设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投搞
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2019,8(8),1418-1431
PublishedOnlineAugust2019inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2019.88166
RadialPositiveSolutionsofp-Laplacian
ProblemwithNonnegativeLocalTerms
YongZeng
GuangxiUniversity,NanningGuangxi
Received:Aug.1
st
,2019;accepted:Aug.15
th
,2019;published:Aug.22
nd
,2019
Abstract
Inthispaper,wemainlystudytheexistenceofradialsolutionsforthefollowingp-
Laplacianproblem:









−m(kuk
p
)div(|Ou|
p−2
Ou) = f(|x|,u),x∈B;
u(x) >0,x∈B;
u(0) = 0
wherefandmsatisfycertainconditions.Weprovethattheabovep-Laplacianproblem
has a radial solution through the origin mainly by means of upper and lower solutions.
Firstly,wemaketheauxiliaryproblemsequenceoftheoriginalproblem.Thenwe
getamonotoneboundedsolutionsequencebysolvingtheproblemsequence.Then
wecangetthatwhenntendstoinfinity,thereexistsau,whichmakesthissolution
sequencetendtou.Finally,weprovethatuistheradialsolutionoftheoriginal
problem.Theconcreteproofisgiveninthethirdpart.
Keywords
RadialSolution,UpperandLowerSolutions,p-LaplacianProblem
‘kšKÛÜ‘p-Laplacian¯K
»•)
QQQ]]]
©ÙÚ^:Q].‘kšKÛÜ‘p-Laplacian¯K»•)[J].A^êÆ?Ð,2019,8(8):1418-1431.
DOI:10.12677/aam.2019.88166
Q]
2܌Ƨ2ÜHw
ÂvFϵ2019c81F¶¹^Fϵ2019c815F¶uÙFϵ2019c822F
Á‡
©Ì‡ïÄe¡p-Laplacian¯K»•)•35:









−m(kuk
p
)div(|Ou|
p−2
Ou) = f(|x|,u),x∈B;
u(x) >0,x∈B;
u(0) = 0
Ù ¥fÚm÷v˜½^‡§·‚̇ÏLþe)•{5y²þãp-Laplacian¯K kL:»
•)§Äk·‚‰Ñ¯K9ϯKS§ ,ÏL¦)d¯K Sј‡üNk.)S§
lŒ±Ñn→∞ž§•3˜‡u∈C
1
[0,1)∩C[0,1]¦u
n
→u§•y²u=•¤¦
»•)§äNy²31nÜ©‰Ñ"
'…c
»•)§þe)§p-Laplacian¯K
Copyright
c
2019byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
©Ì‡?ØXešKÛÜ‘p-Laplacian•§µ









−m(kuk
p
)div(|Ou|
p−2
Ou) = f(|x|,u),x∈B;
u(x) >0,x∈B;
u(0) = 0
(1)
Ù¥§B= B
1
(0)•R
N
þ¥% u:ü m¥§N≥2§p>1"kuk
p
=
R
B
|u|
p
dx§m:R
+
→R
•ëY¼ê§f:[0,1) ×(0,+∞)→R´ŒCÒëY¼ê§…f3|x|=1½u=0?ŒUÛ
DOI:10.12677/aam.2019.881661419A^êÆ?Ð
Q]
É"‘XêÆØäuЧép-Laplacian¯KïÄ•Øäz§ŒõêÆöa,´p-
Laplacian¯K)•35(k'§ïÄŒ±ë„©z[1][2])§éÙ»•)ïÄKé(k
'Ù¦»•)Œ±ëì©z[3][4][5])"3©·‚kéÑ)¯K9ϯKS§2ÏLþ
e)•{(Ü•¼©Ûƒ'•£(„©z[6]Ú[7])§¯K)•3"
¯K(1)Œ±¤e¡~‡©•§/ªµ









−m(Nα(N)
R
1
0
s
N−1
|u(s)|
p
ds)r
1−N
(r
N−1
|u
0
|
p−2
u
0
)
0
= f(r,u),r∈(0,1);
u(r) >0,r∈(0,1);
u
0
(1) = 0,u(0) = 0
Ù¥§α(N)=
π
N
2
Γ(
N
2
+1)
§Ï•Nα(N)
R
1
0
s
N−1
|u(s)|
p
ds•†N!pk'§¤±·‚Œ±-φ(N,p)=
Nα(N)
R
1
0
s
N−1
|u(s)|
p
ds§leªµ









−m(φ(N,p))r
1−N
(r
N−1
|u
0
|
p−2
u
0
)
0
= f(r,u),r∈(0,1);
u(r) >0,r∈(0,1);
u
0
(1) = 0,u(0) = 0
(2)
3ùŸ©Ù¥·‚‰e¡n‡bµ
(H
1
)é?¿;f8E⊂[0,1)§éu‰½L>0§o•3ε>0é¤k(r,u) ∈E×(0,ε]kµ
f(r,u) >L
(H
2
)é?¿δ>0•3¼êh
δ
(r) ∈C([0,1);(0,+∞))∩L
1
(0,1)§r∈[0,1)…u≥δž§
|f(r,u)|≤h
δ
(r)
(H
3
)鉽0 <κ
2
<κ
1
,κ
2
≤m(kuk
p
) ≤κ
1
.
½Â1.1µ¼êu∈C
1
[0,1)∩C[0,1]¡•¯K(2))§XJu3;¿Âe÷v(2)ª"
kþãn‡^‡§·‚ÒŒ±Ñe¡̇(ص
½n1.1:3(H
1
)!(H
2
)Ú(H
3
)be§¯K(2)–•3˜‡)u∈C
1
[0,1)∩C[0,1]"
©ÙÄ|„(Xeµe5ܩ̇ù˜ý•£9ü‡Ä:·K§1nÜ©y²
̇(ا=½n1.1y²"
2.ýÜ©
•y²½n1.1·‚Œk•Äe¡>НKµ



−m(φ(N,p))r
1−N
(r
N−1
|u
0
|
p−2
u
0
)
0
= f(r,u),r∈(0,1);
u
0
(1) = 0,u(0) = a≥0
(3)
DOI:10.12677/aam.2019.881661420A^êÆ?Ð
Q]
Ù¥a•ëê"
½Â2.1µXJ¼êu∈C
1
[0,1)∩C[0,1]÷ve¡•§µ



−m(φ(N,p))r
1−N
(r
N−1
|u
0
|
p−2
u
0
)
0
≥f(r,u),r∈(0,1);
u
0
(1) ≥0,u(0) ≥a
(4)
K¡u•¯K(3)þ)§^¯uL«"XJ^uuÒ“Oþ¡ŒuuÒ§Ke)½
§^uL«",§·‚½ÂC[0,1]˜‡f«mh¯u,uiµ
hu,¯ui= {u∈C[0,1] : u≤u≤¯u,r∈[0,1)}.
éu?¿n∈N§·‚‰ÑXe½Âµ
E
n
= [
1
2
n
,1],
˜
E
n
= [(
1
2
n
)
p
p−1
,1]
w,§E
n
⊂E
n+1
,
˜
E
n
⊂
˜
E
n+1
§db(H
1
)••3ε
n
>0é?¿(r,u)∈E
n
×(0,ε
n
]§¦
f(r,u) >L"Ø”˜„5§·‚Œ±b{ε
n
}
∞
n=1
•üN4~S…
lim
n→∞
ε
n
= 0
éuþ¡«m§·‚Œ±é˜‡¼êγ(r) ∈C
1
[0,1]…
r
N−1
|γ
0
(r)|
p−2
γ
0
(r) ∈C
1
[0,1]
¦















γ
0
(0) ≤0,γ(0) = 0
γ(r) >0,r∈(0,1);
γ(r) ≤ε
1
,r∈E
1
.
γ(r) ≤ε
n
,r∈E
n
\E
n−1
,n≥2
(5)
e5·‚3½Â˜‡¼êµ
q(r) =









ε
p−1
1
,r∈
˜
E
1
ε
p−1
n
,r∈
˜
E
n
\
˜
E
n−1
,n≥2
0,r= 0
Kq(r)3[0,1]þ4O§,·‚µ
q
1
(r) =
Z
r
0
q(s)ds
q
2
(r) =
Z
r
p
p−1
0
(
Z
s
0
q(τ)dτ)
1
p−1
ds
¤±q
1
(r) ≤q(r)§…q
1
(r)´[0,1]þëY¼ê§q
2
(r)´î‚4O§…
DOI:10.12677/aam.2019.881661421A^êÆ?Ð
Q]
q
2
(r)≤
Z
r
p
p−1
0
q
1
p−1
(s)ds
≤(q(r
p/(p−1)
))
1/(p−1)
=









ε
1
,r∈E
1
ε
n
,r∈E
n
\E
n−1
,n≥2
0,r= 0
3r∈[0,1]þ§-γ(r) = q
2
(r)§Kγ(r)÷v(5)"¤±§·‚kµ
f(r,u) ≥L,(r,u) ∈[0,1)×{u: 0 <u≤γ(r)}
γ
0
(r) = (
p
p−1
)r
1
p−1
(
Z
r
p
p−1
0
q(t)dt)
1
p−1
ddŒ•§
r
N−1
|γ
0
(r)|
p−2
γ
0
(r) = (
p
p−1
)
p−1
r
N
Z
r
p
p−1
0
q(t)dt
ØJwÑr
N−1
|γ
0
(r)|
p−2
γ
0
(r)∈C
1
[0,1]"-g(r)=−
m(φ(N,p))
r
N−1
(r
N−1
|γ
0
(r)|
p−2
γ
0
(r))
0
§Ï•q(r)>
0…4O§l
lim
r→0
g(r) = −lim
r→0
m(φ(N,p))
N(
p
p−1
)
p−1
R
r
p
p−1
0
q(t)dt
r
= 0
Ï•g(r)3(0,1]þ•k3r=0?ÛÉ…g(r)3(0,1]þëY§¤±g(r)3[0,1]þk."e5·‚‰
јk^½n"••B§·‚‰Ñe¡½µ
K
0
= min{1,L/(|g|
∞
+1)}
·K2.2µb¼êh:[0,1) ×(0,∞)→R´ëY¼ê§é¤k(r,u)∈[0,1) ×(0,∞),h(r,u)≥
f(r,u)"v∈C[0,1]∩C
1
[0,1]´e¡•§)§…é¤kr∈(0,1),v(r) >0µ



−m(φ(N,p))r
1−N
(r
N−1
|v
0
|v
0
)
0
= h(r,v)
v
0
(1) ≥0,v(0) >0
(6)
K
v(r) ≥K
1
p−1
0
γ(r),r∈[0,1](7)
y²µ½Âω(r) = v(r)−K
1
p−1
0
γ(r)§Ï•v(0) >0 = K
1
p−1
0
γ(0)§¤±ω(0) >0"kyω(1) ≥0§d
‡y{§ω(1) <0§K•3r
1
∈(0,1)¦µ
DOI:10.12677/aam.2019.881661422A^êÆ?Ð
Q]









ω(r) >0,r∈[0,r
1
);
ω(r
1
) = 0
ω
0
(r
1
) ≤0
(8)
ér∈(0,r
1
)§d(H
1
)ÚK
0
½Â•µ
−m(φ(N,p))r
1−N
(r
N−1
|v
0
|
p−2
v
0
)
0
≥f(r,v) ≥L≥K
0
(|g|
∞
+1)
2dg(r)½Âµ
−m(φ(N,p))r
1−N
(r
N−1
|v
0
|
p−2
v
0
)
0
>−K
0
m(φ(φ(N,p)))r
1−N
(r
N−1
|γ
0
|
p−2
γ
0
)
0
(r
N−1
|v
0
|
p−2
v
0
)
0
>(r
N−1
|K
1
p−1
0
γ
0
|
p−2
K
1
p−1
0
γ
0
)
0
(9)
ò(9)ª3(0,r
1
)þÈ©2d|x|
p−2
xüN5
v
0
(r
1
) >K
1
p−1
0
γ
0
(r
1
)
=ω
0
(r
1
) >0§gñ"¤±ω(1) ≥0"e5,·‚b(7)ªØ¤á§K•3λ
3
∈(0,1)§¦
ω(λ
3
) <0
2dω(0) >0Úω(1) ≥0µ









ω(b
1
) = ω(b
2
) = 0,b
1
,b
2
∈(0,1)
ω(r) <0,r∈(b
1
,b
2
)
ω
0
(ξ) = 0,ξ∈(b
1
,b
2
)
(10)
^þ¡Ó•{(9)ªE,¤á"é?¿r∈(ξ,b
2
)ò(9)ª3(ξ,r)þÈ©2d(10)ªµ
ω0(r) >0
òþ¡Øª3b
1
rþÈ©µ
ω(r) >0
ù†(10)ªgñ§¤±(7)ª¤á"
·K2.3:u,¯u©O•¯K(3)e)Úþ)§XJ§‚÷ve¡^‡µ
(i)0 <u≤¯u<+∞,r∈[0,1]
(ii)•3¼êh(r) ∈C([0,1);(0,+∞))∩L
0
(0,1)§(r,u) ∈[0,1)×<¯u,u>ž
|f(r,u)|≤h(r)
K¯K(3)–•3˜‡)u∈C[0,1]∩C
1
[0,1)…éur∈[0,1]§u≤u≤¯u.
DOI:10.12677/aam.2019.881661423A^êÆ?Ð
Q]
y²µÄk½Â˜‡9ϼêµ
f
∗
(r,u) = f(r,β(r,u))+β(r,u)
Ù¥
β(r,u) =









u(r),u≤u(r);
u,u(r) ≤u≤¯u(r)
¯u(r),u≥¯u(r)
(11)
w,§f
∗
: [0,1)×R→R•ëY¼ê…β(r,u)k.§¤±§·‚Œ±µ
|f
∗
(r,u)|≤h(r)+M,(r,u) ∈[0,1]×R(12)
Ù¥M=sup
r∈[0,1)
¯u(r)§e54·‚•Äe¡¯Kµ



−m(φ((N,p))r
1−N
(r
N−1
|u
0
|
p−2
u
0
)
0
= f
∗
(r,u),r∈(0,1);
u
0
(1) = 0,u(0) = a
(13)
d©Û{§‡yþã¯Kk)§•Iy•3u÷vþ¡•§§¤±^~‡©•{9^‡(H
3
)éþ
ªÈ©µ
−|u
0
|
p−2
u
0
= r
1−N
Z
r
0
s
N−1
f
∗
(s,u(s))
m(φ(N,p))
ds(14)
-ϕ
p
(x) = |x|
p−2
x§^–½Xê{Œ¦§‡¼ê•ϕ
−1
p
(x) = |x|
1
p−1
−1
x"¤±§
u
0
= −ϕ
−1
p
(ϕ
p
(u
0
)) = −ϕ
−1
p
(r
1−N
Z
1
r
s
N−1
f
∗
(s,u(s))
m(φ(N,p))
ds)
u= a−
Z
r
0
ϕ
−1
p
(t
1−N
Z
1
t
s
N−1
f
∗
(s,u(s))
m(φ(N,p))
ds)dt
^XL«C[0,1]§½Â˜‡ŽfA: X→XXeµ
(Au)(r) = a−
Z
r
0
ϕ
−1
p
(t
1−N
Z
1
t
s
N−1
f
∗
(s,u(s))
m(φ(N,p))
ds)dt(15)
¤±Au∈C[0,1]§d(15)ª!h(r)∈L
1
(0,1)Ú(H
3
)•§Au´k.§ÏL(15)ª·‚ry
²u´(13))=†¤y²u´AuØÄ:"
|
d(Au)(r)
dr
|=|ϕ
−1
p
(r
1−N
Z
1
r
s
N−1
f
∗
(s,u(s))
m(φ(N,p))
ds)|
≤|ϕ
−1
p
(r
1−N
Z
1
r
(h(s)+M)s
N−1
ds|
≤|ϕ
−1
p
(
Z
1
r
h(s)
κ
2
ds+
M
κ
2
)|
DOI:10.12677/aam.2019.881661424A^êÆ?Ð
Q]
¤±§Au´ÝëY§dArzela−Ascoli½n•§A(X)´˜‡ƒé;8§2dSchauderØÄ:
½nµŽfA•3ØÄ:§¤±u∈C[0,1]∩C
1
[0,1)´¯K(13))"
e5·‚y²u≤u≤¯u§Äk§y²u≤u§·‚-d(r)=u(r) −u(r)§d‡y{§b
•3r
∗
∈[0,1)÷vu(r
∗
)>u(r
∗
)§,de)½Â§·‚k:d(0)≤09d
0
(1)≤0§y3·‚Š
âd(1)ÎÒ·‚©eü«œ¹µ
œ¹˜µd(1) >0
bXé?¿r∈[0,1]§d(r) ≥0ð¤á"Šâu(r)´e)Ú(11)ªµ
−m(φ(N,p))r
1−N
(r
N−1
|u
0
|
p−2
u
0
)
0
≤f(r,u)
=f
∗
(r,u)−β(r,u)
Ï•m(φ(N,p)) >0§¤±Œµ
(r
N−1
|u
0
|
p−2
u
0
)
0
<(r
N−1
|u
0
|
p−2
u
0
)
0
(16)
òþª˜ lr1È©2dd
0
(1) ≤0µ
r
N−1
|u
0
|
p−2
u
0
<r
N−1
|u
0
|
p−2
u
0
=
u
0
(r) <u
0
(r)
2òþªl0rþÈ©µ
u(r) <u(r)
=d(r)<0gñ§,˜•¡§XJd(r)≥0Øð¤á§=•3r
2
∈(0,1),¦d(r)<0"qÏ
•d(1) >0§¤±d":•3½nµ•3r
3
∈(r
2
,1)§¦









d(r) ≥0,r∈[r
3
,1);
d(r
3
) = 0
d
0
(r
3
) ≥0
(17)
3«m(r
3
,1)þ‰†þaq?ØŒ(16)ªE,¤á",23r
3
1þȩژ µ
u
0
(r
3
) <u
0
(r
3
)
=
d
0
(r
3
) <0
†(17)ªgñ§¤±œ/˜´ØŒU"
œ/µd(1) ≤0
DOI:10.12677/aam.2019.881661425A^êÆ?Ð
Q]
Ï•d(1)≤0…d(r
∗
)>0§¤±•3λ
1
!λ
2
∈[0,1]§¦d(λ
1
)=d(λ
2
)=0§…é?¿
r∈(λ
1
,λ
2
)§d(r)>0.¤±d¥Š½n•µ•3ξ∈(λ
1
,λ
2
)¦d
0
(ξ)=0éN´y3r∈
[λ
1
,λ
2
]þ(16)ªE,¤á"é?¿r∈[ξ,λ
2
),ò(16)ª3ξrþÈ©µ
r
N−1
|u
0
|
p−2
u
0
>r
N−1
|u
0
|
p−2
u
0
=é?¿r∈[ξ,λ
2
)k
d
0
(r) >0
2òþª3rλ
2
þÈ©µ
d(r) <0,r∈(λ
1
,λ
2
)
ù†é?¿r∈[λ
1
λ
2
],d(r)>0gñ"¤±§dþã?ØŒ•3[0,1]þu(r)≤u(r)§²Lþ¡a
q?ØŒ§u(r) ≤¯u(r)§¤±u(r) ≤u(r) ≤¯u(r)§y."
3.̇(Ø9Ùy²
•y²½n1.1·‚I‡˜Ún"y‰Xe½§é?¿n∈N§
e
n
(r) = max{r,
1
2
n
},r∈[0,1]
˜
f
n
(r,u) = max{f(r,u),f(e
n
(r),u)}
é²w§
˜
f
n
: [0,1)×(0,∞) →R´ëY…
˜
f
n
(r,u) ≥f(r,u),(r,u) ∈[0,1)×(0,∞)
˜
f
n
(r,u) = f(r,u),(r,u) ∈E
n
×(0,∞)
…éu?¿;f8K⊂[0,1)§éN´3K×(0,∞)þ
˜
f
n
→f",·‚½ÂS{f
n
}
∞
n=1
X
eµ
f
1
(r,u) =
˜
f
1
(r,u)
f
2
(r,u) = min{f
1
(r,u),
˜
f
2
(r,u)}
.
.
.
f
n
(r,u) = min{f
n−1
(r,u),
˜
f
n
(r,u)}
ddŒ•§{f
n
}
∞
n=1
•½Â3[0,1)×(0,∞)þëY4~ê§=
f
1
(r,u) ≥f
2
(r,u) ≥···≥f
n
(r,u) ≥f
n+1
(r,u) ≥···≥f(r,u)
,§·‚5¿(r,u) ∈E
n
×(0,∞)
DOI:10.12677/aam.2019.881661426A^êÆ?Ð
Q]
f(r,u) ≤f
n
(r,u) ≤
˜
f
n
(r,u) = f(r,u)
=
f
n
(r,u) = f(r,u),(r,u) ∈E
n
×(0,∞)
¤±§é?¿;f8K⊂[0,1)§3K×(0,∞)þf
n
→f"y3·‚?Øe¡¯K(2)9Ï>Š
¯KSµ



−m(φ(N,p))r
1−N
(r
N−1
|u
0
|u
0
)
0
= f
n
(r,u),r∈(0,1);
u
0
(1) = 0,u(0) = ε
n
(17)
n
é²w§(17)
n
)´(17)
n+1
þ)§e¡·‚2‰Ñü^Únµ
Ún3.1µé?¿c∈(0,ε
n
]§u
n
= c´¯K(17)
n
e)"
y²µÏ•u(r)•~ꧤ±(17)
n
†>•0§=‡yÚn3.1•Iyé?¿c∈(0,ε
n
]§f
n
(r,c)>
0"3ùp·‚^êÆ8B{µ
n= 1ž§f
1
(r,c) =
e
f
1
(r,u) = max{f(r,u),f(e
1
,u)}≥f(e
1
(r),c) ≥L>0.
bn= k>1ž(ؤá"Kn= k+1ž§
f
k+1
(r,c) = min{f
k
(r,c),
e
f
k+1
(r,u)}
qϕ
e
f
k+1
(r,u) = max{f(r,u),f(e
k+1
,u)}≥f(e
k+1
(r),c) ≥L
dþ¡ü‡ªfŒµ
f
k+1
(r,c) >0
u´é?¿c∈(0,ε
n
],f
n
(r,u) >0§¤±(ؤá"
Ún3.2µ¯K(17)
n
(n=1,2,3···)–•3˜‡)u
n
∈C
1
[0,1) ∩C[0,1]…÷vn≥2ž§•
3η
n
≤u
n
(r) ≤u
n−1
(r)"
y²µ^êÆ8B{§n=1ž§M>0•~ê§db(H
2
)§•3¼êh
M
∈L(0,1)∩
C([0,1);(0,+∞))¦µ
|f(r,u)|≤h
M
(r),(r,u) ∈[0,1)×[M,∞)
…éu,‡~êM
0
kµ
|f(e
1
(r),u)|≤h
M
(e
1
(r)) ≤M
0
,(r,u) ∈[0,1)×[M,∞)
·‚-G(r) = h
M
(r)+M
0
KkµG(r) ∈L(0,1)∩C([0,1);(0,+∞))§…÷vµ
|f
1
(r,u)|≤G(r),(r,u) ∈[0,1)×[M,∞)
e5§4·‚•Äe¡¯Kµ
DOI:10.12677/aam.2019.881661427A^êÆ?Ð
Q]



−m(φ(N,p))r
1−N
(r
N−1
|u
0
|
p−2
u
0
)
0
= G(r),r∈(0,1);
u
0
(1) = 0,u(0) = M
(18)
ØJwÑþªäk±e/ª•˜)µ
u
G
(r) = M−
Z
r
0
ϕ
−1
p
(t
1−N
Z
1
t
s
N−1
G(s)
m(φ(N,p))
ds)dt<+∞
Ï•G(r)≥f
1
(r,u
G
(r))…u
0
G
(r)<0min
r∈[0,1]
u
G
(r)=u
G
(1)§ Ï•u
G
(r)>0§¤±•3η
1
∈(0,ε
1
]§
¦µη
1
≤u
G
(1)§2dÚn3.1•§η
1
•¯K(17)
1
e)§¤±N´µ
0 <η
1
≤u
G
(1) ≤u
G
(r) <+∞
,db(H
2
)•§•3¼êh
η
1
∈L(0,1)∩C([0,1);(0,+∞))¦eª¤á"
|f(r,u)|≤h
η
1
(r),(r,u) ∈[0,1)×hη
1
,u
G
(r)i
2d·K2.3§¯K(17)
1
•3)u
1
∈C
1
[0,1)∩C[0,1]…÷vη
1
≤u
1
(r) ≤u
G
(r)"¤±(ؤá"
bn=kž§¯K(17)
k
•3)u
k
Úη
k
§¦η
k
≤u
k
≤u
k−1
K²Lþ¡Ó?Øµ•
3G
k
(r)¦µ
|f
k
(r,u)|≤G
k
(r),(r,u) ∈[0,1)×[M,∞)
n= k+1ž§dþŒ•§-G
k+1
(r) = G
k
(r)+M
k
Ù¥M÷vµ
|f(e
k+1
(r),u)|≤h
M
(e
k+1
(r)) ≤M
k
,(r,u) ∈[0,1)×[M,∞)
KG
k+1
(r)÷vµ
|f
k+1
(r,u)|≤G
k+1
(r)
,§²L†n=1žƒq?ØŒµ¯K(17)
k+1
•3)u
k
∈C
1
[0,1) ∩C[0,1]…÷vη
k+1
≤
u
k+1
(r) ≤u
k
(r)"¤±(ؤá"
–dŒ½n1.1y²Xeµ
y²µdÚn3.2•§¯K(17)
1
•3)u
1
(r)∈hη
1
,u
G
(r)i§Ï•f
1
(r,u)≥f(r,u)§¤±d·K2.2
·‚µ
u
1
(r) ≥K
1
p−1
0
γ(r),r∈[0,1]
bu
n
´(17)
n
)§ÏL8B{Œ•éu?¿r∈[0,1]÷vµ
u
n
≥η
n
,u
n
(r) ≥K
1
p−1
0
γ(r)
dÚn3.1·‚•η
n+1
u
n
©O´¯K(17)
n+1
e)Úþ)§…η
n+1
≤η
n
≤u
n
§Kd(H
2
)§•3
¼êh
η
n+1
∈L(0,1)∩C([0,1);(0,+∞))¦µ
|f(r,u)|≤h
η
n+1
(r),(r,u) ∈[0,1)×hη
n+1
,u
n
i
DOI:10.12677/aam.2019.881661428A^êÆ?Ð
Q]
2d·K2.3•§¯K(17)
n+1
•3)u
n+1
…éur∈[0,1]kη
n+1
≤u
n+1
(r) ≤u
n
(r)",§df
n+1
(r,u) ≥
f(r,u)Ú·K2.2•µ
u
n+1
(r) ≥K
1
p−1
0
γ(r),r∈[0,1]
¤±§ÏL8B§·‚Œ±¯K(17)
n
)S{u
n
}
∞
n=1
÷vµ









u
n
(r) ≥K
1
p−1
0
γ(r),r∈[0,1];
ε
n
≤u
n
≤u
n−1
,r∈[0,1]
u
0
n
(1) = 0,u
n
(0) = η
n
(19)
w,§{u
n
}
∞
n=1
´üN4~k.S§¤±•3¼êu¦é?¿r∈[0,1]§n→∞ž§
u
n
→u"…§
K
1
p−1
0
γ(r) ≤u(r) ≤u
n
(r),r∈[0,1](20)
e5§·‚y²u´(2))"Ï•u
n
´¯K(17)
n
)§¤±§Œ±¤e¡/ªµ
u
n
(r) = ε
n
−
Z
r
0
ϕ
−1
p
(t
1−N
Z
1
t
s
N−1
f
n
(s,u
n
(s))
m(φ
n
(N,p))
ds)dt
Ù¥§m(φ
n
(N,p)) = m(Nα(N)
R
1
0
s
N−1
|u
n
(s)|
p
ds)…
u
0
n
(r) = −ϕ
−1
p
(r
1−N
Z
1
r
s
N−1
f
n
(s,u
n
(s))
m(φ
n
(N,p))
ds)
é?¿;f8K= [σ
k
,1] ⊂[0,1)§•3˜‡êN
∗
>0§¦K⊂E
N
∗
§Ké?¿n≥N
∗
,
f
n
(r,u
n
) = f(r,u
n
),r∈K
¤±§·‚kµ
u
0
n
(r) = −ϕ
−1
p
(r
1−N
Z
1
r
s
N−1
f(s,u
n
(s))
m(φ
n
(N,p))
ds),r∈K
duγ(r)3[0,1]þî‚4~…γ(r)>0§¤±• 3δ
0
>0§¦3KþkK
1
p−1
0
γ(r)>δ
0
"qÏ
•é?¿r∈[0,1]u
n
(r) ≥K
1
p−1
0
γ(r)§,·‚Œ±µ
u
n
(r) ≥δ
0
,r∈K
db(H
2
)§•3¼êh
δ
0
(r) ∈C([0,1);(0,+∞))∩L
1
(0,1)¦
|f(r,u
n
)|≤h
δ
0
(r),r∈K
5¿h
δ
0
(r)3Kþk.§¤±éu,‡••6K~êM
K
§·‚kµ
|u
0
n
(r)|≤|ϕ
−1
p
(r
1−N
Z
1
r
s
N−1
h
δ
0
(s)
m(φ
n
(N,p))
ds)|≤M
K
,r∈K
DOI:10.12677/aam.2019.881661429A^êÆ?Ð
Q]
dArzela-Ascoli½n§·‚Œ±µ3K¥u
n
→u…u∈C(K)"Ï•u
n
´¯K(17)
n
)§¤
±§äk±e/ªµ
u
n
(r) = u
n
(0)−
Z
r
0
ϕ
−1
p
(t
1−N
Z
1
t
s
N−1
f(s,u
n
(s))
m(φ
n
(N,p))
ds)dt,r∈K
,·‚éþª4•§2d››Âñ½nµ
u(r) = u(0)−
Z
r
0
ϕ
−1
p
(t
1−N
Z
1
t
s
N−1
f(s,u(s))
m(φ
n
(N,p))
ds)dt,r∈K(21)
lþªéN´Œ±wѧu(r)∈C
1
(K)…÷v(2)1˜‡•§§2dK?¿5§Œu∈
C
1
[0,1)§ÏL(21)ªŒ•u
0
(0) = 0§,§
u(0) =lim
n→∞
u
n
(0) =lim
n→∞
ε
n
= 0
y3·‚y²u(r)3r=0?´ëY§Ï•{ε
n
}4~…ªu0§¤±é?‰θ>0§•
3
¯
N>0§é¤kn≥
¯
Nk
ε
n
<θ
·‚n=
¯
N§u
¯
N
(0) = ε
¯
N
<θ"2du
¯
N
(r) ∈C
1
[0,1)∩C[0,1]§•3vδ>0¦µ
0 ≤u
¯
N
(r) <θ,r∈[0,δ)
2dê{u
n
}
∞
n=1
üN59(20)ªŒµ
K
1
p−1
0
γ(r) ≤u(r) ≤u
¯
N
(r) <θ,r∈[0,δ)
dθ?¿5Úlim
r→0
K
1
p−1
0
γ(r)=0Œ§lim
r→0
u(r)=0=u(0)§=u(r)3r=0?ëY§¤±u∈
C
1
[0,1)∩C[0,1]"l•u´¯K(2)˜‡)"
—
·{žòCü‡žmªurùŸØ©3ùã¿÷¯Ì{§¥§‘‰·Æ))ã
Õ-œÚ¼"3Ø©ŠL§¥‘Ãê(JÚæN§Ñ3ÓÆÚP“•ÏeÝ
L"3ãÖ,é]žÿ§ãÖ,P“‰·Jøéõ•¡|±†•ϧvk¨‚
é·?1ØÙ†•ڕϧÃh•·?1Ø©?UÚU?§Òvk·ùŸ Ø©•
ª¤"3d§·••Ú•ÏL·P“‚L«•©%aœ
Ä7‘8
2܌ƉïÄ7‘8(XGZ160535)"
DOI:10.12677/aam.2019.881661430A^êÆ?Ð
Q]
ë•©z
[1]SantosJr.,J.R.andSiciliano,G.(2018)PositiveSolutionsforaKirchhoffProblemwith
VanishingNonlocalTerm.JournalofDifferentialEquations,265,2034-2043.
https://doi.org/10.1016/j.jde.2018.04.027
[2]Le,P.,Huynh,N.andHo,V.(2019)PositiveSolutionsofthep-KirchhoffProblemwith
DegenerateandSign-ChangingNonlocalTerm.Zeitschriftf¨urAngewandteMathematikund
Physik,70,68.https://doi.org/10.1007/s00033-019-1114-2
[3]Chu,K.,Hai,D.andShivaji,R.(2019)UniquenessofPositiveRadialSolutionsforInfinite
Semipositonep-LaplacianProblemsinExteriorDomains.JournalofMathematicalAnalysis
andApplications,472,510-525.https://doi.org/10.1016/j.jmaa.2018.11.037
[4]L¨u,H.andBai,Z.(2006)PositiveRadialSolutionsofaSingularEllipticEquationwithSign
ChangingNonlinearities.AppliedMathematicsLetters,19,555-567.
https://doi.org/10.1016/j.aml.2005.08.002
[5]Jin,C.H.,Yin, J. and Wang,Z. (2007) Positive Radial Solutions ofp-LaplacianEquationwith
SignChangingNonlinearSources.MathematicalMethodsintheAppliedSciences,30,1-14.
https://doi.org/10.1002/mma.771
[6]g1,îm,ÓÊ,.•¼©Û1§[M].®:p˜Ñ‡,2008.
[7]Habets,P. andZanolin,F. (1994)Upper and LowerSolutions fora Generalized Emden-Fowler
Equation.JournalofMathematicalAnalysisandApplications,181,684-700.
https://doi.org/10.1006/jmaa.1994.1052
•u¢ü«•ª:
1.‹m•Ä•µhttp://cnki.net/§:•¡¥/©]o¥CNKISCHOLAR0§a=–µ
http://scholar.cnki.net/new§|¢µS†Ñ\©ÙIK§=Œζ
½:Â/p?u¢0§e.LµÀJµ[ISSN]§Ñ\ÏrISSNµ2324-7991§=ŒÎ"
2.ÏL•Ä•http://cnki.net/ºÜ/·\•0?\•·µhttp://www.cnki.net/old/§ †ýÀJ/I
S©zo¥0?\§|¢µ†Ñ\©ÙIK§=ŒÎ"
Ývž:µhttp://www.hanspub.org/Submission.aspx
Ïre‡µaam@hanspub.org
DOI:10.12677/aam.2019.881661431A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2012 Hans Publishers Inc. All rights reserved.