 1. Molecular structure diagram of complex 3

图1. 配合物3的分子结构图

Figure 2. (a) Frequency dependence of the out-of-phase (χM”) ac magnetic susceptibilities for complex 3 collected under a 0 Oe dc field; (b) Plots of ln(τ) vs T−1 for complex 3 under 0 Oe. The solid line is fitted with the Arrhenius law

图2. (a) 配合物3在零场下频率依赖的虚部交流磁化率;(b) 零场下的配合物3在零外磁场下弛豫时间随温度变化图。图中实线为拟合结果

2014年,他们将配体H3tea分别替换成二乙醇胺(H2dea)、N-甲基二乙醇胺(H2mdea)与N-正丁基二乙醇胺(H2bdea),形成了配合物4、5和6,他们的主要核心结构部分与配合物1相同,主要的区别在于配合物4~6中,去质子的配体采用了不同的配位模式,且金属离子的配位环境发生了细微的变化(图3)。配合物4~6都表现出单分子磁体行为且在零场下的各向异性能垒分别为102.9 K,78.6 K以及114.4 K [14] 。

Figure 3. Molecular structure diagram of complex 4 (a), complex 5 (b), complex 6 (c)

图3. 配合物4 (a)、5 (b)、6 (c)的分子结构图

2013年,他们利用乙酰丙酮(acac)来取代苯甲酸配体,也同样得到了三例蝴蝶型的异金属配合物[DyIII2CoIII2(OMe)2(teaH)2(acac)4(NO3)2] (7),[DyIII2CoIII2(OH)2(teaH)2(acac)4(NO3)2]·4H2O (8), and [DyIII2CoIII2 (OMe)2(mdea)2(acac)4(NO3)2] (9) (图4(a)~图4(c))。通过研究了三者在零直流场下的交流磁化率,三者均表现出单分子磁体行为且热激发的各向异性能垒分别为27 K、28 K以及38 K (图4(d)) [15] 。

Figure 4. Molecular structure diagram of complex 7 (a), complex 8 (b), complex 9 (c); (d) Plots of ln(τ) vs T−1 for complex 7~9 under 0 Oe. The solid line is fitted with the Arrhenius law

图4. 配合物7 (a)、8 (b)、9 (c)的分子结构图;(d) 配合物7~9的弛豫时间随温度变化图。图中实线为拟合结果

在2015年,他们使用了多元醇胺配体H2bdea以及四种羧酸配体2-氯苯甲酸、4-叔丁基苯甲酸、4-羟基苯甲酸和2-(三氟甲基)苯甲酸分别合成了配合物10~13 (图5)。变温变频交流磁化率测试中,配合物10~13的实部和虚部信号在零场下均表现出明显的频率依赖和温度依赖,但配合物12的虚部信号并未出现峰值,通过外加1.5 kOe的最佳场,便可以观察到明显的信号。配合物10~13均表现出较大的各向异性能垒,分别为115.8 K、(110.1 K和137.3 K)、167.3 K和125.8 K,在配合物10和13中由于吸电子基团存在,导致二者在零场下表现出较高的各向异性能垒,配合物11存在两种弛豫过程(图6)。而配合物12在零场、1.8 K以上没有观察到慢磁弛豫行为,除此之外配合物10~13在1.8 K以上均未观察到磁滞现象 [16] 。

Figure 5. Molecular structure diagram of complex 10 (a), complex 11 (b), complex 12 (c), complex 13 (d)

图5. 配合物10 (a)、11 (b)、12 (c)、13 (d)的分子结构图

Figure 6. Plots of ln(τ) vs T−1 for complex 10~13. The solid line is fitted with the Arrhenius law

图6. 配合物10~13的弛豫时间随温度变化图。图中实线为拟合结果

Langley课题组在2017年还利用配体邻甲基苯甲酸(o-tol)以及H2mdea合成了一例配合[CoIII2DyIII2(μ3-OH)2(o-tol)4 (mdea)2 (NO3)2] (14) (图7(a)),交流磁化率研究表明,配合物14出现了慢磁弛豫行为,由ln(τ) vs T−1图可知,在6 K以上表现出热激发的弛豫过程,在5.5 K以下,出现了量子隧穿以及其他弛豫过程,经过公式拟合得到其有效能垒为116.9 K (图7(b)) [17] 。

Figure 7. (a) Molecular structure diagram of complex 14; (b) Plots of ln(τ) vs T−1 for complex 14

图7. (a) 配合物14的分子结构图;(b) 配合物14的弛豫时间随温度变化图

除了上述含有CoIII的蝴蝶型3d-4f单分子磁体外,含有CoII的蝴蝶型3d-4f单分子磁体也表现出优异的性质。2012年,Powell课题组合成了一例配合物[Co2Dy2(L1)4(NO3)2(THF)2]·4THF (15, H2L1 = 2-((2-hydroxyphenylimino) methyl)-6-methoxyphenol),该中心对称的配合物中四个金属离子通过(L1)2-连接,形成蝴蝶状的拓扑结构(图8(a))。在零直流场下,交流电流的实部和虚部磁化率信号具有很强的温度和频率依赖性,使用Debye模型分析得到该配合物具有双弛豫现象,在1.6 K~8 K范围内,U1 = 15.7 K,τ1 = 7.7 × 10−4s,而在18~22 K范围内U2 = 117.4 K,τ2 = 6.6 × 10−7 s (图8(b))。在磁滞回线测试中,其在4 K时就表现出较大的磁滞回线(图9) [18] 。

Figure 8. (a) Molecular structure diagram of complex 15; (b) Plots of ln(τ) vs T−1 for complex 15

图8. (a) 配合物15的分子结构图;(b) 配合物15的弛豫时间随温度变化图

Figure 9. Temperature-dependent magnetic hysteresis loops of 15 below 4 K and a sweep rate of the external magnetic field of 235 mTs−1

图9. 配合物15在低于4 K时的温度依赖的磁滞回线。外磁场的扫速为235 mTs−1

2017年,宋友课题组在Powell课题组的基础上对配体进行了修饰,合成了配合物[Dy2Co2(L2)4(NO3)2 (DMF)2]∙2DMF (16. H2L2= =(E)-2-ethoxy-6-(((2-hydroxyphenyl)imino)methyl) phenol)) (图10),在零场下,交流磁化率出现明显的温度和频率依赖性。在温度为2.6 K且频率为1 hz时,可以观察到虚部信号的峰值,采用多种弛豫过程的公式拟合得到其能垒Ueff = 125.1 K。此外,还对配合物16进行了磁滞回线测试,发现其在1.8 K以下仍未观察到磁滞回线 [19] 。

Figure 10. Molecular structure diagram of complex 16

图10. 配合物16的分子结构图

2.2. 直线型单分子磁体

在2007年,Vadapalli Chandrasekhar等人利用配体(S)P[N(Me)N = CH−C6H3-2-OH-3-OMe]3 (H3L3)合成了第一例CoII-LnIII单分子磁体[L32CoII2GdIII] [NO3] (17) (图11(a))。该三核配合物是由两个完全去质子的三阴离子配体组装而成,三个金属离子排列呈线性,CoII处于扭曲的三棱柱构型,而GdIII处于扭曲的二十面体构型。交流磁化率测试发现,配合物17在零外磁场下的有效翻转能垒Ueff为27.2 K,指前因子τ0 = 1.7 × 10−7 s (图11(b)) [20] 。

Figure 11. (a) Molecular structure diagram of [L32CoII2GdIII][NO3]; (b) Plots of ln(τ) vs T−1 for complex 17 under 0 Oe. The solid line is fitted with the Arrhenius law

图11. (a) [L32CoII2GdIII][NO3]的分子结构图;(b) 配合物17在零外磁场下弛豫时间随温度变化图。图中实线为拟合结果

Figure 12. (a) Molecular structure diagram of complex 18; (b) Coordination environment of metal ions in complex 18

图12. (a) 配合物18的分子结构图;(b) 配合物18中金属离子的配位环境图

Figure 13. (a) Temperature dependence of ac susceptibility of complex 19; (b) Plots of ln(τ) vs T−1 for complex 18

图13. (a) 配合物19的变温交流磁化率曲线;(b) 配合物18的弛豫时间随温度变化图

在2015年,唐金魁课题组合成了配合物[DyIII2CoII(C7H5O2)8]·6H2O (Ln=Dy (18), Tb (19),C7H5O2 = N-(2-氨丙基)-2-羟基苯甲酰胺) (图12(a)),DyIII的配位环境为四方反棱柱构型,CoII为扭曲的八面体构型(图12(b))。配合物19中,温度依赖的实部和虚部信号在5 K以下才表现出频率依赖,即使施加600 Oe的外场仍未出峰,表明了其存在快速的量子隧穿(图13(a))。而在配合物18在1.9 K~16 K的范围内表现出两个独立的弛豫过程,利用Arrhenius law得到5 K以下的能垒为16.77(4) K,指前因子τ0为3.55 × 10−5 s,5 K以上的能垒为127.27(2) K,指前因子τ0为1.69 × 10−9 s (图13(b)) [21] 。

Figure 14. Molecular structure diagram of complex 20 (a) and 21 (b)

图14. 配合物20 (a)、21 (b)的分子结构图

Figure 15. Plots of ln(τ) vs T−1 for complex complexes 20 and 21

图15. 配合物20和21的弛豫时间随温度变化图

在2018年,童明良课题组合成了一例线性三核配合物[Co2Dy(TTTTCl)2(MeOH)]NO3∙3MeOH (20, H3TTTTCl = 2, 2’, 2’’-(((nitrilotris(ethane-2, 1-diyl)) tris(azanediyl)) tris(methylene))tris-(4-chlorophenol)),此外,还将CoII氧化成CoIII,使得[CoIII(TTTTCl)]+与[Co2Dy(TTTTCl)2(MeOH)]+发生共结晶,得到配合物21,大幅提升了单分子磁体的性能。在配合物20中,两个Co2+分别与配体TTTT3-中的4个N和2个酚氧相连,形成六配位的扭曲八面体构型。DyIII为七配位的五角双锥构型,其中六个O来自配体,剩余的一个氧来自于CH3OH。在配合物21中,[Co2Dy(TTTTCl)2(MeOH)]+部分与配合物20相似,两个[CoIII(HTTTT)]+之间通过氢键相连形成二聚体,二聚体位于[Co2Dy(TTTTCl)2(MeOH)]+阳离子的中间(图14)。在交流磁化率测试中,两种配合物都表现出明显的频率依赖的虚部信号,但温度依赖的虚部信号在低温下都存在长尾,表明二者都存在量子隧穿或者较快的弛豫过程。结合Cole-Cole图发现,二者都存在多种弛豫过程,经过公式拟合得到配合物20、21的有效能垒分别为401 K、536 K,指前因子分为别为1.3(6) × 10−10 s、3.8(10) × 10−11 s (图15)。配合物21的能垒相比配合物20来说更高,可能是由于配合物21中的DyIII更接近D5h构型且加入了具有抗磁性的CoIII起到了磁稀释的作用。

宋友课题组在2019年合成了一例接近于线型的四核配合物[Co2Ln2(L4)2(pdm)2 (CH3COO)2 (CH3OH)2] (NO3)2∙xCH3OH·yH2O (H2L4 = N1, N3-bis(3-methoxysalicylidene)diethylenetriamine), H2pdm = 2, 6-吡啶二甲醇, Ln = Dy (22), sGd (23)) (图16(a))。在结构方面,DyIII和CoIII分别位于中间和两侧,四个金属离子是通过两个pdm2−配体、两个(L4)2−配体以及两个CH3COO配体相连,此外还有配位溶剂甲醇参与到DyIII的配位环境中,使得DyIII构成九配位的“玛芬”状,而CoIII为扭曲的八面体构型。磁学研究揭示了配合物22在零场下存在单分子磁体行为,有效能垒为64.6(1) K (图16(b)) [23] 。

Figure 16. (a) Molecular structure diagram of complex 22; (b) Plots of ln(τ) vs T−1 for complex 22

图16. (a) 配合物22的分子结构图;(b) 配合物22的弛豫时间随温度变化图

2.3. 多核环形单分子磁体

Figure 17. (a) Molecular structure diagram of complex 24; (b) Relaxation time for 24 versus inverse temperature

图17. (a) 配合物24的分子结构图;(b) 配合物24的弛豫时间随温度变化图

2011年,唐金魁等人合成了配合物[Co2Dy10(L5)4(OAc)16(SCN)2(MeCN)2(H2O)4(OH)2(μ3-OH)4]∙2Co (SCN)4H2O·2MeCN·2H2O (24, H2L5 = 1,2-Bis(2-hydroxy-3-methoxybenzylidene) hydrazine),该配合物核心为12核轮状阳离子,由4个(L5)2−配体和6个乙酸配体连接10个DyIII离子和2个CoII离子(图17(a))。轮状核心包含两个二立方烷{Dy4O6},其中四个DyIII离子由两个μ3-OH,两个(L5)2−中的苯氧基和两个μ3-η2:η2-乙酸配体桥连,两个μ3-OAc连接{Dy4O6}和[DyCo(μ2-OH)2(μ-OAc)]形成了{Dy5Co}的次核心,为{Dy10Co2}的最小不对称单元。经过Cole-Cole拟合表明存在两种弛豫过程,一种弛豫时间较长为1.13 × 10−4 s,但能垒较低为4.3 K,另一种弛豫时间较短为3.14 × 10−6 s,但能垒较高为25 K (图17(b))。在较高温度下的缓慢弛豫主要由单个DyIII离子主导,在低温下,相邻DyIII和CoII离子的弱铁磁耦合起着至关重要的作用 [24] 。

2.4. 其他单分子磁体

Figure 18. Molecular structure diagram of complex 25

图18. 配合物25的分子结构图

2012年,唐金魁课题组利用配体二硫代草酸二阴离子(dto2−),将[DyIII(HBpz3)2]2+单元(HBpz3− = 氢化三(吡唑基)硼酸盐)和过渡金属CoIII组装合成了一例具有三叶片螺旋桨结构的配合物[CoDy3(HBpz3)6(dto)3]∙4CH3CN·2CH2Cl2 (25),该配合物是由三个具有八配位四方形反棱镜构型的DyIII组成,这些DyIII与具有八面体构型的中心CoIII相连(图18)。在零场下,配合物25的交流磁化率都表现出明显的频率依赖以及温度依赖,但并未出现峰值,表明可能存在零场的量子隧穿(图19(a)),通过施加800 Oe的外加场并对数据进行线性拟合得到配合物25的有效能垒为52 K (图19(b)) [25] 。

很少报道含有3d抗磁金属离子的3d-4f高核簇合物,赵琦华课题组在2019年合成了一类六核簇合物[Co4Ln2(μ3-O)2(μ-N3)2(OH)2(H2O)2(HL6)4]∙(CH3CO2)2∙20H2O (Ln = Dy (26), Gd (27), Tb (28), Eu (29) and Ho (30), H3L6=2-[Bis(pyridin-2-ylmethyl)amino]-2-(hydroxymethyl)propane-1, 3-diol),其核心部分是由四个配体(HL6)2−,两个μ3-O2−阴离子和两个叠氮阴离子连接金属离子组成,使得6个金属离子形成基本处于同一平面且形成中心对称的“锹甲”型络合物分子(图20(a))。四种H3L6配体表现出两种不同的配位方式,使得DyIII构成八配位的扭曲四方反棱镜结构,Co1和Co2都是稍微扭曲的八面体构型。在交流磁化率测试中发现,配合物26的实部和虚部信号出现了明显的温度依赖和频率依赖,但当温度小于10 K时,温度依赖的虚部信号出现了峰尾,因此仅在7~14 K范围内对其进行Arrhenius公式拟合得到有效能垒为73.5 K,指前因子τ0为1.68 × 10–8 s (图20(b)),而配合物27~30并未观察到单分子磁体行为,说明具有高各向异性的DyIII是配合物26存在较高势垒的重要原因 [26] 。

Figure 19. (a) Temperature dependence of ac susceptibility of 25, under zero-dc field; (b) Temperature dependence of ac susceptibility of 25, under 800 dc field

图19. (a) 配合物25在零外场下变温交流磁化率;(b) 配合物25在800 Oe外场下变温交流磁化率信号

Figure 20. (a) Molecular structure diagram of complex 26; (b) Relaxation time for 26 versus inverse temperature

图20. (a) 配合物26的分子结构图;(b) 配合物26的弛豫时间随温度变化图

3. 总结与展望

本文介绍了部分结构新颖,性能优异的钴–稀土单分子磁体,从第一例单分子磁体报道以来,单分子磁体的研究取得了巨大的进展,有些分子甚至已经能在液氮温度以上展现出磁滞回线,但离单分子磁体的实际应用还很远,其主要问题还是阻塞温度过低。此外,磁耦合作用在研究3d-4f单分子磁体磁行为方面至关重要,磁耦合作用不仅能提高自旋值,并且能有效抑制量子隧穿,进而大幅度提高配合物的有效能垒和弛豫时间。因此,钴与稀土离子之间的产生磁耦合作用的研究需要进一步深入,而且对于有些具有抗磁CoIII离子的单分子磁体,其能垒比具有顺磁性离子的单分子磁体要高,这需要更多的研究解释其原因。总的来说,单分子磁体具有广阔的研究前景,合成阻塞温度高、应用范围广的高性能单分子磁体是未来的主要研究方向。

基金项目

江苏省高校自然科学研究基金(NO. 19KJB430030)和南通市科技项目(NO. JC2020130, JC2020133, JC2020134)资助。

文章引用

郑 祺,王 金. 稀土–钴单分子磁体的研究进展
Research Progress of Lanthanide-Cobalt Single-Molecule Magnets[J]. 物理化学进展, 2023, 12(03): 187-204. https://doi.org/10.12677/JAPC.2023.123021

参考文献

  1. 1. 李子涵, 罗前程, 郑彦臻. 稀土单分子磁体研究进展[J]. 中国稀土学报, 2021, 39(3): 391-424.

  2. 2. Wernsdorfer, W. (2007) Molecular Nanomagnets. Mesoscopic Physics and Nanotechnology. By Dante Gatteschi, Roberta Sessoli, and Jacques Villain. Angewandte Chemie International Edition, 46, 1563-1564. https://doi.org/10.1002/anie.200685459

  3. 3. Arom, G., Aubin, S.M.J., Bolcar, M.A., Christou, G., Eppley, H.J., Folting, K., Hendrickson, D.N., Huffman, J.C., Squire, R.C., Tsai, H.L., Wang, S. and Wemple, M.W. (1998) Manganese Carboxylate Clusters: From Structuralaesthetics to Single-Molecule Magnets. Polyhedron, 17, 3005-3020. https://doi.org/10.1016/S0277-5387(98)00104-1

  4. 4. Guo, F.S., Day, B.M., Chen, Y.C., Tong, M.L., Mansikkamaki, A. and Layfield, R.A. (2018) Magnetic Hysteresis up to 80 Kelvin in a Dysprosium Metallocene Single-Molecule Magnet. Science, 362, 1400-1403. https://doi.org/10.1126/science.aav0652

  5. 5. 李壮, 田佳乐, 陈佳银, 等. 多功能稀土单分子磁体的研究进展[J]. 化学研究, 2022, 33(5): 460-470.

  6. 6. Sessoli, R., Tsai, H.L., Schake, A.R., Wang, S., Vincent, J.B., Folting, K., Gatteschi, D., Christou, G. and Hendrickson, D.N. (2002) High-Spin Molecules: [Mn12O12(O2CR)16(H2O)4]. Journal of the American Chemical Society, 115, 1804-1816. https://doi.org/10.1021/ja00058a027

  7. 7. Ishikawa, N., Sugita, M. and Wernsdorfer, W. (2005) Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets: Bis(Phthalocyaninato)Terbium and Bis(Phthalocyaninato)Dysprosium Anions. Angewandte Chemie, 117, 2991-2995. https://doi.org/10.1002/ange.200462638

  8. 8. Sessoli, R. and Powell, A.K. (2009) Strategies towards Single Molecule Magnets Based on Lanthanide Ions. Coordination Chemistry Reviews, 253, 2328-2341. https://doi.org/10.1016/j.ccr.2008.12.014

  9. 9. 葛宇. 基于席夫碱配体的双核稀土单分子磁体的合成、表征及性能研究[D]: [博士学位论文]. 苏州: 苏州大学, 2019.

  10. 10. 申福星. 基于不同策略调控3d-4f和4f单分子磁体的结构和性质[D]: [博士学位论文]. 南京: 南京大学, 2019.

  11. 11. Dey, A., Bag, P., Kalita, P. and Chandrasekhar, V. (2021) Heterometallic CuII-LnIII Complexes: Single Molecule Magnets and Magnetic Refrigerants. Coordination Chemistry Reviews, 432, Article ID: 213707. https://doi.org/10.1016/j.ccr.2020.213707

  12. 12. Yao, X.N., Du, J.Z., Zhang, Y.Q., Leng, X.B., Yang, M.W., Jiang, S.D., Wang, Z.X., Ouyang, Z.W., Deng, L., Wang, B.W. and Gao, S. (2017) Two-Coordinate Co(II) Imido Complexes as Outstanding Single-Molecule Magnets. Journal of the American Chemical Society, 139, 373-380. https://doi.org/10.1021/jacs.6b11043

  13. 13. Langley, S.K., Chilton, N.F., Ungur, L., Moubaraki, B., Chibotaru, L.F. and Murray, K.S. (2012) Heterometallic Tetranuclear [LnIII2CoIII2] Complexes Including Suppression of Quantum Tunneling of Magnetization in the [DyIII2CoIII2] Single Molecule Magnet. Inorganic Chemistry, 51, 11873-11881. https://doi.org/10.1021/ic301784m

  14. 14. Langley, S.K., Ungur, L., Chilton, N.F., Moubaraki, B., Chibotaru, L.F. and Murray, K.S. (2014) Single-Molecule Magnetism in a Family of CoIII2DyIII2 Butterfly Complexes: Effects of Ligand Replacement on the Dynamics of Magnetic Relaxation. Inorganic Chemistry, 53, 4303-4315. https://doi.org/10.1021/ic4029645

  15. 15. Langley, S.K., Chilton, N.F., Moubaraki, B. and Murray, K.S. (2013) Single-Molecule Magnetism in Three Related CoIII2DyIII2-Acetylacetonate Complexes with Multiple Relaxation Mechanisms. Inorganic Chemistry, 52, 7183-7192. https://doi.org/10.1021/ic400789k

  16. 16. Langley, S.K., Le, C., Ungur, L., Moubaraki, B., Abrahams, B.F., Chibotaru, L.F. and Murray, K.S. (2015) Heterometallic 3d-4f Single-Molecule Magnets: Ligand and Metal Ion Influences on the Magnetic Relaxation. Inorganic Chemistry, 54, 3631-3642. https://doi.org/10.1021/acs.inorgchem.5b00219

  17. 17. Vignesh, K.R., Langley, S.K., Murray, K.S. and Rajaraman, G. (2017) Exploring the Influence of Diamagnetic Ions on the Mechanism of Magnetization Relaxation in CoIII2LnIII2 (Ln = Dy, Tb, Ho) “Butterfly” Complexes. Inorganic Chemistry, 56, 2518-2532. https://doi.org/10.1021/acs.inorgchem.6b02720

  18. 18. Mondal, K.C., Sundt, A., Lan, Y., Kostakis, G.E., Waldmann, O., Ungur, L., Chibotaru, L.F., Anson, C.E. and Powell, A.K. (2012) Coexistence of Distinct Single-Ion and Exchange-Based Mechanisms for Blocking of Magnetization in a CoII2DyIII2 Single-Molecule Magnet. Angewandte Chemie International Edition, 51, 7550-7554. https://doi.org/10.1002/anie.201201478

  19. 19. Li, J., Wei, R.M., Pu, T.C., Cao, F., Yang, L., Han, Y., Zhang, Y.Q., Zuo, J.L. and Song, Y. (2017) Tuning Quantum Tunnelling of Magnetization through 3d-4f Magnetic Interactions: An Alternative Approach for Manipulating Single-Molecule Magnetism. Inorganic Chemistry Frontiers, 4, 114-122. https://doi.org/10.1039/C6QI00407E

  20. 20. Chandrasekhar, V., Pandian, B.M., Azhakar, R., Vittal, J.J. and Clerac, R. (2007) Linear Trinuclear Mixed-Metal CoII-GdIII-CoII Single-Molecule Magnet: [L2Co2Gd][NO3]·2CHCl3 (LH3 = (S)P[N(Me)N=CH-C6H3-2-OH-3-OMe]3). Inorganic Chemistry, 46, 5140-5142. https://doi.org/10.1021/ic070321c

  21. 21. Li, X.L., Min, F.Y., Wang, C., Lin, S.Y., Liu, Z. and Tang, J. (2015) Utilizing 3d-4f Magnetic Interaction to Slow the Magnetic Relaxation of Heterometallic Complexes. Inorganic Chemistry, 54, 4337-4344. https://doi.org/10.1021/acs.inorgchem.5b00019

  22. 22. Huang, G.Z., Ruan, Z.Y., Zheng, J.Y., Wu, J.Y., Chen, Y.C., Li, Q.W., Akhtar, M.N., Liu, J.L. and Tong, M.L. (2018) Enhancing Single-Molecule Magnet Behavior of Linear CoII-DyIII-CoII Complex by Introducing Bulky Diamagnetic Moiety. Science China Chemistry, 61, 1399-1404. https://doi.org/10.1007/s11426-018-9310-y

  23. 23. Wang, H.S., Yin, C.L., Hu, Z.B., Chen, Y., Pan, Z.Q., Song, Y., Zhang, Y.Q. and Zhang, Z.C. (2019) Regulation of Magnetic Relaxation Behavior by Replacing 3d Transition Metal Ions in [M2Dy2] Complexes Containing Two Different Organic Chelating Ligands. Dalton Transactions, 48, 10011-10022. https://doi.org/10.1039/C9DT00774A

  24. 24. Zou, L.F., Zhao, L., Guo, Y.N., Yu, G.M., Guo, Y., Tang, J. and Li, Y.H. (2011) A Dodecanuclear Heterometallic Dysprosium-Cobalt Wheel Exhibiting Single-Molecule Magnet Behaviour. Chemical Communications, 47, 8659-8661. https://doi.org/10.1039/c1cc12405f

  25. 25. Xu, G.F., Gamez, P., Tang, J., Clerac, R., Guo, Y.N. and Guo, Y. (2012) MIIIDyIII3 (M = FeIII, CoIII) Complexes: Three-Blade Propellers Exhibiting Slow Relaxation of Magnetization. Inorganic Chemistry, 51, 5693-5698. https://doi.org/10.1021/ic300126q

  26. 26. Li, Q., Peng, Y., Qian, J., Yan, T., Du, L. and Zhao, Q. (2019) A Family of Planar Hexanuclear CoIII4LnIII2 Clusters with Lucanidae-Like Arrangement and Single-Molecule Magnet Behavior. Dalton Transactions, 48, 12880-12887. https://doi.org/10.1039/C9DT02103E

  27. 27. Stati, D., van Leusen, J., Ahmed, N., Kravtsov, V.C., Kögerler, P. and Baca, S.G. (2022) A CoIII2DyIII4 Single-Molecule Magnet with an Expanded Core Structure. Crystal Growth & Design, 23, 395-402. https://doi.org/10.1021/acs.cgd.2c01085

  28. 28. Sheikh, J.A., Jena, H.S. and Konar, S. (2022) Co3Gd4 Cage as Magnetic Refrigerant and Co3Dy3 Cage Showing Slow Relaxation of Magnetisation. Molecules, 27, Article No. 1130. https://doi.org/10.3390/molecules27031130

  29. 29. Zheng, J.-H., Zhang, Y.-H., Shen, Y., Zhang, X.Y., Liu, B.Q. and Zhang, J.-W. (2021) A Series of Zero-Dimensional Co(II)-Ln(III) Heterometallic Complexes Derived from 2,3-Dichlorobenzoate and 2,2’-Bipyridine: Syntheses, Structures and Magnetic Properties. Inorganica Chimica Acta, 527, Article ID: 120550. https://doi.org/10.1016/j.ica.2021.120550

  30. 30. Yu, S., Wang, H.L., Chen, Z., Zou, H.H., Hu, H., Zhu, Z.H., Liu, D., Liang, Y. and Liang, F.P. (2021) Two Decanuclear DyIIIxCoII10−x (X = 2, 4) Nanoclusters: Structure, Assembly Mechanism, and Magnetic Properties. Inorganic Chemistry, 60, 4904-4914. https://doi.org/10.1021/acs.inorgchem.0c03814

  31. 31. Li, S., Xiong, J., Yuan, Q., Zhu, W.H., Gong, H.W., Wang, F., Feng, C.Q., Wang, S.Q., Sun, H.L. and Gao, S. (2021) Effect of the Transition Metal Ions on the Single-Molecule Magnet Properties in a Family of Air-Stable 3d-4f Ion-Pair Compounds with Pentagonal Bipyramidal Ln(III) Ions. Inorganic Chemistry, 60, 18990-19000. https://doi.org/10.1021/acs.inorgchem.1c02828

  32. 32. Li, D., Li, Y., Tello Yepes, D.F., Zhang, X., Li, Y. and Yao, J.L. (2021) Hexanuclear Co4Dy2, Zn4Dy2, and Co4Y2 Complexes with Defect Tetracubane Cores: Syntheses, Structures, and Magnetic Properties. Chemistry—An Asian Journal, 16, 2545-2551. https://doi.org/10.1002/asia.202100571

  33. 33. Biswas, M., Sanudo, E.C. and Ray, D. (2021) Carboxylate-Decorated Aggregation of Octanuclear Co4Ln4 (Ln = Dy, Ho, Yb) Complexes from Ligand-Controlled Hydrolysis: Synthesis, Structures, and Magnetic Properties. Inorganic Chemistry, 60, 11129-11139. https://doi.org/10.1021/acs.inorgchem.1c01070

  34. 34. Yang, P., Yu, S., Quan, L., Hu, H., Liu, D., Liang, Y., Li, B., Liang, F. and Chen, Z. (2020) Structure and Magnetic Properties of Two Discrete 3d-4f Heterometallic Complexes. ChemistrySelect, 5, 9946-9951. https://doi.org/10.1002/slct.202002611

  35. 35. Wang, Y., Yuan, Z., Ren, H., Xu, W., Xu, J., Zhang, H., Sha, J. and Zhang, H. (2020) Structures and Magnetic Properties of Two Hexanuclear [Co2Ln4] Complexes. Inorganica Chimica Acta, 511, Article ID: 119786. https://doi.org/10.1016/j.ica.2020.119786

  36. 36. Wang, R., Wang, H., Wang, J., Bai, F., Ma, Y., Li, L., Wang, Q., Zhao, B. and Cheng, P. (2020) The Different Magnetic Relaxation Behaviors in [Fe(CN)6]3− or [Co(CN)6]3− Bridged 3d-4f Heterometallic Compounds. CrystEngComm, 22, 2998-3004. https://doi.org/10.1039/D0CE00039F

  37. 37. Lun, H.J., Kong, X.J., Long, L.S. and Zheng, L.S. (2020) Trigonal Bipyramidal CoIII2Dy3 Cluster Exhibiting Single-Molecule Magnet Behavior. Dalton Transactions, 49, 2421-2425. https://doi.org/10.1039/C9DT04600C

  38. 38. Lun, H.J., Du, M.H., Wang, D.H., Kong, X.J., Long, L.S. and Zheng, L.S. (2020) Double-Propeller-Like Heterometallic 3d-4f Clusters Ln18Co7. Inorganic Chemistry, 59, 7900-7904. https://doi.org/10.1021/acs.inorgchem.0c00613

  39. 39. Liu, Y., Chen, Y.C., Liu, J., Chen, W.B., Huang, G.Z., Wu, S.G., Wang, J., Liu, J.L. and Tong, M.L. (2020) Cyanometallate-Bridged Didysprosium Single-Molecule Magnets Constructed with Single-Ion Magnet Building Block. Inorganic Chemistry, 59, 687-694. https://doi.org/10.1021/acs.inorgchem.9b02948

  40. 40. Zhou, H., Dong, R., Wang, Z., Wu, L., Liu, Y. and Shen, X. (2019) The Influence of d-f Coupling on Slow Magnetic Relaxation in NiIILnIIIMIII(Ln = Gd, Tb, Dy; M = Cr, Fe, Co) Clusters. European Journal of Inorganic Chemistry, 2019, 2361-2367. https://doi.org/10.1002/ejic.201900263

  41. 41. Zhang, H.-G., Du, Y.-C., Yang, H., Zhuang, M.-Y., Li, D.C. and Dou, J.-M. (2019) A New Family of {Co4Ln8} Metallacrowns with a Butterfly-Shaped Structure. Inorganic Chemistry Frontiers, 6, 1904-1908. https://doi.org/10.1039/C9QI00661C

  42. 42. Xin, Y., Wang, J., Zychowicz, M., Zakrzewski, J.J., Nakabayashi, K., Sieklucka, B., Chorazy, S. and Ohkoshi, S.I. (2019) Dehydration-Hydration Switching of Single-Molecule Magnet Behavior and Visible Photoluminescence in a Cyanido-Bridged DyIIICoIII Framework. Journal of the American Chemical Society, 141, 18211-18220. https://doi.org/10.1021/jacs.9b09103

  43. 43. Wong, J.W.L., Demeshko, S., Dechert, S. and Meyer, F. (2019) Heterometallic Ru2Co2 [2 × 2] Grid with Localized Single Molecule Magnet Behavior. Inorganic Chemistry, 58, 13337-13345. https://doi.org/10.1021/acs.inorgchem.9b02214

  44. 44. Wei, R.M., Liu, T., Li, J., Zhang, X., Chen, Y. and Zhang, Y.Q. (2019) Tuning the Magnetization Dynamic Properties of Nd-Fe and Nd-Co Single-Molecular Magnets by Introducing 3d-4f Magnetic Interactions. Chemistry—An Asian Journal, 14, 2029-2035. https://doi.org/10.1002/asia.201900139

  45. 45. Roy, S., Hari, N. and Mohanta, S. (2019) Synthesis, Crystal Structures, Magnetic Properties, and Fluorescence of Two Heptanuclear CoIII4LnIII3 Compounds (Ln = GdIII, DyIII): Multiple Relaxation Dynamics in the DyIII Analogue. European Journal of Inorganic Chemistry, 2019, 3411-3423. https://doi.org/10.1002/ejic.201900383

  46. 46. Rosado Piquer, L., Dey, S., Castilla-Amoros, L., Teat, S.J., Cirera, J., Rajaraman, G. and Sanudo, E.C. (2019) Microwave Assisted Synthesis of Heterometallic 3d-4f M4Ln Complexes. Dalton Transactions, 48, 12440-12450. https://doi.org/10.1039/C9DT02567G

  47. 47. Patrascu, A.A., Briganti, M., Soriano, S., Calancea, S., Allao Cassaro, R.A., Totti, F., Vaz, M.G.F. and Andruh, M. (2019) Smm Behavior Tuned by an Exchange Coupling Lego Approach for Chimeric Compounds: First 2p-3d-4f Heterotrispin Complexes with Different Metal Ions Bridged by One Aminoxyl Group. Inorganic Chemistry, 58, 13090-13101. https://doi.org/10.1021/acs.inorgchem.9b01998

  48. 48. Lutsenko, I.A., Kiskin, M.A., Nikolaevskii, S.A., Starikova, A.A., Efimov, N.N., Khoroshilov, A.V., Bogomyakov, A.S., Ananyev, I.V., Voronina, J.K., Goloveshkin, A.S., Sidorov, A.A. and Eremenko, I.L. (2019) Ferromagnetically Coupled Molecular Complexes with a CoII2GdIII Pivalate Core: Synthesis, Structure, Magnetic Properties and Thermal Stability. ChemistrySelect, 4, 14261-14270. https://doi.org/10.1002/slct.201904585

  49. 49. Costes, J.-P., Novitchi, G., Vieru, V., Chibotaru, L.F., Duhayon, C., Vendier, L., Majoral, J.P. and Wernsdorfer, W. (2019) Effects of the Exchange Coupling on Dynamic Properties in a Series of Cogdco Complexes. Inorganic Chemistry, 58, 756-768. https://doi.org/10.1021/acs.inorgchem.8b02921

  50. 50. Acharya, J., Swain, A., Chakraborty, A., Kumar, V., Kumar, P., Gonzalez, J.F., Cador, O., Pointillart, F., Rajaraman, G. and Chandrasekhar, V. (2019) Slow Magnetic Relaxation in Dinuclear CoIIYIII Complexes. Inorganic Chemistry, 58, 10725-10735. https://doi.org/10.1021/acs.inorgchem.9b00864

  51. NOTES

    *通讯作者。

期刊菜单