设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投搞
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2019,8(7),1212-1223
PublishedOnlineJuly2019inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2019.87140
ANewAlgorithmforTrafficEquilibrium
FlowwithCapacityConstraintsofArc
DaqiongZhou,ZhiLin
∗
,ZaiyunPeng,JingjingWang
CollegeofMathematicsandStatistics,ChongqingJiaotongUniversity,Chongqing
Received:June30
th
,2019;accepted:July15
th
,2019;published:July22
nd
,2019
Abstract
Inthispaper,wemainlyresearchthealgorithmoftrafficequilibriumflowwithcapacity
constraints of arcs,and obtainthenecessary andsufficient condition thatfeasibleflow
xisatrafficequilibriumflowwithcapacityconstraintsofarcsbythedefinitionof
thedropoffeasibleflowx,anewalgorithmoftrafficequilibriumflowwithcapacity
constraintsofarcsisconstructed,andtheconcretestepsofcalculatingthetraffic
equilibriumflowwithcapacityconstraintsofarcsaregiven,atthesametime,an
exampleisgiventoillustratetheNewAlgorithm.
Keywords
Drop,NewAlgorithm,ArcCapacity,SaturationPath,TrafficEquilibriumProblem
withCapacityConstraintsofArc
älNþåÏþï6˜«#Ž{
±±±ŒŒŒ §§§“““
∗
§§§$$$222§§§yyy¬¬¬
-ŸÏŒÆêƆÚOÆ§-Ÿ
∗ÏÕŠö"
©ÙÚ^:±Œ ,“,$2,y¬.älNþåÏþï6˜«#Ž{[J].A^êÆ?Ð,2019,8(7):
1212-1223.DOI:10.12677/aam.2019.87140
±Œ 
ÂvFϵ2019c630F¶¹^Fϵ2019c715F¶uÙFϵ2019c722F
Á‡
©Ì‡ïÄälNþåÏþï6Ž{"ÏLŒ16xá½Â§ Œ16x´ä
lNþåÏþï6¿‡^‡§¿±dEälNþåÏþï6˜«#Ž{§‰Ñ
OŽälNþåÏþï6äNÚ½§Óž^~fé#Ž{\±`²"
'…c
á§#Ž{§lNþ§Ú´»§älNþåÏþï¯K
Copyright
c
2019byauthorsandHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
1952c§WardropÄgJÑIþ|G¼êÏþïKµf•<ÀJ¤k1•´‚Ï
1žmÑ´ƒÓ§f•<™ÀJ¤k1•´‚Ï1žm••[1]¶Óž„‰ÑÏ þï
¯KêÆ."1956c§Beckmann<òWardropÏþï¯K=z¤˜‡dêÆ5y¯
K§¦Ïþï6OŽC••N´[2] "Cc5§du¢½ׄuЧÏ×l¯K5
î-§cÙ3½«Ï¥§´mpî†§ØÓ´ãÏ1UåÉ錧Ïd§²;Ï
þï.®ØU·A¯„uÐ¢½Ï‚¸§I‡U?§ùÒ•Ïþï.¥Ú\lNþ
åJø•*µ"2010c§·‚0älNþåÏ þï¯K9þïK[3][4]§¿…
32015c‰ÑälNþåÏþï6Ž{[5] "'uälNþåÏþïÙ¦(J
„[6][7][8]§'uÏþï6Ù¦Ž{ïÄ„[9][10][11]9ƒ'©z"3©¥§·‚é©
z[5]Ž{?1U?§JÑ˜«OŽälNþåÏþï6#Ž{§ÏLäN ~f`²
#Ž{OŽL§"
2.älNþåÏþï¯K0
éuÏä§VL«!:8ܧEL«k•l8ܧWL«¤kOD:é(å:/ª:)8
ܧé?Ûω∈W§^P
ω
L«ëOD:éω´»8ܧPK=∪
ω ∈W
P
ω
,m=|K|"^D=
(d
ω
)
ω∈W
L«I¦•þ§Ù¥d
ω
(>0)L«OD:éωÏI¦þ§é?Ûla∈E§lþ6
DOI:10.12677/aam.2019.871401213A^êÆ?Ð
±Œ 
þ^x
a
∈R
+
={z∈R:z≥0}L«"é?Ûω∈W§k∈P
ω
§^x
k
(≥0)L«´»kþ
Ï6þ"¡x=(x
k
)
T
k∈K
∈R
m
+
={(z
1
,z
2
,···,z
m
)∈R
m
:z
i
≥0,i=1,2,···,m}•
´»6({¡6)"N´wѧéla∈E§x
a
=
P
ω∈W
P
k∈P
ω
δ
ak
x
k
§Ù¥§laáu´»k
ž§δ
ak
=1§laØáu´»kž§δ
ak
=0"^C=(c
a
)
a∈E
L«Nþ•þ§Ù¥c
a
(>0)L
«laþÏ6Nþ"ÏäÏ~L«•ℵ={V,E,W,D,C}"é?Ûla∈E§laþ
6þI÷vNþå:c
a
≥x
a
≥0§¿…§é?ÛOD:éω∈W§6xI‡÷vI¦å:
P
k∈P
ω
x
k
=d
ω
"Q÷vI¦åq÷vNþå6x¡•Œ1´»6({¡Œ16)"PŒ
168ÜA={x∈R
m
+
:∀ω∈W,
P
k∈P
ω
x
k
=d
ω
and∀a∈E,c
a
≥x
a
≥0}"©é?
Ûω∈W§b½ÏI¦d
ω
´½§¿…A6=∅"N´y§8ÜA´˜‡;à8"éa∈E§
^t
a
= t
a
(x
a
) = t
a
(x) ∈R
+
L«laþ|G§é?Ûω∈W,k∈P
w
§b½´»kþ|Gt
k
´´
»þ¤kl|GƒÚ§=t
k
(x) =
P
a∈E
δ
ak
t
a
(x)"
2.1.älNþåÏþïK9Beckmannúª
e¡½Â§„[3][4]"
½Â1.1.éŒ16x∈A,a∈E,
i)XJx
a
= c
a
§Ka¡•Œ16x˜^Úl§ÄK¡a•Œ16x˜^šÚl;
ii)éOD:éω∈W§´»k∈P
ω
§XJ•3Œ16x˜^Úláu´»k§K´»k¡
•Œ16x˜^Ú´»§ÄK¡´»k•Œ16x˜^šÚ´»"
½Â1.2.(älNþ åþïK).6x∈A¡•älNþåÏþï6§ •‡÷
vXe^‡µ
∀ω∈W,∀k,j∈P
ω
,t
k
(x)−t
j
(x) >0
⇒x
k
= 0½öj´´´666x˜˜˜^^^ÚÚÚ´´´»»».
x•¡•älNþåÏþï¯K)"älNþåÏþï¯KÏ~L«
•Γ = {ℵ,A,t}"
älNþåÏþï¯KΓ = {ℵ,A,t}§EêÆ5y¯KMPXe:
Minz(x) = Σ
a∈E
R
x
a
0
t
a
(x)dx
s.t.







P
k
x
k
= d
ω
,∀ω∈W,k∈P
ω
x
a
=
P
ω
P
k
x
k
δ
ak
≤c
a
,∀a∈E,ω∈W,k∈P
ω
x
k
≥0,∀ω∈W,k∈P
ω
.
þª¡•2ÂBeckmannúª"
2.2.á½Â
e¡(Ø„[5]"
Ún2.1.éälNþåÏþï¯K{ℵ,A,t}§XJé?Ûa∈E§ t
a
(x)3R
m
+
þëY§
DOI:10.12677/aam.2019.871401214A^êÆ?Ð
±Œ 
¿…x∈A´êÆ5yQ)§@o§x´Ïþï6"
^P
s
ω
L«Œ16x'uOD:éω¤kÚ´»8ܧP
T
ω
= max
k∈P
ω
{t
k
: x
k
>0},
T
ω
L«3ω••þ§f•<3¤À´»þs¤žm••"P
e
T
ω
=
(
T
ω
,XXXJJJP
s
ω
= P
ω
min
k∈P
ω
\P
s
ω
{t
k
},XXXJJJP
s
ω
6= P
ω
.
=µ3ω••þ§ ¤k´»Ñ´Ú´»ž§
e
T
ω
L«f•<3¤ÀÚ´»þs¤žm
••¶´»•3šÚ´»ž§
e
T
ω
L«3ω••þ§ØÚ´»±§f•<3¤ À´»þ
s¤žm•á"
½Â2.3.éŒ16xÚOD:éω∈W§¡Ω
ω
=max{0,T
ω
−
e
T
ω
}•Œ16x'uOD:éω
á§=Ω
ω
•ω••þá¶¡Ω=max
ω∈W
{Ω
ω
}•Ï䥌16xá¶¡OD:
éω∈{ω∈W
ω
: Ω = Ω
ω
,www,,,W
ω
6=φ}•Œ16xá:é"
3.älNþåÏþï6#Ž{
6xá§‡N6x3äþ©Øþï§Ý§6áŒ§ÙØþï§ÝÒp§
éAáOD:éÒ´ÙØþï§Ý•pOD:é§•´6xÇ•OD:é"©E
Ž{§Ò´84̇gñ§ÏL¯„~Œ16áOD:éáЧ5OŽälNþå
Ïþï6"
3.1.Ä(؆Ž{
½n2.1.éälNþåÏþï¯K{ℵ,A,t}§Œ16x∈A´älNþåÏ þï
6…=ÙáΩ = 0"
y²µ¿©5"éŒ1´»6x§eΩ=0§Iyx•älNþåÏþï6§=yµ∀ω∈
W,∀k,j∈P
ω
§et
k
(x)−t
x
(x)>0…x
k
>0§@o7kµ´»j´x˜^Ú´»"^‡y
{§ejØ´xÚ´»§KP
ω
\P
s
ω
š˜§džP
ω
6=P
s
ω
§=kt
j
(x)≥
e
T
ω
=min
l∈P
ω
\P
s
ω
{t
l
(x)}§
Ïx
k
>0§¤±T
ω
=max
l∈P
ω
{t
l
(x):x
k
>0}≥t
k
(x)>t
j
(x)≥
e
T
ω
§kT
ω
>
e
T
ω
§¤±Ω
ω
>0§
=Ω >0§†Ω = 0gñ"
7‡5"éŒ1´»6x§ex•älNþåÏþï6§IyΩ=0§^‡y{"b
XΩ6=0§K•3ω∈W§kT
ω
−
e
T
ω
>0§džkP
ω
6=P
s
ω
§u´§•3´»k,j∈P
ω
§÷
v^‡µ£1¤§x
k
>0§t
k
(x)=T
ω
§£2¤j∈P
ω
\P
s
ω
´šÚ´»§…
e
T
ω
=t
j
(x)§íѵ
t
k
(x)−t
j
(x) >0§…x
k
>0§j´šÚ´»§ù†x´älNþåÏþï6gñ§y."
éälNþåÏþï¯K§dÚn2.1Ú½n2.1§ŒE•›5Ž{OŽÏþï6"
I‡`²´§Ïä'E,ž§‡Å˜Û¤kOD:é´»´(J§•؇`OŽ
DOI:10.12677/aam.2019.871401215A^êÆ?Ð
±Œ 
ˆ^´»6þ§¯¢þ§Ï•3þï6¥§éõ´»Ï6þ•"§Ïd§•IOŽÑ3þï
6¥§6þŒu"´»þ6þ=Œ§ù§¦+ØOŽ þï6‘ê§Šâ6þŒu"
´»þ6þ§Œ±N´/Ï䥈^l6þ§ùÒ;•ŘÛ¤kOD:é
´»"e¡Ž{Ò´Šâùg´E§Ø´Ïþï6•þy∈A§´y¤k
6þŒu"©þ|¤•þx§•dxOŽÑþïžl6•þz= (x
a
)
a∈E
"äNŽ{Xeµ
bé?Ûa∈E§t
a
(x)3R
m
+
þëY"
1˜Úµ3äℵ¥§?¿Œ1l6z(0)§ЩŒ16š0©þ¤•þx(0)"
PH(0) = {l∈K: x
l
(0) >0}§-i=0"
1Úµéz˜‡ω∈W§
(1)OŽT
ω
(i) = max
k∈H(i)∩P
ω
t
k
(x(i))§Ù¥t
k
(x(i))L«6þ•x(i)ž´»kþ|G"
(2)3äℵ¥§íØ6þ•x(i)žä¤kÚl§éÙ{šÚla§±lþ|
Gt
a
(x(i))(>0)•§\ä
b
ℵ
i
§3ä
b
ℵ
i
¥§OŽéO/D:éω•á´§•á´
•s
ω
§Ù••t
s
ω
(x(i))§w,§s
ω
∈P
ω
§…
e
T
ω
(i) = t
s
ω
(x(i))"
OŽΩ
ω
(i) = max
ω∈W
{0,T
ω
(i)−
e
T
ω
(i)}ÚΩ(i) = max
ω∈W
{Ω
ω
(i)}"
eΩ(i) = 0,K=1ÊÚ.
1nÚµéá:é§½˜‡ω∗∈{ω∈W: Ω
ω
(i) = Ω(i)}§
3ä
b
ℵ¥§eá:éω∗•á´–kü^§Ù¥˜^•s
ω ∗
§,k˜^•s
0
ω∗
§
P
b
S
ω∗
(i) = {s
ω ∗
,s
0
ω∗
: t
s
ω∗
(x(i)) = t
s
0
ω∗
(x(i)) <T
ω
(i)};
3ä
b
ℵ¥,eá:éω∗•á´•k˜^§=•s
ω ∗
§OŽá:éω∗gá´§•s
0
ω∗
§
P
b
S
ω∗
(i) = {s
ω ∗
: t
s
ω∗
(x(i)) <T
ω
(i)}∪{s
0
ω∗
: t
s
0
ω∗
(x(i)) <T
ω
(i)}"
éÙ¦:é§∀ω∈W\{ω∗}§P
b
S
ω
(i) = {s
ω
: t
s
ω
(x(i)) <T
ω
(i)}"
=e˜Ú"
1oÚµ-S(i) = (∪
ω∈P
ω
b
S
ω
(i))§H(i+1) = H(i)∪S(i)§¦)e5y¯KMP(i):
Minz(x) =
X
a∈E
Z
x
a
(i)
0
t
a
(x)dx
s.t















X
k∈P
ω
x
k
(i) = d
ω
,∀ω∈W,k∈H(i+1)
x
a
(i) =
X
ω ∈W
X
k∈P
ω
δ
ak
x
k
(i) ≤c
a
,∀a∈E
x
k
(i) ≥0,∀ω∈W,k∈H(i+1)
)x(i+1)"-i= i+1§=1Ú"
1ÊÚµ¤¦Ïþï6š0•þ•x(i+1)§kx(i+1)OŽÑþïžl6•þz= (x
a
)
a∈E
§
DOI:10.12677/aam.2019.871401216A^êÆ?Ð
±Œ 
OŽ(å"
3.2.Ž{Þ~
~2.1.•ÄÛlNþåÏþï¯K(„ã1)µ
Ù¥V={1,2,3,4,5,6,7,8,9,10,11,12,13},E={e
1
,e
2
,e
3
,e
4
,e
5
,e
6
,e
7
,e
8
,e
9
,e
10
,e
11
,e
12
,e
13
,e
14
,e
15
,e
16
,e
17
,
e
18
,e
19
,e
20
,e
21
,e
22
,e
23
},C=(5,6,7,5,6,5, 6,4,5,7,3,5,6,6,5,5,7,7,4,6,6,8,7),W={ω1,ω2}={(1,12),(3,10)},
D=(d
ω1
,d
ω2
}=(6,5)"
Figure1.Thefigureoftrafficnetwork
ã1.Ïäã
¿…žm|G¼ê•t
e1
(x
e1
)=2(x
e1
)
2
+23§t
e2
(x
e2
)=(x
e2
)
2
+33§t
e3
(x
e3
)=3(x
e3
)
2
+50§t
e4
(x
e4
)
=2(x
e4
)
2
+11§t
e5
(x
e5
)=3(x
e5
)
2
+20§t
e6
(x
e
6)=2(x
e6
)
2
+28§t
e7
(x
e7
)=2(x
e7
)
2
+30§t
e8
(x
e8
)=3(x
e8
)
2
+28§t
e9
(x
e9
)=(x
e9
)
2
+40§t
e10
(x
e10
)=4(x
e10
)
2
+35§t
e11
(x
e11
)=2(x
e11
)
2
+42§t
e12
(x
e12
)=3(x
e12
)
2
+45§
t
e13
(x
e13
)=3(x
e13
)
2
+15§t
e14
(x
e14
)=5(x
e14
)
2
+22§t
e15
(x
e15
)=(x
e15
)
2
+48§t
e16
(x
e16
)=2(x
e16
)
2
+55§
t
e17
(x
e17
)=2(x
e17
)
2
+66§t
e18
(x
e18
)=3(x
e18
)
2
+13§t
e19
(x
e19
)=3(x
e19
)
2
+25§t
e20
(x
e20
)=3(x
e20
)
2
+60§
t
e21
(x
e21
)=4(x
e21
)
2
+38§t
e22
(x
e22
)=2(x
e22
)
2
+70§t
e23
(x
e23
)=3(x
e23
)
2
+90"
e¡^#Ž{OŽälNþåÏþï6µ
i=0§
1)§éO/D:éω1=(1,12)§?À´»l
1
={e
3
e
10
e
18
e
23
}§-Ù6þ•x
1
(0)=6.00§éO/D:
éω2=(3,10)§?À´»l
2
={e
7
e
14
e
20
e
22
}§-Ù6þ•x
2
(0)=5.00"w,x(0)3l
1
þ6þx
1
(0) =
6.00§3l
2
þ6þx
2
(0)=5.00§Ù§´»þ6þ•0.00§H(0)={l
1
,l
2
}§Ù¥x
1
(0),x
2
(0)•
´»l
1
§l
2
6þ"dž3x(0)eä6þã„ã2()ÒSêi•lþ6þ)"
±x(0)•6ˆlþ|G•§\ä
b
ℵ
0
§dž\äã„ã3()ÒSêi•Œ1
6x(0)ž§ˆlþžm)"
2)§(1)d\äãã3§éO/D:éω1=(1,12)§ω
1
∈W§T
ω 1
(0)=t
l1
(x(0))=656.00¶
éO/D:éω2=(3,10)§ω
2
∈W§T
ω2
(0) = t
l2
(x(0)) = 482.00"
DOI:10.12677/aam.2019.871401217A^êÆ?Ð
±Œ 
Figure2.Thefigureofnetworkflowunderx(0)
ã2.3x(0)eä6þã
(2)d\äãã3§éO/D:éω1=(1,12)§^lingo^‡(±eOŽ•á´9gá´þ
æ^lingo^‡)ŽÑ•á´S
ω
1
={l
3
}={e
1
e
6
e
14
e
21
}§
e
T
ω1
(0)=t
l3
(x(0))=236.00¶éO/D:éω2
=(3,10)§•á´S
ω
2
= {l
4
}={e
2
e
5
e
11
e
17
}§
e
T
ω2
(0)=t
l4
(x(0))=161.00"
Ω
ω1
(0) = max{0,656−236}= 480.00§Ω
ω2
(0) = max{0,482−161}= 321.00"
Ω(0) = max{480.00,321.00}= 480.00"
3¤§ω1∗∈{ω∈W: Ω
ω1
(0) = Ω(0)}§á:é•ω1∗= (1,12)"
éá:éω1∗=(1,12)§•á´S
ω
1∗
={l
3
}={e
1
e
6
e
14
e
21
}§t
l3
(x(0))=236.00¶gá´
•S
0
ω
1
∗
= {l
5
}={e
4
e
12
e
19
e
23
}§t
l5
(x(0))=279.00"
b
S
ω1
∗
(0)={l
3
,l
5
}"
éO/D:éω2=(3,10)§•á´S
ω
2
= {l
4
}={e
2
e
5
e
11
e
17
}§t
l4
(x(0))=161.00"
b
S
ω2
(0)={l
4
}"
Figure3.Thefigureofnetworkweightingunderx(0)
ã3.3x(0)eä\ã
4)§S(0)={l
3
§l
5
§l
4
}§H(1)={l
1
§l
2
§l
3
§l
4
§l
5
}§Ù¥x
1
(0),x
2
(0),x
3
(0),x
4
(0),x
5
(0)•´
»l
1
,l
2
,l
3
,l
4
,l
5
6þ§=\\´»l
3
§l
4
§l
5
")e5y¯KMP(1):
DOI:10.12677/aam.2019.871401218A^êÆ?Ð
±Œ 
Min z(x) =
P
a∈E
R
x
a
(i)
0
t
a
(x) dx =
R
x
e3
(0)
0
(3x
2
+50) dx +
R
x
e10
(0)
0
(4x
2
+35) dx +
R
x
e18
(0)
0
(3x
2
+
13)dx+
R
x
e23
(0)
0
(3x
2
+90)dx+
R
x
e7
(0)
0
(2x
2
+30)dx++
R
x
e14
(0)
0
(5x
2
+22)dx+
R
x
e20
(0)
0
(3x
2
+60)
dx+
R
x
e22
(0)
0
(2x
2
+70)dx+
R
x
e1
(0)
0
(2x
2
+23)dx+
R
x
e6
(0)
0
(2x
2
+28)dx+
R
x
e21
(0)
0
(4x
2
+38)dx
+
R
x
e2
(0)
0
(x
2
+ 33)dx+
R
x
e5
(0)
0
(3x
2
+ 20)dx+
R
x
e11
(0)
0
(2x
2
+ 42)dx+
R
x
e17
(0)
0
(2x
2
+ 66)dx+
R
x
e4
(0)
0
(2x
2
+11)dx+
R
x
e12
(0)
0
(3x
2
+45)dx+
R
x
e19
(0)
0
(3x
2
+25)dx§
Ù¥(x
e3
(0)=x
e10
(0)=x
e18
(0)=x
1
(0),x
e7
(0)=x
e20
(0)=x
e22
(0)=x
2
(0),x
e1
(0)=
x
e21
(0) = x
e6
(0) = x
3
(0),x
e2
(0) = x
e5
(0) = x
e11
(0) = x
e17
(0) = x
4
(0),x
e4
(0) = x
e12
(0) = x
e19
(0) =
x
5
(0),x
e23
(0) = x
1
(0)+x
5
(0),x
e14
(0) = x
2
(0)+x
3
(0))"
Ïd:Minz(x)=
10
3
(x
1
(0))
3
+188x
1
(0)+(x
1
(0)+x
5
(0))
3
+171x
5
(0)+
7
3
(x
2
(0))
3
+182x
2
(0)+
5
3
(x
2
(0)+x
3
(0))
3
+111x
3
(0)+
8
3
(x
3
(0))
3
+
8
3
(x
4
(0))
3
+161x
4
(0)+
8
3
(x
5
(0))
3
§
s.t





















x
1
(0)+x
3
(0)+x
5
(0) = 6,x
2
(0)+x
4
(0) = 5,
x
1
(0)+x
5
(0) ≤7,x
2
(0)+x
3
(0) ≤6,
0 ≤x
1
(0) ≤7,0 ≤x
2
(0) ≤6,
0 ≤x
3
(0) ≤5,0 ≤x
4
(0) ≤3,
0 ≤x
5
(0) ≤4,
)x(1)3l
1
þ6þx
1
(1)=1.46!3l
2
þ6þx
2
(1)=2.00!3l
3
þ6þx
3
(1)=2.35!
3l
4
þ6þx
4
(1) = 3.00!3l
5
þ6þx
5
(1) = 2.19§Ù§´»þ6þ•0"
6x(1)kÚle
11
§Ú´»l
4
"
36x(1)e§íØÚle
11
§±x(1)•6ˆlþ|G•§\ä
b
ℵ
1
"
i=1§
1¤§(1)éO/D:éω1=(1,12)§T
ω1
(1) = t
l3
(x(1))
.
= 249.50§éO/D:éω2=(3,10)§T
ω2
(1) =
t
l2
(x(1))
.
= 304.43"
(2)36x(1)e§íØÚle
11
§±x(1)•6ˆlþ|G•§\ä
b
ℵ
1
§3\
ä
b
ℵ
1
¥§éO/D:éω1=(1,12)§•á´S
ω
1
= {l
1
}={e
3
e
10
e
18
e
23
}§
e
T
ω1
(1)=t
l1
(x(1))
.
= 249.50¶
éO/D:éω2=(3,10)§•á´S
ω
2
= {l
6
}={e
7
e
13
e
19
e
22
}§
e
T
ω2
(1)=t
l6
(x(1))
.
= 170.40"
Ω
ω1
(1) = 0.00§Ω
ω2
(1) = 134.03"Ω(1) = 134.03"
2¤§ω2∗∈{ω∈W: Ω
ω2
(1) = Ω(1)}§á:é•ω2∗=(3,10)"
éá:éω2∗=(3,10)§•á´•S
ω
2
∗
={l
6
}={e
7
e
13
e
19
e
22
}§t
l6
(x(1))
.
=170.40§gá´
•S
0
ω
2
∗
= {l
7
}={e
2
e
6
e
13
e
19
e
22
}§t
l7
(x(1))
.
= 213.41§
b
S
ω2
∗
(1)={l
6
,l
7
}"
éO/D:éω1=(1,12)§•á´•S
ω
1
={l
1
}={e
3
e
10
e
18
e
23
}§t
l1
(x(1))
.
=249.50§
b
S
ω1
(1)=
{l
1
}"
3¤§S(1)={l
6
§l
7
§l
1
},H(2)={l
1
§l
2
§l
3
§l
4
§l
5
§l
6
§l
7
}§Ù¥x
1
(1),x
2
(1),x
3
(1),x
4
(1),x
5
(1),
x
6
(1),x
7
(1)•´»l
1
,l
2
,l
3
,l
4
,l
5
,l
6
,l
7
6þ§=\\´»l
6
§l
7
")e5y¯KMP(2):
Min z(x) =
P
a∈E
R
x
a
(i)
0
t
a
(x) dx =
R
x
e3
(1)
0
(3x
2
+50) dx +
R
x
e10
(1)
0
(4x
2
+35) dx +
R
x
e18
(1)
0
(3x
2
+
DOI:10.12677/aam.2019.871401219A^êÆ?Ð
±Œ 
13)dx+
R
x
e23
(1)
0
(3x
2
+90)dx+
R
x
e7
(1)
0
(2x
2
+30)dx++
R
x
e14
(1)
0
(5x
2
+22)dx+
R
x
e20
(1)
0
(3x
2
+60)
dx+
R
x
e22
(1)
0
(2x
2
+70)dx+
R
x
e1
(1)
0
(2x
2
+23)dx+
R
x
e6
(1)
0
(2x
2
+28)dx+
R
x
e21
(1)
0
(4x
2
+38)dx
+
R
x
e2
(1)
0
(x
2
+ 33)dx+
R
x
e5
(1)
0
(3x
2
+ 20)dx+
R
x
e11
(1)
0
(2x
2
+ 42)dx+
R
x
e17
(1)
0
(2x
2
+ 66)dx+
R
x
e4
(1)
0
(2x
2
+11)dx+
R
x
e12
(1)
0
(3x
2
+45)dx+
R
x
e19
(1)
0
(3x
2
+25)dx+
R
x
e13
(1)
0
(3x
2
+15)dx§
Ù¥(x
e3
(1)=x
e10
(1)=x
e18
(1)=x
1
(1),x
e23
(1)=x
1
(1)+x
5
(1),x
e7
(1)=x
2
(1)+x
6
(1),
x
e14
(1)=x
2
(1)+x
3
(1),x
e20
(1)=x
2
(1),x
e22
(1)=x
2
(1)+x
6
(1)+x
7
(1),x
e1
(1)=x
e21
(1)=
x
3
(1),x
e6
(1)=x
3
(1)+ x
7
(1),x
e2
(1)=x
4
(1)+ x
7
(1),x
e5
(1)=x
e11
(1)=x
e17
(1)=x
4
(1),x
e4
(1)=
x
e12
(1) = x
5
(1),x
e19
(1) = x
5
(1)+x
6
(1)+x
7
(1),x
e13
(1) = x
6
(1)+x
7
(1))"
Ïd:Minz(x)=
P
a∈E
R
x
a
(i)
0
t
a
(x)dx=
10
3
(x
1
(1))
3
+188x
1
(1)+(x
1
(1)+x
5
(1))
3
+171x
5
(1)+
2
3
(x
2
(1)+x
6
(1))
3
+182x
2
(1)+140x
6
(1)+
5
3
(x
2
(1)+x
3
(1))
3
+111x
3
(1)+(x
2
(1))
3
+
2
3
(x
2
(1)+x
6
(1)+
x
7
(1))
3
+ 171x
7
(1) +2(x
3
(1))
3
+
2
3
(x
3
(1) +x
7
(1))
3
+
1
3
(x
4
(1) +x
7
(1))
3
+ 161x
4
(1) +
7
3
(x
4
(1))
3
+
5
3
(x
5
(1))
3
+(x
5
(1)+x
6
(1)+x
7
(1))
3
+(x
6
(1)+x
7
(1))
3
§
s.t



























x
1
(1)+x
3
(1)+x
5
(1) = 6,x
2
(1)+x
4
(1)+x
6
(1)+x
7
(1) = 5,
x
1
(1)+x
5
(1) ≤7,x
2
(1)+x
3
(1) ≤6,x
2
(1)+x
6
(1)+x
7
(1) ≤8,
x
2
(1)+x
6
(1) ≤6,x
3
(1)+x
7
(1) ≤5,x
5
(1)+x
6
(1)+x
7
(1) ≤4,
x
6
(1)+x
7
(1) ≤6,x
4
(1)+x
7
(1) ≤6,0 ≤x
1
(1) ≤7,
0 ≤x
2
(1) ≤6,0 ≤x
3
(1) ≤5,0 ≤x
4
(1) ≤3,0 ≤x
5
(1) ≤5,
0 ≤x
6
(1) ≤4,0 ≤x
7
(1) ≤4.
)x(2)3l
1
þ6þx
1
(2)=1.67!3l
2
þ6þx
2
(2)=0.00!3l
3
þ6þx
3
(2)=3.15!
3l
4
þ6þx
4
(2)=2.64!3l
5
þ6þx
5
(2)=1.18!3l
6
þ6þx
6
(2)=2.36!3l
7
þ6
þx
7
(2) = 0.00§Ù§´»þ6þ•0"
6x(2)vkÚl§±x(2)•6ˆlþ|G•§\ä
b
ℵ
2
"
i=2§
1¤§£1¤éO/D:éω1=(1,12)!T
ω1
(2) = t
l3
(x(2))
.
= 240.08§éO/D:éω2=(3,10)§T
ω2
(2)) =
t
l6
(x(2))
.
= 216.70"
£2¤3\ä
b
ℵ
2
¥§éO/D:éω1=(1,12)§•á´S
ω
1
={l
8
}={e
4
e
11
e
18
e
23
}§
e
T
ω1
(2)
=t
l8
(x(2))
.
= 205.40¶éO/D:éω2=(3,10)§•á´S
ω
2
= {l
4
}={e
2
e
5
e
11
e
17
}§
e
T
ω 2
(2)=t
l4
(x(2))
.
=
216.70"
Ω
ω1
(2) = 34.68§Ω
ω2
(2) = 0.00"Ω(2) = 34.68"
2¤§ω1∗∈{ω∈W: Ω
ω1
(2) = Ω(2)}§á:é•ω1∗=(1,12)"
3\ä
b
ℵ
2
¥§éO/D:éω1∗=(1,12)§T
ω1
(2)=t
l3
(x(2))
.
=240.08§éO/D:éω2
=(3,10)§
T
ω2
(2) = t
l6
(x(2))
.
= 216.70"
Œ16x(2)á•Ω(2) = 34.68§á:é•ω1∗=(1,12)"
éá:éω1∗=(1,12)§•á´•S
ω
1
∗
={l
8
}={e
4
e
11
e
18
e
23
}§t
l8
(x(2))
.
=205.40§gá´
DOI:10.12677/aam.2019.871401220A^êÆ?Ð
±Œ 
•S
0
ω
1
∗
= {l
5
}={e
4
e
12
e
19
e
23
}§t
l5
(x(2))
.
= 240.06"
b
S
ω1∗
(2)={l
8
,l
5
}"
éO/D:éω2=(3,10),•á´•S
ω
2
(2)={l
4
}={e
2
e
5
e
11
e
17
}§t
l4
(x(2))
.
=216.70"
b
S
ω2
(2)=
{l
4
}"
3¤§S(2) ={l
8
§l
5
§l
4
}§H(3)={l
1
§l
2
§l
3
§l
4
§l
5
§l
6
§l
7
§l
8
}§Ù¥x
1
(2),x
2
(2),x
3
(2),x
4
(2),
x
5
(2),x
6
(2),x
7
(2),x
8
(2)•´»l
1
,l
2
,l
3
,l
4
,l
5
,l
6
,l
7
,l
8
6þ§=\\´»l
8
")e5y¯
KMP(3):
Min z(x) =
P
a∈E
R
x
a
(i)
0
t
a
(x) dx =
7
3
(x
1
(2))
3
+188x
1
(2)+(x
1
(2)+x
8
(2))
3
+156x
8
(2)+(x
1
(2)+
x
5
(2)+x
8
(2))
3
+171x
5
(2)+
2
3
(x
2
(2)+x
6
(2))
3
+182x
2
(2)+140x
6
(2)+
5
3
(x
2
(2)+x
3
(2))
3
+111x
3
(2)+
(x
2
(2))
3
+
2
3
(x
2
(2)+x
6
(2)+x
7
(2))
3
+171x
7
(2)+2(x
3
(2))
3
+
2
3
(x
3
(2)+x
7
(2))
3
+
1
3
(x
4
(2)+x
7
(2))
3
+
161x
4
(2)+
5
3
(x
4
(2))
3
+
2
3
(x
4
(2)+x
8
(2))
3
+
2
3
(x
5
(2)+x
8
(2))
3
+(x
5
(2))
3
+(x
5
(2)+x
6
(2)+x
7
(2))
3
+
(x
6
(2)+x
7
(2))
3
"
s.t

































x
1
(2)+x
3
(2)+x
5
(2)+x
8
(2) = 6,x
2
(2)+x
4
(2)+x
6
(2)+x
7
(2) = 5,
x
1
(2)+x
8
(2) ≤7,x
1
(2)+x
5
(2)+x
8
(2) ≤7,x
2
(2)+x
6
(2) ≤6,
x
3
(2)+x
2
(2) ≤6,x
2
(2)+x
6
(2)+x
7
(2) ≤8,x
3
(2)+x
7
(2) ≤5,
x
4
(2)+x
7
(2) ≤6,x
4
(2)+x
8
(2) ≤3,x
5
(2)+x
8
(2) ≤5,
x
5
(2)+x
6
(2)+x
7
(2) ≤4,x
6
(2)+x
7
(2) ≤6,0 ≤x
1
(2) ≤7,
0 ≤x
2
(2) ≤6,0 ≤x
3
(2) ≤5,0 ≤x
4
(2) ≤3,0 ≤x
5
(2) ≤4,
0 ≤x
6
(2) ≤4,0 ≤x
7
(2) ≤4,0 ≤x
8
(2) ≤3.
Ù¥(x
e3
(2) = x
e10
(2) = x
1
(2),x
e18
(2) = x
1
(2)+x
8
(2),x
e23
(2) = x
1
(2)+x
5
(2)+x
8
(2),x
e7
(2) =
x
2
(2) + x
6
(2),x
e14
(2)=x
2
(2) + x
3
(2),x
e20
(2)=x
2
(2),x
e22
(2)=x
2
(2) + x
6
(2) + x
7
(2),x
e1
(2)=
x
e21
(2)=x
3
(2),x
e6
(2)=x
3
(2)+x
7
(2),x
e2
(2)=x
4
(2)+x
7
(2),x
e5
(2)=x
e17
(2)=x
4
(2),x
e11
(2)=
x
4
(2) + x
8
(2),x
e4
(2)=x
5
(2) + x
8
(2),x
e12
(2)=x
5
(2),x
e19
(2)=x
5
(2) + x
6
(2) + x
7
(2),x
e13
(2)=
x
6
(2)+x
7
(2))"
)x(3)3l
1
þ6þx
1
(3)=1.35!3l
2
þ6þx
2
(3)=0.00!3l
3
þ6þx
3
(3)=3.14!
3l
4
þ6þx
4
(3)=2.23!3l
5
þ6þx
5
(3)=0.74!3l
6
þ6þx
6
(3)=2.77!3l
7
þ6
þx
7
(3) = 0.00!3l
8
þ6þx
8
(3) = 0.77§Ù§´»þ6þ•0"dž6þã•ã4"
6x(3)kÚle
11
,Ú´»l
4
§l
8
§íØÚle
11
§±x(3)•6ˆlþ|G•§\
ä
b
ℵ
3
§dž\äã•ã5"
i=3§
1)§(1)éO/D:éω1=(1,12)§T
ω1
(3)=t
l
1
(x(3))
.
=238.90"éO/D:éω2=(3,10)§T
ω2
(3)
=t
l
6
(x(3))
.
=230.90"
(2)36x(3)e§íØÚle
11
§±x(3)•6ˆlþ|G•§\ä
b
ℵ
3
§3\
ä
b
ℵ
3
¥§éO/D:éω1=(1,12)§•á´•S
ω
1
(3)={l
3
}={e
1
e
6
e
14
e
21
}§
e
T
ω1
(3)=t
l
3
(x(3))
.
=
238.90"
éO/D:éω2=(3, 10)§•á´•S
ω
2
(3) = {l
6
}= {e
7
e
13
e
19
e
22
}§
e
T
ω 2
(3)=t
l
6
(x(3))
.
=230.90"
DOI:10.12677/aam.2019.871401221A^êÆ?Ð
±Œ 
Figure4.Thefigureofnetworkflowunderx(3)
ã4.3x(3)eä6þã
Figure5.Thefigureofnetworkweightingunderx(3)
ã5.3x(3)eä\ã
Ω
ω1
(3) = 0.00§Ω
ω2
(3) = 0.00"
Ω(3) = 0.00"
Œ16x(3)á•Ω(3) = 0.00§x(3)•þï6"
dþï6kÚle
11
§Ú´»l
4
!l
8
"
4.(Ø
©Šâá½Â§‰ÑŒ16x´älNþåÏþï6¿‡^‡§¿±dE˜
«#Ž{"©3OŽL§¥§Ò´|^á§84̇gñ§éÑá:é§ÏL¯„~Œ1
6á:éáЧ5OŽälNþåÏþï6"
©Ž{§ÃIŘÛѤkOD:é´»§¯¢þ§3Ïä'E,œ¹e§
ŘÛѤkOD:é´»§ù´'(J"©#Ž{§Ò;•ù«œ¹§©¥~
f¿©`²ù˜:"
DOI:10.12677/aam.2019.871401222A^êÆ?Ð
±Œ 
Ä7‘8
I[g,‰ÆÄ7]Ï‘8(11301571)¶-Ÿ½g,‰ÆÄ7]Ï(cstc2018jcyjAX0337)¶-
Ÿ½M#ìè]Ï(CXTDX201601022)¶-ŸÏŒÆ?M#ìè‘8¶-ŸÏŒÆS
˜Ä7(2018PY21)9-ŸÏŒÆM#M’Ôö‘8(201810618104)"
ë•©z
[1]Wardrop,J.(1952)SomeTheoreticalAspectsofRoadTrafficResearch.Proceedingsofthe
InstituteofCivilEngineers,PartII,1,325-378.https://doi.org/10.1680/ipeds.1952.11259
[2]Beckmann, M.J.,McGuire,C.B. andWinsten,C.B. (1956)Studiesin theEconomics ofTrans-
portation.YaleUniversityPress,NewHaven.
[3]Lin,Z.(2010)TheStudyofTrafficEquilibriumProblemswithCapacityConstraintsofArcs.
NonlinearAnalysis:RealWorldApplications,11,2280-2284.
https://doi.org/10.1016/j.nonrwa.2009.07.002
[4]Lin,Z.(2010)OnExistenceofVectorEquilibriumFlowswithCapacityConstraintsofArcs.
NonlinearAnalysis:Theory,Methods&Applications,72,2076-2079.
https://doi.org/10.1016/j.na.2009.10.007
[5]Lin,Z.(2015)AnAlgorithmforTrafficEquilibriumFlowwithCapacityConstraintsofArcs.
JournalofTransportationTechnologies,5,240-246.https://doi.org/10.4236/jtts.2015.54022
[6]Xu,Y.D. and Li, S.J. (2014) Vector Network Equilibrium Problems with Capacity Constraints
ofArcsandNonlinearScalarizationMethods.ApplicableAnalysis,93,2199-2210.
https://doi.org/10.1080/00036811.2013.875160
[7]Tian,X.Q.andXu,Y.D.(2012)TrafficNetworkEquilibriumProblemswithCapacityCon-
straintsofArcsandLinearScalarizationMethods.JournalofAppliedMathematics,2012,
ArticleID:612142.https://doi.org/10.1155/2012/612142
[8]Xu,Y.D.,Li,S.J.andTeo,K.L.(2012)VectorNetworkEquilibriumProblemswithCapacity
Constraints ofArcs. TransportationResearchPartE:LogisticsandTransportationReview, 48,
567-577.https://doi.org/10.1016/j.tre.2011.11.002
[9]Chiou,S.W.(2010)AnEfficientAlgorithmforComputingTrafficEquilibriaUsingTransyt
Model.AppliedMathematicalModelling,34,3390-3399.
https://doi.org/10.1016/j.apm.2010.02.028
[10]Xu,M.,Chen,A.,Qu,Y.andGao,Z.(2011)ASemismoothNewtonMethodforTraffic
EquilibriumProblemwithaGeneralNonadditiveRouteCost.AppliedMathematicalModelling,
35,3048-3062.https://doi.org/10.1016/j.apm.2010.12.021
[11]Chen,A.,Zhou,Z.andXu,X.D.(2012)ASelf-AdaptiveGradientProjectionAlgorithmfor
the Nonadditive Traffic Equilibrium Problem. Computers&OperationsResearch, 39, 127-138.
https://doi.org/10.1016/j.cor.2011.02.018
DOI:10.12677/aam.2019.871401223A^êÆ?Ð
知网检索的两种方式:
1. 打开知网首页:http://cnki.net/,点击页面中“外文资源总库CNKI SCHOLAR”,跳转至:http://scholar.cnki.net/new,
搜索框内直接输入文章标题,即可查询;
或点击“高级检索”,下拉列表框选择:[ISSN],输入期刊ISSN:2324-7991,即可查询。
2. 通过知网首页http://cnki.net/
顶部“旧版入口”进入知网旧版:http://www.cnki.net/old/,左侧选择“国际文献总库”
进入,搜索框直接输入文章标题,即可查询。
投稿请点击:http://www.hanspub.org/Submission.aspx
期刊邮箱:aam@hanspub.org

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2012 Hans Publishers Inc. All rights reserved.