设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投搞
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2019,9(7),799-803
PublishedOnlineSeptember2019inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2019.97104
TheNormofH-Subgroups
HongfangGu,L¨uGong
∗
SchoolofSciences,NantongUniversity,NantongJiangsu
Received:Aug.2
nd
,2019;accepted:Aug.28
th
,2019;published:Sep.4
th
,2019
Abstract
Inordertoinvestigatethestructureoffinitenilpotentgroup,anewequivalentchar-
acterizationoffinitemeta-nilipotentgroupisobtainedbythenormofH-subgroups.
Keywords
Norm,SolubleGroup,SubnormalSubgroup,H-Subgroup
H-f+norm
ùùù•••§§§÷÷÷ÆÆÆ
∗
HÏŒÆnÆ§ô€HÏ
ÂvFϵ2019c82F¶¹^Fϵ2019c828F¶uÙFϵ2019c94F
Á‡
•?˜Ú&¢k•˜"+(§|^H- f+norm§‰Ñk•æ˜"+˜‡#d
∗ÏÕŠö"
©ÙÚ^:ù•,÷Æ.H-f+norm[J].nØêÆ,2019,9(7):799-803.
DOI:10.12677/pm.2019.97104
ù•§÷Æ
•x"
'…c
Norm§Œ)+§g5f+§H-f+
Copyright
c
2019byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Só
©ïÄ+Ñ´k•+"©̇8´|^+H-f+‰Ñ+‡¥%#A"
H-f+Äk3©[1]¥Jѧ+G¥f+H÷véz‡g∈GÑkN
G
(H) ∩H
g
≤H§K
¡H´GH-f+"-H(G)L«+G¤kH-f+8ܧ=
H(G) = {H≤G|N
G
(H)∩H
g
≤H,∀g∈G}.
|^H-f+§©[1]‰Ñz‡g5f+Ñ5k•Œ)+A§¿•xz‡f+½
5½g5k•+("'uH-f+?˜ÚïÄŒ±ëw©[2–5]"
+GnormN(G)´•+G¥¤kf+5zf§ù˜VgÄkdBaer3©[6]¥J
Ñ",˜‡†ƒƒ'f+´Wielandtf+§ù´dWielandt3©[7]¥0+¥¤kg5
f+5zf"WielandtgŽÌ‡'5g5f +,Ø´¤kf +"©·‚òYù
g´§•Ä+¥H-f+†+enorm§=+¥¤kH-f+5zf"
·‚ÎÒÚâŠÑ´IO§PL«+GSylowp-f+§G
0
L«+G+§Z
∞
(G)L
«+G‡¥%§Ù¦ÎÒŒëw©[8–12]"
Äk·‚‰ÑXe½Â
½Â1.1.-G´˜+"KA
A
(G)L«H(G)†G
0
¥z‡f+5zf§=
A
A
(G) =
\
H∈H(G),H≤G
0
N
G
(H),
w,§A
A
(G) EG"eG
0
˜"§KG
0
¥z‡f+H3G¥Ñg5§u´dH∈H(G)
•H3G¥5§ÏdG=A
A
(G)"Ïd·‚g,Ž•Ù_ ·K´Ä(?e©·‚ò‰Ñ
DOI:10.12677/pm.2019.97104800nØêÆ
ù•§÷Æ
’½‰Y"
éuù‡½Â§·‚‰XeA‡`²µ
(1)
T
H∈H(G),H≤G
0
N
G
(H)†
T
H∈H(G
0
)
N
G
(H)´ØÓf+"
d+G¥H(G)ƒ'5Ÿ•µeH∈H(G),H≤G
0
§KH∈H(G
0
)"ù‡5Ÿ‡L5¿
Ø(§Ïdþã½ÂØÓ"
(2)
T
H∈H(G),H≤G
0
N
G
(H)†
T
H∈H(G)
N
G
(H
0
)´ØÓf+"
¦+üöÑ´ïÄ+G¥H(G)f+§5zfé–´H†H
0
§g,ؘ"
2.̇Ún
Äk·‚0˜'u+¥H-f+ÄÚnÚ5Ÿ"
Ún2.1.-G´˜‡+"
(1)[1]Lemma2(1)eN≤H…NEG§KH∈H(G)…=H/N∈H(G/N)"
(2)[1]Theorem6(2)eH∈H(G)…HEEK≤G§KHEK"
(3)[1]Theorem6(3)eH∈H(G)§NEG…N≤N
G
(H)§KN
G
(HN)=N
G
(H)…HN∈
H(G)"
(4)[1]Proposition3(2)eN,KEG…K≤N§KN/KSylowf+S/K3G_–Sá
uH(G)"AO/§G5f+Sylowf+ÑáuH(G)"
Ún2.2.[13]Theorem6.3-G´˜‡+§p´˜‡ƒê"eP´G¥¦G/C
G
(P)´p•
˜5p-f+§KP≤Z
∞
(G)"
e5§·‚‰Ñ+GA
A
(G)˜k^5Ÿ"
5Ÿ2.3.-G´˜+"eNEG…N≤A
A
(G)∩G
0
§KA
A
(G/N) = A
A
(G)/N"
y².-NEG…N≤A
A
(G)∩G
0
"·‚•ÄG/Nf+H/N "
A
A
(G/N)=
T
H/N∈H(G/N),H/N≤(G/N)
0
N
G/N
(H/N)
=
T
H∈H(G),N≤H≤G
0
N
G/N
(H/N),d[Ún2.1(1)],N≤G
0
=
T
H∈H(G),N≤H≤G
0
N
G
(H)/N
dÚn2.1(3)ÚN≤A
A
(G)•µ
A
A
(G)=
T
H∈H(G),H≤G
0
N
G
(H)
=
T
H∈H(G),H≤G
0
N
G
(HN)
=
T
H∈H(G),N≤H≤G
0
N
G
(H)
Ïd§·‚kA
A
(G)/N= A
A
(G/N)"
DOI:10.12677/pm.2019.97104801nØêÆ
ù•§÷Æ
3.̇½n
©[14]¥y²éu?¿+GÑkN(G) = 1…=Z(G) = 1"g,/§·‚އ•X
eØä´Ä•(µ
éu?¿+GÑkA
A
(G) = 1…=C
G
(G
0
) = 1?
Xe½n‰Ñþã¯KÈ4‰Y"
½n3.1.-G´+"K
(1)C
G
(G
0
) ≤A
A
(G)"
(2)A
A
(G) = G…=G
0
˜""
(3)C
G
(G
0
) = 1…=A
A
(G) = 1"
y².(1)w,§·‚k
C
G
(G
0
)=∩
H≤G
0
C
G
(H)
≤∩
H≤G
0
,H∈H(G)
C
G
(H)
≤∩
H≤G
0
,H∈H(G)
N
G
(H) = A
A
(G)
(2)eG
F
˜"§KG
0
¥z‡f+H3G¥g5"dÚn2.1(2)•eH∈H(G)§KH
3G¥5§=G= A
A
(G)"
‡L5§bG= A
A
(G)"-T≤G
0
´GܤÏf…L´T˜‡Sylowf+"u´d
Ún2.1(2)•L∈H(G)§L3G¥5"ÏdL= T§u´TŒ)§=A
A
(G)Œ)"
-H´G
0
˜‡Sylowf+"dÚn2.1(2)•H•¹3H(G)¥"u´dG= A
A
(G)•H
3G¥5"ÏdH3G
0
¥5…G
0
˜""
(3)w,§d5Ÿ3.3(1)•µeA
A
(G) = 1§KC
G
(G
0
) = 1"
‡L5§eC
G
(G
0
) = 1§KZ(G
0
) = 1"-M= A
A
(G)∩G
0
"·‚ÄkbM6= 1"Ï•G
´Œ)+§¤±3M¥•3G45f+N§Ø”N´Ð†p-f+"
-Q´G
0
Sylow q-f+§Ù¥p6= q"u´Q≤C
G
0
(N)…G
0
/C
G
0
(N)´p•˜"Ïd
dÚn2.2•N≤Z
∞
(G
0
) =Z(G) =1§gñ"ùÒL²M=1§…[A
A
(G),G
0
] ≤M= 1§k
C
G
(G
0
) = A
A
(G)"
lC
G
(G
0
) = A
A
(G) = 1"=§A
A
(G) = 1…=C
G
(G
0
) = 1"
ë•©z
[1]Bianchi,M.,Mauri,A.G.B.,Herzog,M.,etal.(2000)OnFiniteSolvableGroupsinWhich
NormalityIsaTransitiveRelation.JournalofGroupTheory,3,147-156.
DOI:10.12677/pm.2019.97104802nØêÆ
ù•§÷Æ
https://doi.org/10.1515/jgth.2000.012
[2]Guo,X.andWei,X.(2010)TheInfluenceofH-SubgroupsontheStructureofFiniteGroups.
JournalofGroupTheory,13,267-276.https://doi.org/10.1515/jgt.2009.050
[3]Li,S.(1994)OnMinimalSubgroupsofFiniteGroups.CommunicationsinAlgebra,22,1913-
1918.https://doi.org/10.1080/00927879408824946
[4]Li, S. (1998) On Minimal Non-PE-Groups.JournalofPureandAppliedAlgebra, 132, 149-158.
https://doi.org/10.1016/S0022-4049(97)00106-0
[5]Li,Y.(2006)FiniteGroupswithNE-Subgroups.JournalofGroupTheory,9,49-58.
https://doi.org/10.1515/JGT.2006.003
[6]Baer,R.(1934)DerKerneinecharakteristischeUntergruppe.CompositioMathematica,1,
254-283.
[7]Wielandt,H.(1958)
¨
Uberdennormalisatordersubnormalenuntergruppen.Mathematische
Zeitschrift,69,463-465.https://doi.org/10.1007/BF01187422
[8]Huppert,B.(1979)EndlicheGruppenI.Springer-Verlag,Berlin,Heidelberg,NewYork.
[9]Huppert,B.andBlackburn,N.(1982)FiniteGroupsIII.Springer-Verlag,Berlin.
https://doi.org/10.1007/978-3-642-67997-1
[10]Doerk,H. and Hawkes, T. (1992)Finite Soluble Groups.Walter de Gruyter, Berlin, New York.
[11]Isaacs,I.M.(2008)FiniteGroupTheory.AMS,Providence,RhodeIsland.
[12]Robinson,D.J.S.(1982)ACourseintheTheoryofGroups.Springer-Verlag,NewYork.
[13]Weinstein,M.,Ed.(1982)BetweenNilpotentandSolvable.PolygonalPublishingHouse,Pas-
saic,NewYork.
[14]Baer,R.(1956)NormandHypernorm.PublicationesMathematicae,Debrecen,4,347-356.
•u¢ü«•ª:
1.‹m•Ä•µhttp://cnki.net/§:•¡¥/©]o¥CNKISCHOLAR0§a=–µ
http://scholar.cnki.net/new§|¢µS†Ñ\©ÙIK§=Œζ
½:Â/p?u¢0§e.LµÀJµ[ISSN]§Ñ\ÏrISSNµ2160-7583§=ŒÎ"
2.ÏL•Ä•http://cnki.net/ºÜ/·\•0?\•·µhttp://www.cnki.net/old/§†ýÀJ/I
S©zo¥0?\§|¢µ†Ñ\©ÙIK§=ŒÎ"
Ývž:µhttp://www.hanspub.org/Submission.aspx
Ïre‡µpm@hanspub.org
DOI:10.12677/pm.2019.97104803nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2012 Hans Publishers Inc. All rights reserved.