﻿ 门克庆矿综采工作面区段煤柱合理尺寸研究 The Study of Reasonable Section Coal Pillar Size of Men Keqing Mechanized Longwall Mining Face

Mine Engineering
Vol.03 No.02(2015), Article ID:15036,10 pages
10.12677/ME.2015.32005

The Study of Reasonable Section Coal Pillar Size of Men Keqing Mechanized Longwall Mining Face

Zhenxiong Yan1, Lang Bai1, Hongjiao Li2, Jiayi Ji1, Hongwu Zhang1

1Resource and Safety Engineering School, China Mining University, Beijing

2Mining Oils Branch Institute, Coal Science and Technology Research Institute Co. Ltd., Beijing

Email: 373738314@qq.com

Received: Mar. 15th, 2015; accepted: Mar. 26th, 2015; published: Apr. 2nd, 2015

ABSTRACT

With the shallow coal resources exploitation exhausts, coal mining gradually changes into the deep mining. In view of the principle of safe and efficient production and resource recovery, the reasonable width of section coal pillar has become more important. On the engineering background of coal pillars of 31201 working face of Menkeqing Mine, by using load estimation method and plastic theory, the paper calculates the pillar width and obtains that the coal pillar widths are 36.03 m and 18.59. By using the method of theoretical calculation and numerical simulation, the plastic zones of roadway affected by the one-time mining and its abutment pressure distribution in the condition of 15 m, 25 m, 35 m and 40 m coal pillar widths are studied. The results show that the roadway has minimal damage when coal pillar widths are 35 m and 40 m. The reasonable size of the section coal pillar should be 35 - 40 m.

Keywords:Section Coal Pillar, Numerical Simulation, The Plastic Zone

1中国矿业大学(北京)资源与安全工程学院，北京

2煤炭科学技术研究院有限公司，矿用油品分院，北京

Email: 373738314@qq.com

1. 引言

2. 工程背景

3. 煤柱宽度的理论计算

3.1. 煤柱宽度的载荷估算法

(2-1)

(2-2)

(2-3)

(2-4)

(2-5)

3.2. 煤柱宽度的塑性理论计算

(2-6)

Figure 1. The assign diagrammatic sketch of 31201 working face

Figure 2. The count diagrammatic sketch of coal load

Figure 3. Elasticity and plasticity deformation of section coal pillar and stress distribution

(2-7)

(2-8)

4. 煤柱宽度的数值模拟计算

4.1. 模型的建立

4.2. 塑性破坏范围变化规律

1) 15 m煤柱时巷道围岩塑性破坏

2) 25 m煤柱时巷道围岩塑性破坏

3) 35 m煤柱时巷道围岩塑性破坏

4) 40 m煤柱时巷道围岩塑性破坏

Table 1. The mechanics parameter of rock formation

Figure 4. The lithologic diagrammatic sketch of coal roof and baseboard

Figure 5. The tunnel wall rock plasticity deformation after first mining of pillar width of 15 m

Figure 6. The tunnel wall rock plasticity deformation after first mining of pillar width of 25 m

Figure 7. The tunnel wall rock plasticity deformation after first mining of pillar width of 35 m

Figure 8. The tunnel wall rock plasticity deformation after first mining of pillar width of 40 m

4.3. 围岩应力变化规律

1) 15 m煤柱应力变化规律

2) 25 m煤柱应力变化规律

3) 35 m煤柱应力变化规律

4) 40 m煤柱应力变化规律

5. 结论

Figure 9. The tunnel vertical stress distribution after first mining of pillar width of 15 m

Figure 10. The tunnel vertical stress distribution after first mining of pillar width of 25 m

Figure 11. The tunnel vertical stress distribution after first mining of pillar width of 35 m

Figure 12. The tunnel vertical stress distribution after first mining of pillar width of 40 m

The Study of Reasonable Section Coal Pillar Size of Men Keqing Mechanized Longwall Mining Face[J]. 矿山工程, 2015, 03(02): 25-34. http://dx.doi.org/10.12677/ME.2015.32005

1. 1. 史元伟, 张声涛, 尹世奎等 (2009) 国内外煤矿深部开采岩层控制技术. 煤炭工业出版社, 北京.

2. 2. 奚家米, 毛久海, 杨更社, 王进锋 (2008) 回采巷道合理煤柱宽度确定方法研究与应用. 采矿与安全工程学报, 4, 400-403.

3. 3. 高长富 (2012) 论深井巷道保护煤柱留设宽度计算方法. 中国新技术新产品, 10, 161-162.

4. 4. 赵国旭, 谢和平, 马伟民 (2004) 宽厚煤柱的稳定性研究. 辽宁工程技术大学学报, 1, 38-40.

5. 5. 谢和平, 段法兵, 周宏伟, 赵国旭 (1998) 条带煤柱稳定性理论与分析方法研究进展. 中国矿业, 5, 37-41.

6. 6. 柏建彪, 侯朝炯, 黄汉富 (2004) 沿空掘巷窄煤柱稳定性数值模拟研究. 岩石力学与工程学报, 20, 3475-3479.

7. 7. 王卫军, 侯朝炯 (2003) 回采巷道煤柱与底板稳定性分析. 岩土力学, 1, 75-78.