设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投搞
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2019,8(7),1212-1223
PublishedOnlineJuly2019inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2019.87140
ANewAlgorithmforTrafficEquilibrium
FlowwithCapacityConstraintsofArc
DaqiongZhou,ZhiLin
∗
,ZaiyunPeng,JingjingWang
CollegeofMathematicsandStatistics,ChongqingJiaotongUniversity,Chongqing
Received:June30
th
,2019;accepted:July15
th
,2019;published:July22
nd
,2019
Abstract
Inthispaper,wemainlyresearchthealgorithmoftrafficequilibriumflowwithcapacity
constraints of arcs,and obtainthenecessary andsufficient condition thatfeasibleflow
x
isatrafficequilibriumflowwithcapacityconstraintsofarcsbythedefinitionof
thedropoffeasibleflow
x
,anewalgorithmoftrafficequilibriumflowwithcapacity
constraintsofarcsisconstructed,andtheconcretestepsofcalculatingthetraffic
equilibriumflowwithcapacityconstraintsofarcsaregiven,atthesametime,an
exampleisgiventoillustratetheNewAlgorithm.
Keywords
Drop,NewAlgorithm,ArcCapacity,SaturationPath,TrafficEquilibriumProblem
withCapacityConstraintsofArc
ä
l
N
þ
å
Ï
þ
ï
6
˜
«
#
Ž
{
±±±
ŒŒŒ
§§§
“““
∗
§§§
$$$
222
§§§
yyy
¬¬¬
-
Ÿ
Ï
Œ
Æ
ê
Æ
†
Ú
O
Æ
§
-
Ÿ
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
±
Œ
,
“
,
$
2
,
y
¬
.
ä
l
N
þ
å
Ï
þ
ï
6
˜
«
#
Ž
{
[J].
A^
ê
Æ
?
Ð
,2019,8(7):
1212-1223.DOI:10.12677/aam.2019.87140
±
Œ
Â
v
F
Ï
µ
2019
c
6
30
F
¶
¹
^
F
Ï
µ
2019
c
7
15
F
¶
u
Ù
F
Ï
µ
2019
c
7
22
F
Á
‡
©
Ì
‡
ï
Ä
ä
l
N
þ
å
Ï
þ
ï
6
Ž
{
"
Ï
L
Œ
1
6
x
á
½
Â
§
Œ
1
6
x
´
ä
l
N
þ
å
Ï
þ
ï
6
¿
‡
^
‡
§
¿
±
d
E
ä
l
N
þ
å
Ï
þ
ï
6
˜
«
#
Ž
{
§
‰
Ñ
O
Ž
ä
l
N
þ
å
Ï
þ
ï
6
ä
N
Ú
½
§
Ó
ž
^
~
f
é
#
Ž
{
\
±
`
²
"
'
…
c
á
§
#
Ž
{
§
l
N
þ
§
Ú
´
»
§
ä
l
N
þ
å
Ï
þ
ï
¯
K
Copyright
c
2019byauthorsandHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
1952
c
§
Wardrop
Ä
g
J
Ñ
I
þ
|
G
¼
ê
Ï
þ
ï
K
µ
f
•
<
À
J
¤
k
1
•
´
‚
Ï
1
ž
m
Ñ
´
ƒ
Ó
§
f
•
<
™
À
J
¤
k
1
•
´
‚
Ï
1
ž
m
•
•
[1]
¶
Ó
ž
„
‰
Ñ
Ï
þ
ï
¯
K
ê
Æ
.
"
1956
c
§
Beckmann
<
ò
Wardrop
Ï
þ
ï
¯
K
=
z
¤
˜
‡
d
ê
Æ
5
y
¯
K
§
¦
Ï
þ
ï
6
O
Ž
C
•
•
N
´
[2]
"
C
c
5
§
du
¢
½
×
„
u
Ð
§
Ï
×
l
¯
K
5
î
-
§
c
Ù
3
½
«
Ï
¥
§
´
m
p
î
†
§
Ø
Ó
´
ã
Ï
1
U
å
É
é
Œ
§
Ï
d
§
²
;
Ï
þ
ï
.
®
Ø
U
·
A
¯
„
u
Ð
¢
½
Ï
‚
¸
§
I
‡
U
?
§
ù
Ò
•
Ï
þ
ï
.
¥
Ú
\
l
N
þ
å
J
ø
•
*
µ
"
2010
c
§
·
‚
0
ä
l
N
þ
å
Ï
þ
ï
¯
K
9
þ
ï
K
[3][4]
§
¿
…
3
2015
c
‰
Ñ
ä
l
N
þ
å
Ï
þ
ï
6
Ž
{
[5]
"
'
u
ä
l
N
þ
å
Ï
þ
ï
Ù
¦
(
J
„
[6][7][8]
§
'
u
Ï
þ
ï
6
Ù
¦Ž
{
ï
Ä
„
[9][10][11]
9
ƒ
'
©
z
"
3
©
¥
§
·
‚
é
©
z
[5]
Ž
{
?
1
U
?
§
J
Ñ
˜
«
O
Ž
ä
l
N
þ
å
Ï
þ
ï
6
#
Ž
{
§
Ï
L
ä
N
~
f
`
²
#
Ž
{
O
Ž
L
§
"
2.
ä
l
N
þ
å
Ï
þ
ï
¯
K
0
é
u
Ï
ä
§
V
L
«
!
:
8
Ü
§
E
L
«
k
•
l
8
Ü
§
W
L
«
¤
k
OD
:é
(
å
:
/
ª
:
)
8
Ü
§
é
?
Û
ω
∈
W
§
^
P
ω
L
«
ë
OD
:é
ω
´
»
8
Ü
§
P
K
=
∪
ω
∈
W
P
ω
,m
=
|
K
|
"
^
D
=
(
d
ω
)
ω
∈
W
L
«
I
¦
•
þ
§
Ù
¥
d
ω
(
>
0)
L
«
OD
:é
ω
Ï
I
¦
þ
§
é
?
Û
l
a
∈
E
§
l
þ
6
DOI:10.12677/aam.2019.871401213
A^
ê
Æ
?
Ð
±
Œ
þ
^
x
a
∈
R
+
=
{
z
∈
R
:
z
≥
0
}
L
«
"
é
?
Û
ω
∈
W
§
k
∈
P
ω
§
^
x
k
(
≥
0)
L
«
´
»
k
þ
Ï
6
þ
"
¡
x
=(
x
k
)
T
k
∈
K
∈
R
m
+
=
{
(
z
1
,z
2
,
···
,z
m
)
∈
R
m
:
z
i
≥
0
,i
=1
,
2
,
···
,m
}
•
´
»
6
(
{
¡
6
)
"
N
´
w
Ñ
§
é
l
a
∈
E
§
x
a
=
P
ω
∈
W
P
k
∈
P
ω
δ
ak
x
k
§
Ù
¥
§
l
a
á
u
´
»
k
ž
§
δ
ak
=1
§
l
a
Ø
á
u
´
»
k
ž
§
δ
ak
=0
"
^
C
=(
c
a
)
a
∈
E
L
«
N
þ
•
þ
§
Ù
¥
c
a
(
>
0)
L
«
l
a
þ
Ï
6
N
þ
"
Ï
ä
Ï
~
L
«
•
ℵ
=
{
V,E,W,D,C
}
"
é
?
Û
l
a
∈
E
§
l
a
þ
6
þ
I
÷
v
N
þ
å
:
c
a
≥
x
a
≥
0
§
¿
…
§
é
?
Û
OD
:é
ω
∈
W
§
6
x
I
‡
÷
v
I
¦
å
:
P
k
∈
P
ω
x
k
=
d
ω
"
Q
÷
v
I
¦
å
q
÷
v
N
þ
å
6
x
¡
•
Œ
1
´
»
6
(
{
¡
Œ
1
6
)
"
P
Œ
1
6
8
Ü
A
=
{
x
∈
R
m
+
:
∀
ω
∈
W,
P
k
∈
P
ω
x
k
=
d
ω
and
∀
a
∈
E,c
a
≥
x
a
≥
0
}
"
©
é
?
Û
ω
∈
W
§
b
½
Ï
I
¦
d
ω
´
½
§
¿
…
A
6
=
∅
"
N
´
y
§
8
Ü
A
´
˜
‡
;
à
8
"
é
a
∈
E
§
^
t
a
=
t
a
(
x
a
) =
t
a
(
x
)
∈
R
+
L
«
l
a
þ
|
G
§
é
?
Û
ω
∈
W,k
∈
P
w
§
b
½
´
»
k
þ
|
G
t
k
´
´
»
þ
¤
k
l
|
G
ƒ
Ú
§
=
t
k
(
x
) =
P
a
∈
E
δ
ak
t
a
(
x
)
"
2.1.
ä
l
N
þ
å
Ï
þ
ï
K
9
Beckmann
ú
ª
e
¡
½
Â
§
„
[3][4]
"
½
Â
1.1.
é
Œ
1
6
x
∈
A,a
∈
E
,
i)
X
J
x
a
=
c
a
§
K
a
¡
•
Œ
1
6
x
˜
^
Ú
l
§
Ä
K
¡
a
•
Œ
1
6
x
˜
^
š
Ú
l
;
ii)
é
OD
:é
ω
∈
W
§
´
»
k
∈
P
ω
§
X
J
•
3
Œ
1
6
x
˜
^
Ú
l
á
u
´
»
k
§
K
´
»
k
¡
•
Œ
1
6
x
˜
^
Ú
´
»
§
Ä
K
¡
´
»
k
•
Œ
1
6
x
˜
^
š
Ú
´
»
"
½
Â
1.2.(
ä
l
N
þ
å
þ
ï
K
).
6
x
∈
A
¡
•
ä
l
N
þ
å
Ï
þ
ï
6
§
•
‡
÷
v
X
e
^
‡
µ
∀
ω
∈
W,
∀
k,j
∈
P
ω
,t
k
(
x
)
−
t
j
(
x
)
>
0
⇒
x
k
= 0
½
ö
j
´´´
666
x
˜˜˜
^^^
ÚÚÚ
´´´
»»»
.
x
•
¡
•
ä
l
N
þ
å
Ï
þ
ï
¯
K
)
"
ä
l
N
þ
å
Ï
þ
ï
¯
KÏ
~
L
«
•
Γ =
{ℵ
,A,t
}
"
ä
l
N
þ
å
Ï
þ
ï
¯
K
Γ =
{ℵ
,A,t
}
§
E
ê
Æ
5
y
¯
K
MP
X
e
:
Minz
(
x
) = Σ
a
∈
E
R
x
a
0
t
a
(
x
)
dx
s.t.
P
k
x
k
=
d
ω
,
∀
ω
∈
W,k
∈
P
ω
x
a
=
P
ω
P
k
x
k
δ
ak
≤
c
a
,
∀
a
∈
E,ω
∈
W,k
∈
P
ω
x
k
≥
0
,
∀
ω
∈
W,k
∈
P
ω
.
þ
ª
¡
•
2
Â
Beckmann
ú
ª
"
2.2.
á
½
Â
e
¡
(
Ø
„
[5]
"
Ú
n
2.1.
é
ä
l
N
þ
å
Ï
þ
ï
¯
K
{ℵ
,A,t
}
§
X
J
é
?
Û
a
∈
E
§
t
a
(
x
)
3
R
m
+
þ
ë
Y
§
DOI:10.12677/aam.2019.871401214
A^
ê
Æ
?
Ð
±
Œ
¿
…
x
∈
A
´ê
Æ
5
y
Q
)
§
@
o
§
x
´
Ï
þ
ï
6
"
^
P
s
ω
L
«
Œ
1
6
x
'
u
OD
:é
ω
¤
k
Ú
´
»
8
Ü
§
P
T
ω
= max
k
∈
P
ω
{
t
k
:
x
k
>
0
}
,
T
ω
L
«
3
ω
•
•
þ
§
f
•
<
3
¤
À
´
»
þ
s
¤
ž
m
•
•
"
P
e
T
ω
=
(
T
ω
,
XXX
JJJ
P
s
ω
=
P
ω
min
k
∈
P
ω
\
P
s
ω
{
t
k
}
,
XXX
JJJ
P
s
ω
6
=
P
ω
.
=
µ
3
ω
•
•
þ
§
¤
k
´
»
Ñ
´
Ú
´
»
ž
§
e
T
ω
L
«
f
•
<
3
¤
À
Ú
´
»
þ
s
¤
ž
m
•
•
¶
´
»
•
3
š
Ú
´
»
ž
§
e
T
ω
L
«
3
ω
•
•
þ
§
Ø
Ú
´
»
±
§
f
•
<
3
¤
À
´
»
þ
s
¤
ž
m
•
á
"
½
Â
2.3.
é
Œ
1
6
x
Ú
OD
:é
ω
∈
W
§
¡
Ω
ω
=max
{
0
,T
ω
−
e
T
ω
}
•
Œ
1
6
x
'
u
OD
:é
ω
á
§
=
Ω
ω
•
ω
•
•
þ
á
¶
¡
Ω=max
ω
∈
W
{
Ω
ω
}
•
Ï
ä
¥
Œ
1
6
x
á
¶
¡
OD
:
é
ω
∈{
ω
∈
W
ω
: Ω = Ω
ω
,
www
,,,
W
ω
6
=
φ
}
•
Œ
1
6
x
á
:é
"
3.
ä
l
N
þ
å
Ï
þ
ï
6
#
Ž
{
6
x
á
§
‡
N
6
x
3
ä
þ
©
Ø
þ
ï
§
Ý
§
6
á
Œ
§
Ù
Ø
þ
ï
§
Ý
Ò
p
§
é
A
á
OD
:é
Ò
´
Ù
Ø
þ
ï
§
Ý
•
p
OD
:é
§
•
´
6
x
Ç
•
OD
:é
"
©
E
Ž
{
§
Ò
´
84
Ì
‡
g
ñ
§
Ï
L
¯
„
~
Œ
1
6á
OD
:é
á
Š
§
5
O
Ž
ä
l
N
þ
å
Ï
þ
ï
6
"
3.1.
Ä
(
Ø
†
Ž
{
½
n
2.1.
é
ä
l
N
þ
å
Ï
þ
ï
¯
K
{ℵ
,A,t
}
§
Œ
1
6
x
∈
A
´
ä
l
N
þ
å
Ï
þ
ï
6
…
=
Ù
á
Ω = 0
"
y
²
µ
¿
©
5
"
é
Œ
1
´
»
6
x
§
e
Ω=0
§
I
y
x
•
ä
l
N
þ
å
Ï
þ
ï
6
§
=
y
µ
∀
ω
∈
W,
∀
k,j
∈
P
ω
§
e
t
k
(
x
)
−
t
x
(
x
)
>
0
…
x
k
>
0
§
@
o
7
k
µ
´
»
j
´
x
˜
^
Ú
´
»
"
^
‡
y
{
§
e
j
Ø
´
x
Ú
´
»
§
K
P
ω
\
P
s
ω
š
˜
§
d
ž
P
ω
6
=
P
s
ω
§
=
k
t
j
(
x
)
≥
e
T
ω
=
min
l
∈
P
ω
\
P
s
ω
{
t
l
(
x
)
}
§
Ï
x
k
>
0
§
¤
±
T
ω
=max
l
∈
P
ω
{
t
l
(
x
):
x
k
>
0
}≥
t
k
(
x
)
>t
j
(
x
)
≥
e
T
ω
§
k
T
ω
>
e
T
ω
§
¤
±
Ω
ω
>
0
§
=
Ω
>
0
§
†
Ω = 0
g
ñ
"
7
‡
5
"
é
Œ
1
´
»
6
x
§
e
x
•
ä
l
N
þ
å
Ï
þ
ï
6
§
I
y
Ω=0
§
^
‡
y
{
"
b
X
Ω
6
=0
§
K
•
3
ω
∈
W
§
k
T
ω
−
e
T
ω
>
0
§
d
ž
k
P
ω
6
=
P
s
ω
§
u
´
§
•
3
´
»
k,j
∈
P
ω
§
÷
v
^
‡
µ£
1
¤§
x
k
>
0
§
t
k
(
x
)=
T
ω
§£
2
¤
j
∈
P
ω
\
P
s
ω
´
š
Ú
´
»
§
…
e
T
ω
=
t
j
(
x
)
§
í
Ñ
µ
t
k
(
x
)
−
t
j
(
x
)
>
0
§
…
x
k
>
0
§
j
´
š
Ú
´
»
§
ù
†
x
´
ä
l
N
þ
å
Ï
þ
ï
6
g
ñ
§
y
.
"
é
ä
l
N
þ
å
Ï
þ
ï
¯
K
§
d
Ú
n
2.1
Ú
½
n
2.1
§
Œ
E
•
›
5
Ž
{
O
Ž
Ï
þ
ï
6
"
I
‡
`
²
´
§
Ï
ä
'
E
,
ž
§
‡
Å
˜
Û
¤
k
OD
:é
´
»
´
(
J
§
•
Ø
‡
`
O
Ž
DOI:10.12677/aam.2019.871401215
A^
ê
Æ
?
Ð
±
Œ
ˆ
^
´
»
6
þ
§
¯¢
þ
§
Ï
•
3
þ
ï
6
¥
§
é
õ
´
»
Ï
6
þ
•
"
§
Ï
d
§
•
I
O
Ž
Ñ
3
þ
ï
6
¥
§
6
þ
Œ
u
"
´
»
þ
6
þ
=
Œ
§
ù
§
¦
+
Ø
O
Ž
þ
ï
6
‘
ê
§
Š
â
6
þ
Œ
u
"
´
»
þ
6
þ
§
Œ
±
N
´
/
Ï
ä
¥
ˆ
^
l
6
þ
§
ù
Ò
;
•
Å
˜
Û
¤
k
OD
:é
´
»
"
e
¡
Ž
{
Ò
´
Š
â
ù
g
´
E
§
Ø
´
Ï
þ
ï
6
•
þ
y
∈
A
§
´
y
¤
k
6
þ
Œ
u
"
©
þ
|
¤
•
þ
x
§
•
d
x
O
Ž
Ñ
þ
ï
ž
l
6
•
þ
z
= (
x
a
)
a
∈
E
"
ä
N
Ž
{
X
e
µ
b
é
?
Û
a
∈
E
§
t
a
(
x
)
3
R
m
+
þ
ë
Y
"
1
˜
Ú
µ
3
ä
ℵ
¥
§
?
¿
Œ
1
l
6
z
(0)
§
Ð
©
Œ
1
6
š
0
©
þ
¤
•
þ
x
(0)
"
P
H
(0) =
{
l
∈
K
:
x
l
(0)
>
0
}
§
-
i=0
"
1
Ú
µ
é
z
˜
‡
ω
∈
W
§
(1)
O
Ž
T
ω
(
i
) = max
k
∈
H
(
i
)
∩
P
ω
t
k
(
x
(
i
))
§
Ù
¥
t
k
(
x
(
i
))
L
«
6
þ
•
x
(
i
)
ž
´
»
k
þ
|
G
"
(2)
3
ä
ℵ
¥
§
í
Ø
6
þ
•
x
(
i
)
ž
ä
¤
k
Ú
l
§
é
Ù
{
š
Ú
l
a
§
±
l
þ
|
G
t
a
(
x
(
i
))(
>
0)
•
§
\
ä
b
ℵ
i
§
3
ä
b
ℵ
i
¥
§
O
Ž
é
O/D
:é
ω
•
á
´
§
•
á
´
•
s
ω
§
Ù
•
•
t
s
ω
(
x
(
i
))
§
w
,
§
s
ω
∈
P
ω
§
…
e
T
ω
(
i
) =
t
s
ω
(
x
(
i
))
"
O
Ž
Ω
ω
(
i
) = max
ω
∈
W
{
0
,T
ω
(
i
)
−
e
T
ω
(
i
)
}
Ú
Ω(
i
) = max
ω
∈
W
{
Ω
ω
(
i
)
}
"
e
Ω(
i
) = 0,
K
=
1
Ê
Ú
.
1
n
Ú
µ
é
á
:é
§
½
˜
‡
ω
∗∈{
ω
∈
W
: Ω
ω
(
i
) = Ω(
i
)
}
§
3
ä
b
ℵ
¥
§
e
á
:é
ω
∗
•
á
´
–
k
ü
^
§
Ù
¥
˜
^
•
s
ω
∗
§
,
k
˜
^
•
s
0
ω
∗
§
P
b
S
ω
∗
(
i
) =
{
s
ω
∗
,s
0
ω
∗
:
t
s
ω
∗
(
x
(
i
)) =
t
s
0
ω
∗
(
x
(
i
))
<T
ω
(
i
)
}
;
3
ä
b
ℵ
¥
,
e
á
:é
ω
∗
•
á
´
•
k
˜
^
§
=
•
s
ω
∗
§
O
Ž
á
:é
ω
∗
g
á
´
§
•
s
0
ω
∗
§
P
b
S
ω
∗
(
i
) =
{
s
ω
∗
:
t
s
ω
∗
(
x
(
i
))
<T
ω
(
i
)
}∪{
s
0
ω
∗
:
t
s
0
ω
∗
(
x
(
i
))
<T
ω
(
i
)
}
"
é
Ù
¦
:é
§
∀
ω
∈
W
\{
ω
∗}
§
P
b
S
ω
(
i
) =
{
s
ω
:
t
s
ω
(
x
(
i
))
<T
ω
(
i
)
}
"
=
e
˜
Ú
"
1
o
Ú
µ
-
S
(
i
) = (
∪
ω
∈
P
ω
b
S
ω
(
i
))
§
H
(
i
+1) =
H
(
i
)
∪
S
(
i
)
§
¦
)
e
5
y
¯
K
MP
(
i
):
Minz
(
x
) =
X
a
∈
E
Z
x
a
(
i
)
0
t
a
(
x
)
dx
s.t
X
k
∈
P
ω
x
k
(
i
) =
d
ω
,
∀
ω
∈
W,k
∈
H
(
i
+1)
x
a
(
i
) =
X
ω
∈
W
X
k
∈
P
ω
δ
ak
x
k
(
i
)
≤
c
a
,
∀
a
∈
E
x
k
(
i
)
≥
0
,
∀
ω
∈
W,k
∈
H
(
i
+1)
)
x
(
i
+1)
"
-
i
=
i
+1
§
=
1
Ú
"
1
Ê
Ú
µ
¤
¦
Ï
þ
ï
6
š
0
•
þ
•
x
(
i
+1)
§
k
x
(
i
+1)
O
Ž
Ñ
þ
ï
ž
l
6
•
þ
z
= (
x
a
)
a
∈
E
§
DOI:10.12677/aam.2019.871401216
A^
ê
Æ
?
Ð
±
Œ
O
Ž
(
å
"
3.2.
Ž
{
Þ
~
~
2.1.
•
Ä
Û
l
N
þ
å
Ï
þ
ï
¯
K
(
„
ã
1)
µ
Ù
¥
V=
{
1,2,3,4,5,6,7,8,9,10,11,12,13
}
,E=
{
e
1
,
e
2
,
e
3
,
e
4
,
e
5
,
e
6
,
e
7
,
e
8
,
e
9
,
e
10
,
e
11
,
e
12
,
e
13
,
e
14
,
e
15
,
e
16
,
e
17
,
e
18
,
e
19
,
e
20
,
e
21
,
e
22
,
e
23
}
,C=(5,6,7,5,6,5, 6,4,5,7,3,5,6,6,5,5,7,7,4,6,6,8,7),W=
{
ω
1
,ω
2
}
=
{
(1,12),(3,10)
}
,
D=(
d
ω
1
,d
ω
2
}
=(6,5)
"
Figure1.
Thefigureoftrafficnetwork
ã
1.
Ï
ä
ã
¿
…
ž
m
|
G
¼
ê
•
t
e
1
(
x
e
1
)=2(
x
e
1
)
2
+23
§
t
e
2
(
x
e
2
)=(
x
e
2
)
2
+33
§
t
e
3
(
x
e
3
)=3(
x
e
3
)
2
+50
§
t
e
4
(
x
e
4
)
=2(
x
e
4
)
2
+11
§
t
e
5
(
x
e
5
)=3(
x
e
5
)
2
+20
§
t
e
6
(
x
e
6)=2(
x
e
6
)
2
+28
§
t
e
7
(
x
e
7
)=2(
x
e
7
)
2
+30
§
t
e
8
(
x
e
8
)=3(
x
e
8
)
2
+28
§
t
e
9
(
x
e
9
)=(
x
e
9
)
2
+40
§
t
e
10
(
x
e
10
)=4(
x
e
10
)
2
+35
§
t
e
11
(
x
e
11
)=2(
x
e
11
)
2
+42
§
t
e
12
(
x
e
12
)=3(
x
e
12
)
2
+45
§
t
e
13
(
x
e
13
)=3(
x
e
13
)
2
+15
§
t
e
14
(
x
e
14
)=5(
x
e
14
)
2
+22
§
t
e
15
(
x
e
15
)=(
x
e
15
)
2
+48
§
t
e
16
(
x
e
16
)=2(
x
e
16
)
2
+55
§
t
e
17
(
x
e
17
)=2(
x
e
17
)
2
+66
§
t
e
18
(
x
e
18
)=3(
x
e
18
)
2
+13
§
t
e
19
(
x
e
19
)=3(
x
e
19
)
2
+25
§
t
e
20
(
x
e
20
)=3(
x
e
20
)
2
+60
§
t
e
21
(
x
e
21
)=4(
x
e
21
)
2
+38
§
t
e
22
(
x
e
22
)=2(
x
e
22
)
2
+70
§
t
e
23
(
x
e
23
)=3(
x
e
23
)
2
+90
"
e
¡
^
#
Ž
{
O
Ž
ä
l
N
þ
å
Ï
þ
ï
6
µ
i=0
§
1)
§
é
O/D
:é
ω
1=(1,12)
§
?
À
´
»
l
1
=
{
e
3
e
10
e
18
e
23
}
§
-
Ù
6
þ
•
x
1
(0)=6.00
§
é
O/D
:
é
ω
2=(3,10)
§
?
À
´
»
l
2
=
{
e
7
e
14
e
20
e
22
}
§
-
Ù
6
þ
•
x
2
(0)=5.00
"
w
,
x
(0)
3
l
1
þ
6
þ
x
1
(0) =
6
.
00
§
3
l
2
þ
6
þ
x
2
(0)=5
.
00
§
Ù
§
´
»
þ
6
þ
•
0.00
§
H
(0)=
{
l
1
,l
2
}
§
Ù
¥
x
1
(0)
,x
2
(0)
•
´
»
l
1
§
l
2
6
þ
"
d
ž
3
x
(0)
e
ä6
þ
ã
„
ã
2(
)
Ò
S
ê
i
•
l
þ
6
þ
)
"
±
x
(0)
•
6
ˆ
l
þ
|
G
•
§
\
ä
b
ℵ
0
§
d
ž
\
ä
ã
„
ã
3(
)
Ò
S
ê
i
•
Œ
1
6
x
(0)
ž
§
ˆ
l
þ
ž
m
)
"
2)
§
(1)
d
\
ä
ãã
3
§
é
O/D
:é
ω
1=(1,12)
§
ω
1
∈
W
§
T
ω
1
(0)=
t
l
1
(
x
(0))=656
.
00
¶
é
O/D
:é
ω
2=(3
,
10)
§
ω
2
∈
W
§
T
ω
2
(0) =
t
l
2
(
x
(0)) = 482
.
00
"
DOI:10.12677/aam.2019.871401217
A^
ê
Æ
?
Ð
±
Œ
Figure2.
Thefigureofnetworkflowunder
x
(0)
ã
2.
3
x
(0)
e
ä6
þ
ã
(2)
d
\
ä
ãã
3
§
é
O/D
:é
ω
1=(1,12)
§
^
lingo
^
‡
(
±
e
O
Ž
•
á
´
9
g
á
´
þ
æ
^
lingo
^
‡
)
Ž
Ñ
•
á
´
S
ω
1
=
{
l
3
}
=
{
e
1
e
6
e
14
e
21
}
§
e
T
ω
1
(0)=
t
l
3
(
x
(0))=236.00
¶
é
O/D
:é
ω
2
=(3
,
10)
§
•
á
´
S
ω
2
=
{
l
4
}
=
{
e
2
e
5
e
11
e
17
}
§
e
T
ω
2
(0)=
t
l
4
(
x
(0))=161.00
"
Ω
ω
1
(0) =
max
{
0
,
656
−
236
}
= 480
.
00
§
Ω
ω
2
(0) =
max
{
0
,
482
−
161
}
= 321
.
00
"
Ω(0) =
max
{
480
.
00
,
321
.
00
}
= 480
.
00
"
3
¤§
ω
1
∗∈{
ω
∈
W
: Ω
ω
1
(0) = Ω(0)
}
§
á
:é
•
ω
1
∗
= (1
,
12)
"
é
á
:é
ω
1
∗
=(1
,
12)
§
•
á
´
S
ω
1
∗
=
{
l
3
}
=
{
e
1
e
6
e
14
e
21
}
§
t
l
3
(
x
(0))=236.00
¶
g
á
´
•
S
0
ω
1
∗
=
{
l
5
}
=
{
e
4
e
12
e
19
e
23
}
§
t
l
5
(
x
(0))=279.00
"
b
S
ω
1
∗
(0)=
{
l
3
,l
5
}
"
é
O/D
:é
ω
2=(3
,
10)
§
•
á
´
S
ω
2
=
{
l
4
}
=
{
e
2
e
5
e
11
e
17
}
§
t
l
4
(
x
(0))=161.00
"
b
S
ω
2
(0)=
{
l
4
}
"
Figure3.
Thefigureofnetworkweightingunder
x
(0)
ã
3.
3
x
(0)
e
ä
\
ã
4)
§
S
(0)=
{
l
3
§
l
5
§
l
4
}
§
H
(1)=
{
l
1
§
l
2
§
l
3
§
l
4
§
l
5
}
§
Ù
¥
x
1
(0)
,x
2
(0)
,x
3
(0)
,x
4
(0)
,x
5
(0)
•
´
»
l
1
,l
2
,l
3
,l
4
,l
5
6
þ
§
=\
\
´
»
l
3
§
l
4
§
l
5
"
)
e
5
y
¯
K
MP
(1):
DOI:10.12677/aam.2019.871401218
A^
ê
Æ
?
Ð
±
Œ
Min z(x) =
P
a
∈
E
R
x
a
(
i
)
0
t
a
(
x
) dx =
R
x
e
3
(0)
0
(3
x
2
+50) dx +
R
x
e
10
(0)
0
(4
x
2
+35) dx +
R
x
e
18
(0)
0
(3
x
2
+
13)dx+
R
x
e
23
(0)
0
(3
x
2
+90)dx+
R
x
e
7
(0)
0
(2
x
2
+30)dx++
R
x
e
14
(0)
0
(5
x
2
+22)dx+
R
x
e
20
(0)
0
(3
x
2
+60)
dx+
R
x
e
22
(0)
0
(2
x
2
+70)dx+
R
x
e
1
(0)
0
(2
x
2
+23)dx+
R
x
e
6
(0)
0
(2
x
2
+28)dx+
R
x
e
21
(0)
0
(4
x
2
+38)dx
+
R
x
e
2
(0)
0
(
x
2
+ 33)dx+
R
x
e
5
(0)
0
(3
x
2
+ 20)dx+
R
x
e
11
(0)
0
(2
x
2
+ 42)dx+
R
x
e
17
(0)
0
(2
x
2
+ 66)dx+
R
x
e
4
(0)
0
(2
x
2
+11)dx+
R
x
e
12
(0)
0
(3
x
2
+45)dx+
R
x
e
19
(0)
0
(3
x
2
+25)dx
§
Ù
¥
(
x
e
3
(0)=
x
e
10
(0)=
x
e
18
(0)=
x
1
(0)
,x
e
7
(0)=
x
e
20
(0)=
x
e
22
(0)=
x
2
(0)
,x
e
1
(0)=
x
e
21
(0) =
x
e
6
(0) =
x
3
(0)
,x
e
2
(0) =
x
e
5
(0) =
x
e
11
(0) =
x
e
17
(0) =
x
4
(0)
,x
e
4
(0) =
x
e
12
(0) =
x
e
19
(0) =
x
5
(0)
,x
e
23
(0) =
x
1
(0)+
x
5
(0)
,x
e
14
(0) =
x
2
(0)+
x
3
(0))
"
Ï
d
:Minz(x)=
10
3
(
x
1
(0))
3
+188
x
1
(0)+(
x
1
(0)+
x
5
(0))
3
+171
x
5
(0)+
7
3
(
x
2
(0))
3
+182
x
2
(0)+
5
3
(
x
2
(0)+
x
3
(0))
3
+111
x
3
(0)+
8
3
(
x
3
(0))
3
+
8
3
(
x
4
(0))
3
+161
x
4
(0)+
8
3
(
x
5
(0))
3
§
s.t
x
1
(0)+
x
3
(0)+
x
5
(0) = 6
,x
2
(0)+
x
4
(0) = 5
,
x
1
(0)+
x
5
(0)
≤
7
,x
2
(0)+
x
3
(0)
≤
6
,
0
≤
x
1
(0)
≤
7
,
0
≤
x
2
(0)
≤
6
,
0
≤
x
3
(0)
≤
5
,
0
≤
x
4
(0)
≤
3
,
0
≤
x
5
(0)
≤
4
,
)
x
(1)
3
l
1
þ
6
þ
x
1
(1)=1
.
46
!
3
l
2
þ
6
þ
x
2
(1)=2
.
00
!
3
l
3
þ
6
þ
x
3
(1)=2
.
35
!
3
l
4
þ
6
þ
x
4
(1) = 3
.
00
!
3
l
5
þ
6
þ
x
5
(1) = 2
.
19
§
Ù
§
´
»
þ
6
þ
•
0
"
6
x
(1)
k
Ú
l
e
11
§
Ú
´
»
l
4
"
3
6
x
(1)
e
§
í
Ø
Ú
l
e
11
§
±
x
(1)
•
6
ˆ
l
þ
|
G
•
§
\
ä
b
ℵ
1
"
i=1
§
1
¤§
(1)
é
O/D
:é
ω
1=(1,12)
§
T
ω
1
(1) =
t
l
3
(
x
(1))
.
= 249
.
50
§
é
O/D
:é
ω
2=(3
,
10)
§
T
ω
2
(1) =
t
l
2
(
x
(1))
.
= 304
.
43
"
(2)
3
6
x
(1)
e
§
í
Ø
Ú
l
e
11
§
±
x
(1)
•
6
ˆ
l
þ
|
G
•
§
\
ä
b
ℵ
1
§
3
\
ä
b
ℵ
1
¥
§
é
O/D
:é
ω
1=(1,12)
§
•
á
´
S
ω
1
=
{
l
1
}
=
{
e
3
e
10
e
18
e
23
}
§
e
T
ω
1
(1)=
t
l
1
(
x
(1))
.
= 249
.
50
¶
é
O/D
:é
ω
2=(3
,
10)
§
•
á
´
S
ω
2
=
{
l
6
}
=
{
e
7
e
13
e
19
e
22
}
§
e
T
ω
2
(1)=
t
l
6
(
x
(1))
.
= 170
.
40
"
Ω
ω
1
(1) = 0
.
00
§
Ω
ω
2
(1) = 134
.
03
"
Ω(1) = 134
.
03
"
2
¤§
ω
2
∗∈{
ω
∈
W
: Ω
ω
2
(1) = Ω(1)
}
§
á
:é
•
ω
2
∗
=(3
,
10)
"
é
á
:é
ω
2
∗
=(3,10)
§
•
á
´
•
S
ω
2
∗
=
{
l
6
}
=
{
e
7
e
13
e
19
e
22
}
§
t
l
6
(
x
(1))
.
=170
.
40
§
g
á
´
•
S
0
ω
2
∗
=
{
l
7
}
=
{
e
2
e
6
e
13
e
19
e
22
}
§
t
l
7
(
x
(1))
.
= 213
.
41
§
b
S
ω
2
∗
(1)=
{
l
6
,l
7
}
"
é
O/D
:é
ω
1=(1
,
12)
§
•
á
´
•
S
ω
1
=
{
l
1
}
=
{
e
3
e
10
e
18
e
23
}
§
t
l
1
(
x
(1))
.
=249
.
50
§
b
S
ω
1
(1)=
{
l
1
}
"
3
¤§
S
(1)=
{
l
6
§
l
7
§
l
1
}
,
H
(2)=
{
l
1
§
l
2
§
l
3
§
l
4
§
l
5
§
l
6
§
l
7
}
§
Ù
¥
x
1
(1)
,x
2
(1)
,x
3
(1)
,x
4
(1)
,x
5
(1),
x
6
(1)
,x
7
(1)
•
´
»
l
1
,l
2
,l
3
,l
4
,l
5
,l
6
,l
7
6
þ
§
=\
\
´
»
l
6
§
l
7
"
)
e
5
y
¯
K
MP
(2):
Min z(x) =
P
a
∈
E
R
x
a
(
i
)
0
t
a
(
x
) dx =
R
x
e
3
(1)
0
(3
x
2
+50) dx +
R
x
e
10
(1)
0
(4
x
2
+35) dx +
R
x
e
18
(1)
0
(3
x
2
+
DOI:10.12677/aam.2019.871401219
A^
ê
Æ
?
Ð
±
Œ
13)dx+
R
x
e
23
(1)
0
(3
x
2
+90)dx+
R
x
e
7
(1)
0
(2
x
2
+30)dx++
R
x
e
14
(1)
0
(5
x
2
+22)dx+
R
x
e
20
(1)
0
(3
x
2
+60)
dx+
R
x
e
22
(1)
0
(2
x
2
+70)dx+
R
x
e
1
(1)
0
(2
x
2
+23)dx+
R
x
e
6
(1)
0
(2
x
2
+28)dx+
R
x
e
21
(1)
0
(4
x
2
+38)dx
+
R
x
e
2
(1)
0
(
x
2
+ 33)dx+
R
x
e
5
(1)
0
(3
x
2
+ 20)dx+
R
x
e
11
(1)
0
(2
x
2
+ 42)dx+
R
x
e
17
(1)
0
(2
x
2
+ 66)dx+
R
x
e
4
(1)
0
(2
x
2
+11)dx+
R
x
e
12
(1)
0
(3
x
2
+45)dx+
R
x
e
19
(1)
0
(3
x
2
+25)dx+
R
x
e
13
(1)
0
(3
x
2
+15)dx
§
Ù
¥
(
x
e
3
(1)=
x
e
10
(1)=
x
e
18
(1)=
x
1
(1)
,x
e
23
(1)=
x
1
(1)+
x
5
(1)
,x
e
7
(1)=
x
2
(1)+
x
6
(1)
,
x
e
14
(1)=
x
2
(1)+
x
3
(1)
,x
e
20
(1)=
x
2
(1)
,x
e
22
(1)=
x
2
(1)+
x
6
(1)+
x
7
(1)
,x
e
1
(1)=
x
e
21
(1)=
x
3
(1)
,x
e
6
(1)=
x
3
(1)+
x
7
(1)
,x
e
2
(1)=
x
4
(1)+
x
7
(1)
,x
e
5
(1)=
x
e
11
(1)=
x
e
17
(1)=
x
4
(1)
,x
e
4
(1)=
x
e
12
(1) =
x
5
(1)
,x
e
19
(1) =
x
5
(1)+
x
6
(1)+
x
7
(1)
,x
e
13
(1) =
x
6
(1)+
x
7
(1))
"
Ï
d
:Minz(x)=
P
a
∈
E
R
x
a
(
i
)
0
t
a
(
x
)dx=
10
3
(
x
1
(1))
3
+188
x
1
(1)+(
x
1
(1)+
x
5
(1))
3
+171
x
5
(1)+
2
3
(
x
2
(1)+
x
6
(1))
3
+182
x
2
(1)+140
x
6
(1)+
5
3
(
x
2
(1)+
x
3
(1))
3
+111
x
3
(1)+(
x
2
(1))
3
+
2
3
(
x
2
(1)+
x
6
(1)+
x
7
(1))
3
+ 171
x
7
(1) +2(
x
3
(1))
3
+
2
3
(
x
3
(1) +
x
7
(1))
3
+
1
3
(
x
4
(1) +
x
7
(1))
3
+ 161
x
4
(1) +
7
3
(
x
4
(1))
3
+
5
3
(
x
5
(1))
3
+(
x
5
(1)+
x
6
(1)+
x
7
(1))
3
+(
x
6
(1)+
x
7
(1))
3
§
s.t
x
1
(1)+
x
3
(1)+
x
5
(1) = 6
,x
2
(1)+
x
4
(1)+
x
6
(1)+
x
7
(1) = 5
,
x
1
(1)+
x
5
(1)
≤
7
,x
2
(1)+
x
3
(1)
≤
6
,x
2
(1)+
x
6
(1)+
x
7
(1)
≤
8
,
x
2
(1)+
x
6
(1)
≤
6
,x
3
(1)+
x
7
(1)
≤
5
,x
5
(1)+
x
6
(1)+
x
7
(1)
≤
4
,
x
6
(1)+
x
7
(1)
≤
6
,x
4
(1)+
x
7
(1)
≤
6
,
0
≤
x
1
(1)
≤
7
,
0
≤
x
2
(1)
≤
6
,
0
≤
x
3
(1)
≤
5
,
0
≤
x
4
(1)
≤
3
,
0
≤
x
5
(1)
≤
5
,
0
≤
x
6
(1)
≤
4
,
0
≤
x
7
(1)
≤
4
.
)
x
(2)
3
l
1
þ
6
þ
x
1
(2)=1
.
67
!
3
l
2
þ
6
þ
x
2
(2)=0
.
00
!
3
l
3
þ
6
þ
x
3
(2)=3
.
15
!
3
l
4
þ
6
þ
x
4
(2)=2
.
64
!
3
l
5
þ
6
þ
x
5
(2)=1
.
18
!
3
l
6
þ
6
þ
x
6
(2)=2
.
36
!
3
l
7
þ
6
þ
x
7
(2) = 0
.
00
§
Ù
§
´
»
þ
6
þ
•
0
"
6
x
(2)
v
k
Ú
l
§
±
x
(2)
•
6
ˆ
l
þ
|
G
•
§
\
ä
b
ℵ
2
"
i=2
§
1
¤§£
1
¤
é
O/D
:é
ω
1=(1,12)
!
T
ω
1
(2) =
t
l
3
(
x
(2))
.
= 240
.
08
§
é
O/D
:é
ω
2=(3
,
10)
§
T
ω
2
(2)) =
t
l
6
(
x
(2))
.
= 216
.
70
"
£
2
¤
3
\
ä
b
ℵ
2
¥
§
é
O/D
:é
ω
1=(1,12)
§
•
á
´
S
ω
1
=
{
l
8
}
=
{
e
4
e
11
e
18
e
23
}
§
e
T
ω
1
(2)
=
t
l
8
(
x
(2))
.
= 205
.
40
¶
é
O/D
:é
ω
2=(3
,
10)
§
•
á
´
S
ω
2
=
{
l
4
}
=
{
e
2
e
5
e
11
e
17
}
§
e
T
ω
2
(2)=
t
l
4
(
x
(2))
.
=
216
.
70
"
Ω
ω
1
(2) = 34
.
68
§
Ω
ω
2
(2) = 0
.
00
"
Ω(2) = 34
.
68
"
2
¤§
ω
1
∗∈{
ω
∈
W
: Ω
ω
1
(2) = Ω(2)
}
§
á
:é
•
ω
1
∗
=(1
,
12)
"
3
\
ä
b
ℵ
2
¥
§
é
O/D
:é
ω
1
∗
=(1,12)
§
T
ω
1
(2)=
t
l
3
(
x
(2))
.
=240
.
08
§
é
O/D
:é
ω
2
=(3
,
10)
§
T
ω
2
(2) =
t
l
6
(
x
(2))
.
= 216
.
70
"
Œ
1
6
x
(2)
á
•
Ω(2) = 34
.
68
§
á
:é
•
ω
1
∗
=(1
,
12)
"
é
á
:é
ω
1
∗
=(1,12)
§
•
á
´
•
S
ω
1
∗
=
{
l
8
}
=
{
e
4
e
11
e
18
e
23
}
§
t
l
8
(
x
(2))
.
=205
.
40
§
g
á
´
DOI:10.12677/aam.2019.871401220
A^
ê
Æ
?
Ð
±
Œ
•
S
0
ω
1
∗
=
{
l
5
}
=
{
e
4
e
12
e
19
e
23
}
§
t
l
5
(
x
(2))
.
= 240
.
06
"
b
S
ω
1
∗
(2)=
{
l
8
,l
5
}
"
é
O/D
:é
ω
2=(3
,
10),
•
á
´
•
S
ω
2
(2)=
{
l
4
}
=
{
e
2
e
5
e
11
e
17
}
§
t
l
4
(
x
(2))
.
=216
.
70
"
b
S
ω
2
(2)=
{
l
4
}
"
3
¤§
S
(2) =
{
l
8
§
l
5
§
l
4
}
§
H
(3)=
{
l
1
§
l
2
§
l
3
§
l
4
§
l
5
§
l
6
§
l
7
§
l
8
}
§
Ù
¥
x
1
(2)
,x
2
(2)
,x
3
(2)
,x
4
(2)
,
x
5
(2)
,x
6
(2)
,x
7
(2)
,x
8
(2)
•
´
»
l
1
,l
2
,l
3
,l
4
,l
5
,l
6
,l
7
,l
8
6
þ
§
=\
\
´
»
l
8
"
)
e
5
y
¯
K
MP
(3):
Min z(x) =
P
a
∈
E
R
x
a
(
i
)
0
t
a
(
x
) dx =
7
3
(
x
1
(2))
3
+188
x
1
(2)+(
x
1
(2)+
x
8
(2))
3
+156
x
8
(2)+(
x
1
(2)+
x
5
(2)+
x
8
(2))
3
+171
x
5
(2)+
2
3
(
x
2
(2)+
x
6
(2))
3
+182
x
2
(2)+140
x
6
(2)+
5
3
(
x
2
(2)+
x
3
(2))
3
+111
x
3
(2)+
(
x
2
(2))
3
+
2
3
(
x
2
(2)+
x
6
(2)+
x
7
(2))
3
+171
x
7
(2)+2(
x
3
(2))
3
+
2
3
(
x
3
(2)+
x
7
(2))
3
+
1
3
(
x
4
(2)+
x
7
(2))
3
+
161
x
4
(2)+
5
3
(
x
4
(2))
3
+
2
3
(
x
4
(2)+
x
8
(2))
3
+
2
3
(
x
5
(2)+
x
8
(2))
3
+(
x
5
(2))
3
+(
x
5
(2)+
x
6
(2)+
x
7
(2))
3
+
(
x
6
(2)+
x
7
(2))
3
"
s.t
x
1
(2)+
x
3
(2)+
x
5
(2)+
x
8
(2) = 6
,x
2
(2)+
x
4
(2)+
x
6
(2)+
x
7
(2) = 5
,
x
1
(2)+
x
8
(2)
≤
7
,x
1
(2)+
x
5
(2)+
x
8
(2)
≤
7
,x
2
(2)+
x
6
(2)
≤
6
,
x
3
(2)+
x
2
(2)
≤
6
,x
2
(2)+
x
6
(2)+
x
7
(2)
≤
8
,x
3
(2)+
x
7
(2)
≤
5
,
x
4
(2)+
x
7
(2)
≤
6
,x
4
(2)+
x
8
(2)
≤
3
,x
5
(2)+
x
8
(2)
≤
5
,
x
5
(2)+
x
6
(2)+
x
7
(2)
≤
4
,x
6
(2)+
x
7
(2)
≤
6
,
0
≤
x
1
(2)
≤
7
,
0
≤
x
2
(2)
≤
6
,
0
≤
x
3
(2)
≤
5
,
0
≤
x
4
(2)
≤
3
,
0
≤
x
5
(2)
≤
4
,
0
≤
x
6
(2)
≤
4
,
0
≤
x
7
(2)
≤
4
,
0
≤
x
8
(2)
≤
3
.
Ù
¥
(
x
e
3
(2) =
x
e
10
(2) =
x
1
(2)
,x
e
18
(2) =
x
1
(2)+
x
8
(2)
,x
e
23
(2) =
x
1
(2)+
x
5
(2)+
x
8
(2)
,x
e
7
(2) =
x
2
(2) +
x
6
(2)
,x
e
14
(2)=
x
2
(2) +
x
3
(2)
,x
e
20
(2)=
x
2
(2)
,x
e
22
(2)=
x
2
(2) +
x
6
(2) +
x
7
(2)
,x
e
1
(2)=
x
e
21
(2)=
x
3
(2)
,x
e
6
(2)=
x
3
(2)+
x
7
(2)
,x
e
2
(2)=
x
4
(2)+
x
7
(2)
,x
e
5
(2)=
x
e
17
(2)=
x
4
(2)
,x
e
11
(2)=
x
4
(2) +
x
8
(2)
,x
e
4
(2)=
x
5
(2) +
x
8
(2)
,x
e
12
(2)=
x
5
(2)
,x
e
19
(2)=
x
5
(2) +
x
6
(2) +
x
7
(2)
,x
e
13
(2)=
x
6
(2)+
x
7
(2))
"
)
x
(3)
3
l
1
þ
6
þ
x
1
(3)=1
.
35
!
3
l
2
þ
6
þ
x
2
(3)=0
.
00
!
3
l
3
þ
6
þ
x
3
(3)=3
.
14
!
3
l
4
þ
6
þ
x
4
(3)=2
.
23
!
3
l
5
þ
6
þ
x
5
(3)=0
.
74
!
3
l
6
þ
6
þ
x
6
(3)=2
.
77
!
3
l
7
þ
6
þ
x
7
(3) = 0
.
00
!
3
l
8
þ
6
þ
x
8
(3) = 0
.
77
§
Ù
§
´
»
þ
6
þ
•
0
"
d
ž
6
þ
ã
•
ã
4
"
6
x
(3)
k
Ú
l
e
11
,
Ú
´
»
l
4
§
l
8
§
í
Ø
Ú
l
e
11
§
±
x
(3)
•
6
ˆ
l
þ
|
G
•
§
\
ä
b
ℵ
3
§
d
ž
\
ä
ã
•
ã
5
"
i=3
§
1)
§
(1)
é
O/D
:é
ω
1=(1,12)
§
T
ω
1
(3)=
t
l
1
(
x
(3))
.
=238.90
"
é
O/D
:é
ω
2=(3,10)
§
T
ω
2
(3)
=
t
l
6
(
x
(3))
.
=230.90
"
(2)
3
6
x
(3)
e
§
í
Ø
Ú
l
e
11
§
±
x
(3)
•
6
ˆ
l
þ
|
G
•
§
\
ä
b
ℵ
3
§
3
\
ä
b
ℵ
3
¥
§
é
O/D
:é
ω
1=(1,12)
§
•
á
´
•
S
ω
1
(3)=
{
l
3
}
=
{
e
1
e
6
e
14
e
21
}
§
e
T
ω
1
(3)=
t
l
3
(
x
(3))
.
=
238.90
"
é
O/D
:é
ω
2=(3, 10)
§
•
á
´
•
S
ω
2
(3) =
{
l
6
}
=
{
e
7
e
13
e
19
e
22
}
§
e
T
ω
2
(3)=
t
l
6
(
x
(3))
.
=230.90
"
DOI:10.12677/aam.2019.871401221
A^
ê
Æ
?
Ð
±
Œ
Figure4.
Thefigureofnetworkflowunder
x
(3)
ã
4.
3
x
(3)
e
ä6
þ
ã
Figure5.
Thefigureofnetworkweightingunder
x
(3)
ã
5.
3
x
(3)
e
ä
\
ã
Ω
ω
1
(3) = 0
.
00
§
Ω
ω
2
(3) = 0
.
00
"
Ω(3) = 0
.
00
"
Œ
1
6
x
(3)
á
•
Ω(3) = 0
.
00
§
x
(3)
•
þ
ï
6
"
d
þ
ï
6
k
Ú
l
e
11
§
Ú
´
»
l
4
!
l
8
"
4.
(
Ø
©
Š
â
á
½
Â
§
‰
Ñ
Œ
1
6
x
´
ä
l
N
þ
å
Ï
þ
ï
6
¿
‡
^
‡
§
¿
±
d
E
˜
«
#
Ž
{
"
©
3
O
Ž
L
§
¥
§
Ò
´
|
^
á
§
84
Ì
‡
g
ñ
§
é
Ñ
á
:é
§
Ï
L
¯
„
~
Œ
1
6á
:é
á
Š
§
5
O
Ž
ä
l
N
þ
å
Ï
þ
ï
6
"
©
Ž
{
§
Ã
I
Å
˜
Û
Ñ
¤
k
OD
:é
´
»
§
¯¢
þ
§
3
Ï
ä
'
E
,
œ
¹
e
§
Å
˜
Û
Ñ
¤
k
OD
:é
´
»
§
ù
´
'
(
J
"
©
#
Ž
{
§
Ò
;
•
ù
«
œ
¹
§
©
¥
~
f
¿
©
`
²
ù
˜
:
"
DOI:10.12677/aam.2019.871401222
A^
ê
Æ
?
Ð
±
Œ
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
]
Ï
‘
8
(11301571)
¶
-
Ÿ
½
g
,
‰
Æ
Ä
7
]
Ï
(cstc2018jcyjAX0337)
¶
-
Ÿ
½
M
#
ì
è
]
Ï
(CXTDX201601022)
¶
-
Ÿ
Ï
Œ
Æ
?
M
#
ì
è
‘
8
¶
-
Ÿ
Ï
Œ
Æ
S
˜
Ä
7
(2018PY21)
9
-
Ÿ
Ï
Œ
Æ
M
#
M
’
Ô
ö
‘
8
(201810618104)
"
ë
•
©
z
[1]Wardrop,J.(1952)SomeTheoreticalAspectsofRoadTrafficResearch.
Proceedingsofthe
InstituteofCivilEngineers
,
PartII
,
1
,325-378.https://doi.org/10.1680/ipeds.1952.11259
[2]Beckmann, M.J.,McGuire,C.B. andWinsten,C.B. (1956)Studiesin theEconomics ofTrans-
portation.YaleUniversityPress,NewHaven.
[3]Lin,Z.(2010)TheStudyofTrafficEquilibriumProblemswithCapacityConstraintsofArcs.
NonlinearAnalysis:RealWorldApplications
,
11
,2280-2284.
https://doi.org/10.1016/j.nonrwa.2009.07.002
[4]Lin,Z.(2010)OnExistenceofVectorEquilibriumFlowswithCapacityConstraintsofArcs.
NonlinearAnalysis:Theory,Methods&Applications
,
72
,2076-2079.
https://doi.org/10.1016/j.na.2009.10.007
[5]Lin,Z.(2015)AnAlgorithmforTrafficEquilibriumFlowwithCapacityConstraintsofArcs.
JournalofTransportationTechnologies
,
5
,240-246.https://doi.org/10.4236/jtts.2015.54022
[6]Xu,Y.D. and Li, S.J. (2014) Vector Network Equilibrium Problems with Capacity Constraints
ofArcsandNonlinearScalarizationMethods.
ApplicableAnalysis
,
93
,2199-2210.
https://doi.org/10.1080/00036811.2013.875160
[7]Tian,X.Q.andXu,Y.D.(2012)TrafficNetworkEquilibriumProblemswithCapacityCon-
straintsofArcsandLinearScalarizationMethods.
JournalofAppliedMathematics
,
2012
,
ArticleID:612142.https://doi.org/10.1155/2012/612142
[8]Xu,Y.D.,Li,S.J.andTeo,K.L.(2012)VectorNetworkEquilibriumProblemswithCapacity
Constraints ofArcs.
TransportationResearchPartE:LogisticsandTransportationReview
,
48
,
567-577.https://doi.org/10.1016/j.tre.2011.11.002
[9]Chiou,S.W.(2010)AnEfficientAlgorithmforComputingTrafficEquilibriaUsingTransyt
Model.
AppliedMathematicalModelling
,
34
,3390-3399.
https://doi.org/10.1016/j.apm.2010.02.028
[10]Xu,M.,Chen,A.,Qu,Y.andGao,Z.(2011)ASemismoothNewtonMethodforTraffic
EquilibriumProblemwithaGeneralNonadditiveRouteCost.
AppliedMathematicalModelling
,
35
,3048-3062.https://doi.org/10.1016/j.apm.2010.12.021
[11]Chen,A.,Zhou,Z.andXu,X.D.(2012)ASelf-AdaptiveGradientProjectionAlgorithmfor
the Nonadditive Traffic Equilibrium Problem.
Computers&OperationsResearch
,
39
, 127-138.
https://doi.org/10.1016/j.cor.2011.02.018
DOI:10.12677/aam.2019.871401223
A^
ê
Æ
?
Ð
知网检索的两种方式:
1.
打开知网首页:
http
:
//cnki.net/
,点击页面中“外文资源总库
CNKI SCHOLAR
”,跳转至:
http
://scholar.cnki.net/new
,
搜索框内直接输入文章标题,即可查询;
或点击“高级检索
”
,下拉列表框选择:
[ISSN]
,输入期刊
ISSN
:
2324-7991
,即可查询。
2.
通过知网首页
http
:
//cnki.net/
顶部“旧版入口”进入知网旧版:
http
:
//www.cnki.net/old/
,左侧选择“国际文献总库”
进入,搜索框直接输入文章标题,即可查询。
投稿请点击:
http://www.hanspub.org/Submission.aspx
期刊邮箱:
aam@
hanspub.org