Advances in Clinical Medicine
Vol. 14  No. 02 ( 2024 ), Article ID: 82088 , 11 pages
10.12677/ACM.2024.142637

维生素D调控T细胞在儿童重症肺炎发病中的 作用研究进展

郑艳兰,赵峰

衡阳市妇幼保健院,湖南 衡阳

收稿日期:2024年1月29日;录用日期:2024年2月23日;发布日期:2024年2月29日

摘要

肺炎在发展中国家中是造成5岁以下儿童死亡和住院的最常见的原因,严重威胁儿童生命和健康。重症肺炎病情危重,进展迅速,易导致急性呼吸窘迫综合征、感染性休克、急性肾功能衰竭等并发症,对患者生命安全构成极大威胁。感染是儿童肺炎发生的最主要原因,病原体进入机体后,首先会激活固有免疫系统,当固有免疫无法清除入侵病原体时包括T细胞免疫在内的功能更强大的适应性免疫则会发挥效应。维生素D除了在骨稳态中的经典功能外,还在宿主防御、炎症、免疫和上皮修复发挥重要作用。维生素D缺乏的儿童在患重症肺炎时属于高危组,这意味着补充维生素D可能对这些患者有益。而T细胞在适应性免疫应答当中占据核心地位,维生素D可作为一种免疫调节剂通过直接、间接方式调控T细胞参与重症肺炎的发生、发展。本文综述维生素D调控T淋巴在细胞儿童重症肺炎发生发展中的作用及最新进展。

关键词

维生素D,T细胞,重症肺炎,感染,免疫

Research Progress on the Vitamin D in Regulating T Cells in the Pathogenesis of Severe Pneumonia in Children

Yanlan Zheng, Feng Zhao

Hengyang Maternal and Child Health Hospital, Hengyang Hunan

Received: Jan. 29th, 2024; accepted: Feb. 23rd, 2024; published: Feb. 29th, 2024

ABSTRACT

Pneumonia is the most common cause of death and hospitalization in children under 5 years of age in developing countries, posing a serious threat to children’s lives and health. Severe pneumonia is severe and progresses rapidly, easily leading to acute respiratory distress syndrome, septic shock, acute renal failure and other complications, posing a great threat to patients’ life safety. In addition to its classic function in bone homeostasis, vitamin D also plays an important role in host defense, inflammation, immunity, and epithelial repair. Children with vitamin D deficiency are in the high-risk group for severe pneumonia, meaning vitamin D supplements may benefit these patients. T cells play a central role in adaptive immune response, and vitamin D can directly and indirectly regulate T cells to participate in the occurrence and development of severe pneumonia as an immune modulator. This article reviews the role of vitamin D in regulating T lymphocytes in the development and progression of severe pneumonia in children.

Keywords:Vitamin D, T Cells, Severe Pneumonia, Infection, Immune

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

维生素D以其在钙、磷和骨稳态中的作用而闻名,但近年来维生素D由于其广泛的骨外效应,包括免疫调节功能而受到广泛关注。T淋巴细胞作为重要的免疫细胞在重症肺炎的发生、发展过程中发挥的巨大作用。在这篇综述中我们总结了目前关于维生素D作为免疫系统调节剂调控T细胞对儿童重症肺炎的影响机制,并对维生素D补充对于预防和治疗呼吸道感染作用进行探讨。

2. 儿童重症肺炎与肺脏–气道T细胞免疫

世界卫生组织将重症肺炎定义为以在肺炎基础上如果出现不能饮水、持续呕吐、抽搐、嗜睡或昏迷、小儿平静状态下的喘息或严重营养不良等肺外表现,则被称为重症肺炎 [1] 。依据病原学一般分为细菌、病毒、非典型病原体、真菌 [2] 和非感染性肺炎。儿童重症肺炎主要以感染性因素为主。

肺是免疫调节的主要部位,许多细胞如上皮细胞、树突状细胞、巨噬细胞、中性粒细胞、以及B和T淋巴细胞,均参与了肺部免疫 [3] 。感染性肺炎发生时首先启动的是固有免疫应答,当固有免疫应当无法清除入侵病原体时针对性更强、功能更强大的适应性免疫发挥作用。

T淋巴细胞约占淋巴细胞在外周血总数的60%,除了发挥细胞免疫功能外,B细胞的活化、增殖、分化离不开T细胞的参与,最后其分泌的细胞因子亦可大幅度促进固有免疫应答,故T细胞在整个免疫系统中发挥了核心作用,具体见图1

当外界病原体突破气道上皮细胞屏障包括气道上皮的黏附分子组成的生理性屏障、纤毛系统、分泌系统(溶菌酶、乳铁蛋白、β-防御素)后,其表达的病原体相关模式分子(PAMP)可被气道上皮细胞表达CD24、TLR1-TLR6、TLR9识别,招募和激活中性粒细胞、巨噬细胞、DC细胞等固有免疫细胞至感染部位,发挥固有免疫效应。随后活化的DC细胞、巨噬细胞均可作为抗原提呈细胞(APC)。APC细胞与MHC分子结合,形成抗原肽-MHC分子复合物,经TCR识别后诱导T细胞活化,分化为CD4+T、CD8+T功能亚群。一方面CD4+T识别抗原肽-MHC II分子复合物生成辅助性T细胞(Th),通过分泌IFN-γ、TNF-α、IL-17、IL-2等细胞因子活化中性粒细胞、巨噬细胞和NK细胞。另外活化Th2细胞表面CD40L与B细胞表面CD40结合为B细胞活化提供了第二信号,并且Th2细胞通过分泌IL-4、IL-5、IL-21等细胞因子协助、促进B细胞分化为浆细胞从而产生抗体。另一方面CD8+T识别抗原肽-MHC I分子复合物生成CD8+T细胞分化为细胞毒性T细胞(CTL)直接杀伤靶细胞。在这个过程中IL-12、IFN-γ诱导CD4+T向Th1分化,IL-4诱导CD4+T向Th2分化,IL-6诱导CD4+T向Th17分化。

Figure 1. The mechanism of T cells in the entire immune system

图1. T细胞在整个免疫系统中作用机制

呼吸道不断暴露于外界环境,可作为许多病原体的主要入口。大多数情况下肺脏–气道的屏障功能及固有免疫系统可效地控制了多种肺部病原体,保护了宿主。然而,许多逃避这些先天防御的病原体需要上面提到的T细胞亚群来最终控制感染。CD4+T细胞衰竭的艾滋病毒患者肺部感染的风险增加,包括耶氏肺孢子虫肺炎、肺结核、肺念珠菌病、组织胞浆菌病、复发性细菌性肺炎 [4] 、流感病毒、肺炎链球菌、流感嗜血杆菌 [5] 和烟曲霉菌 [6] 。有一项研究显示在机体免疫调节功能正常情况下Th1和CD8+ T细胞主要有助于宿主成功防御病毒病原体,如流感和RSV,而Th2和Th17应答通常是有害的,并分别加剧了RSV和流感的疾病。Th1和Th17细胞是抗细菌和真菌感染的重要组成部分 [3] 。另有一项研究显示,在感染性肺炎患者的BAL液中,IL-6、IL-8和IFN-γ水平较健康者明显升高,且重症肺炎患者血清IL-6、IL-10和IFN-γ水平显著高于非重症患者和健康人 [7] 。T细胞的活化对建立细胞免疫和体液免疫至关重要,从而抑制呼吸道感染和预防严重疾病,而严重呼吸道感染中未解决的炎症反应与T细胞高且持续的活化相关 [8] T细胞应答的改变可能是急性呼吸窘迫综合征(ARDS)的部分原因 [9] [10] [11] 。可见重症肺炎的发生、发展全过程中离不开T细胞参与。

正常情况下机体在免疫调节作用下使免疫应答处在合适的强度和水平以维持机体内环境的稳定 [12] [13] 。其包括正向调节和负向调节,正向的主要为促进炎症反应,增强机体感染清除作用。负向的主要为抑制炎症反应,限制过度免疫反应对机体造成损伤。而在异常情况下机体促炎症因子和抗炎症因子平衡失调,大量的促炎细胞因子和趋化因子导致T细胞过度活化,T下拨进一步释放细胞因子通过自分泌和旁分泌等级联反应进一步活化更多免疫细胞,造成免疫调控网络失衡,负反馈的缺失和正反馈的不断自我放大,形成细胞因子级联反应,导致细胞因子风暴的启动,损伤自身免疫系统稳态和正常组织细胞功能 [14] [15] [16] ,大量促炎症细胞因子释放导致肺泡上皮和肺毛细血管内皮通透性增加,促进富含蛋白质的血浆渗出,从而导致非心源性肺水肿、肺泡塌陷引发严重通气/血流比例失调,导致低氧血症、肺水肿、甚至ALI/ARDS [17] 。另外大量促炎症细胞因子释放引起全身性的毛细血管渗漏、血浆外渗、血液浓缩,亦可导致血管内皮细胞(ECs)功能障碍,使凝血与抗凝血平衡失调,导致循环衰竭和弥散性血管内凝血 [18] [19] ,严重者甚至危及生命。

3. 维生素D与重症肺炎

目前越来越多的证据支持维生素D缺乏与肺功能受损 [20] 、ALI/ARDS [21] [22] 及炎症性疾病包括哮喘 [23] 、结核病 [24] 和慢性阻塞性肺疾病(COPD))之间存在关联 [20] [25] 。维生素D缺乏在肺炎危重患者中也很常见 [21] 。在重症肺炎或败血症患者中维生素D水平显著下调,并与预后相关 [26] [27] 。维生素D影响重症肺炎的可能机制为:1) 人气道上皮细胞同时表达VDR和1a-羟化酶 [28] 。当肺炎发生时,肺内皮细胞将不活跃的维生素D转化为活性的1,25-二羟基维生素D[1,25(OH)2D],并刺激抗菌肽的产生。抗菌肽的生产可直接杀灭多种微生物,包括革兰氏阳性和革兰氏阴性细菌、真菌和一些病毒,从而发挥其抗感染作用 [29] 。2) 维生素D缺乏可通过下调Occludin和ZO-1 (zonula occludens-1)的表达,导致肺上皮屏障防御破坏,肺泡通透性增加,炎症细胞浸润,促炎细胞因子和趋化因子的释放,液体滞留。最终导致肺组织损伤和气体交换阻塞 [30] 。3) 维生素D通过直接调节人体的先天免疫和适应性免疫 [31] ,参与重症肺炎的发生和发展。

现有的研究结果显示体内低维生素D水平会增加呼吸道感染的发生率。一项25-羟维生素D(25-(OH) D)与成人CAP相关性的研究表明,当血清25-(OH)D3水平升高10 nmol/L时,呼吸道感染发生率降低7% [32] 。当血清25-(OH)D3 < 37 nmol/L,CAP住院可能性增加 [33] 。另有流行病学研究表明,维生素d水平与儿童呼吸道感染之间存在显著相关性,血清VitD低于50 nmol/L会使儿童患呼吸道感染的风险增加70% [34] 。同样,在健康成年人中,低于30 ng/ml的25OHD水平也与呼吸道感染风险增加相关 [32] [35] 。

但补充维生素D对于呼吸道感染的预防效果存在争议,并且目前的临床研究显示维生素D作为一种辅助治疗对于肺炎缓解并未取得令人满意的效果。有研究表明儿童补充维生素D(3)可以降低甲型流感病毒、COVID-19感染导致的呼吸道感染发病率 [36] [37] 。另一项研究显示幼儿单次口服大剂量补充维生素D(3)并结合抗生素治疗,可减少肺炎重复发生概率 [38] 。但Remmelt等人的一项关于维生素D补充在肺炎发生中的作用的试验囊括了33,726例肺炎住院病人和105,243例对照组,分为3组进行对照研究,结果显示维生素D与肺炎发生风险之间的OR值分别为(1.716、1.028、1.65),提示维生素D补充并不会降低甚至增加肺炎的发生率,但是当维生素D与糖皮质激素口服联合使用时3组OR值分别降为(0.826、0.854、0.817),提示通过共同使用维生素D与糖皮质激素显著改变了这种相关性,似乎降低了肺炎的发生率 [39] 。在治疗效果方面有研究认为在抗生素治疗的同时补充维生素D对肺炎缓解并没有明显的益处 [38] [40] 。

造成这些结果的原因可能是多方面的,包括:1、激素抗炎作用强于VD,特别是在重症肺炎生发时,单纯VD的抗炎效应不足以及时有效清除炎症风暴,相反激素具有强大的抗炎作用,能保护宿主免受过量炎症因子释放所造成伤害。2、VD与糖皮质激素之间的协同作用,有研究显示VD与糖皮质激素之间具有协同作用,VD能增强糖皮质激素抗炎作用并逆转激素抵抗 [41] 。3、实验设计相关因素,VD作为肺炎的辅助治疗其效果可能受多方面因素影响,包括受试者的基础维生素D水平、维生素D服用剂量、服用时间甚至不同的肺炎病原学等。当这些因素未设置统一标准时均可对实验结果产生重大影响。

4. 维生素D代谢与生物功能

维生素D是一种类固醇激素,在紫外线照射下在皮肤中由7-脱氢胆固醇转化为维生素D原,并异构化为维生素D [42] 。少量的维生素D也可以通过饮食获得,包括鱼肝油和脂肪多的鱼;紫外线照射过的蘑菇;含有维生素D和补充剂的强化食品 [43] [44] 。维生素D必须通过至少5种酶(即CYP2DII、CYP2D25、CYP3A4、CYP2R1和CYP27A1)发生25-羟基化 [45] ,形成25羟基维生素D [25(OH)D]。随后25(OH) D必须在肾脏或体外通过1α羟化酶(CYP27B1)进行第二步羟化,形成具有生物活性的1,25(OH)2D3 [46] 。

1,25(OH)2D3通过和高亲和维生素D受体(VDR)结合调控基因转录来实现其许多生物学功能。VDR分为细胞膜受体和核受体。细胞膜受体途径又称非核受体途径,主要调节钙和磷的代谢。核受体途径调控基因转录 [47] [48] 。在核受体途径中,1,25(OH)2D3作为配体与核内的nVDR和RXR结合,形成VDR与视黄酸X受体(RXR)的异源二聚体。VDR RXR异源二聚体特异性结合DNA靶基因的启动子结构域,调控靶基因转录蛋白合成,发挥生物学作用 [49] 。

人体约有2000个基因直接或间接地受到维生素D的调控,表明维生素D具有广泛的生物学作用 [49] 。有研究表明1,25(OH)2D3作为一种免疫调节剂靶向各种免疫细胞,包括单核细胞、巨噬细胞、树突状细胞(DCs)以及T淋巴细胞和B淋巴细胞,因此可以调节先天和适应性免疫反应 [31] 。这提示了维生素D可能通过免疫调节作用影响重症肺炎的发生、发展。

5. 维生素D调控T细胞影响重症肺炎

维生素D对T细胞的影响包括间接影响和直接影响,间接影响主要表现在以下2个方面:1) 1,25-(OH)2D3降低DCs细胞、单核细胞/巨噬细胞的抗原提呈作用和共同刺激因子,导致T细胞的增值和分化不良,使T细胞免疫效应下降 [50] [51] [52] [53] 。2) 维生素D处理可明显减弱toll样受体4 (TLR4)的表达,从固有免疫方面而发挥其抗炎、抗凋亡功能 [54] [55] 。另APC表面TLR与病原体相关模式分子(PAMP)结合后激活,可表达多种共同刺激分子和细胞因子,从而介导T细胞激活和增值 [56] 。当维生素D减弱toll样受体4 (TLR4)的表达后可能通过此途径间接影响T细胞免疫。

5.1. 维生素D和Th1、Th17

维生素D对T细胞的直接影响主要表现在:1,25-(OH)2D3抑制Th1细胞IL-2、IFN-γ的分泌 [57] [58] [59] 。IL-2作为促炎症因子,能促进T细胞亚群增值及产生细胞因子,另可以促进NK细胞毒活性及产生细胞因子,另可活化B细胞增殖及产生抗体,还可激活巨噬细胞增强其杀灭病原体能力。IFN-γ是激活单核巨噬细胞的关键因子,可促进Th0细胞分化为Th1细胞,在体外和人体试验中显示IFN-γ对于细菌性肺炎 [60] [61] 、流感病毒感染 [62] [63] 及RSV肺炎 [64] [65] 、肺部真菌感染 [66] [67] [68] 均产生有益影响。

1,25(OH) 2d也被证明能抑制Th17细胞分泌IL-17 [69] [70] 。IL-17的主要功能是通过诱导中性粒细胞为主的炎症反应,吞噬和杀伤病原体,一项与肺炎有关的相关实验表明:CAP患者血液及BAL中IL-17A阳性CD4 T细胞较健康者明显增加 [71] 。另外与病原学相关的体外试验显示IL-17对机体的肺炎克雷伯菌感染 [72] [73] 、支原体感染 [74] 、肺炎链球菌感染 [75] 和铜绿假单胞菌感染 [76] 产生保护效果,但在流感亚型PR8感染中对宿主有害 [77] ,另外真菌病原体诱导的Th17应答对宿主既可能是保护性的,也可能是有害的 [78] [79] 。

在机体免疫调控功能正常情况下,大多数情况维生素D对Th1和Th17在肺炎中的调控是有益于机体的,但这种有益影响可能出现改变,重症肺炎发生时,机体免疫平衡失调,过多的促炎症因子释放(包括IL-2、IFN-γ、IL-17)可能导致这种有益影响转变成有害的,而维生素D作为免疫调节剂通过抑制IL-2和IFN-γ、IL-17的分泌控制炎症反应,避免组织过度的损伤。

5.2. 维生素D和Th2

Th2主要通过辅助活化B细胞发挥免疫共功能,另可参与超敏反应的发生和抗寄生虫感染。1,25(OH)2D3对Th2细胞因子的影响存在争议。有研究表明,1,25(OH)2D3可上调Th2特异性转录因子GATA-binding protein 3 (GATA-3)和c-maf的水平,以及诱导IL-4、IL-5等Th2细胞因子,但也有研究成相反观点 [70] [80] [81] [82] 。相关试验表明肺部Th2反应在宿主防御寄生虫 [83] 、流感病毒 [84] [85] [86] [87] 、真菌感染 [88] 方面发挥了有益的作用。但由于维生素D对于Th2细胞影响尚无定论,故维生素D对Th2在重症肺炎中的调控对于人体是否获益有待进一步的研究。

5.3. 维生素D和CD8+T细胞

CD8+T细胞在外周免疫器官活化、增殖、分化为效应CTL细胞,可高效、特异性的杀伤细胞内寄生病原体,也可通过产生IFN-γ、TNF-α、IL-2调节免疫应答。体外试验显示:在肺部细菌性感染 [89] [90] 、肺部真菌感染 [91] [92] 、流感病毒感染 [93] 时CD8+ T细胞介导的免疫反应对机体起保护作用,但有时也能造成组织损伤 [94] [95] ,造成这种结果的原因可能类似于Th1介导的免疫损伤机制。当重症肺炎发生时免疫调节失衡,而TNF-α和IFN-γ作为主要的促炎症因子过度释放会导致肺部的病理损伤 [94] ,而1,25(OH)2D3可通过抑制CD8 T细胞中IFN-γ、TNF-a [96] 和IL-2 [97] 的产生抑制过度的炎症反应从而在重症肺炎中发挥保护作用。

6. 总结

目前大量的实验研究表明,维生素D作为免疫调节剂在体外和动物模型中对于机体感染性肺炎的影响是正面的。现有的数据支持维生素D通过调控T细胞过度的炎症反应、诱导免疫耐受降低机体在重症肺炎的免疫损伤。但维生素D的补充预防或改善治疗呼吸道感染的临床试验结果不一致,差异的原因可能是混合因素:如在小样本量的干预研究,参与者在种族、年龄、体重指数(BMI)、季节、日照、药物剂量等方面差异很大。另外这些研究缺乏对患者维生素D水平的评价。重症肺炎治疗前是否应先完善维生素D水平测定?在严重肺炎的情况下,维生素D作为辅助治疗是否确实对缺乏维生素D的患者有益,但对没有缺乏维生素D的患者无效甚至加重? 最后从目前的研究可得出维生素D补充在呼吸道感染中的效果受不同病原体差异的影响,如在部分病原体感染中可能使患者收益,另一部分可能有害,评估效果应根据不同病原学做区分。后续应采用双盲、大样本研究,需更严谨的试验设计,随访时间需更长、更严格、更规范,为临床提供了理论依据,为重症肺炎的辅助治疗开辟了新的途径。

基金项目

衡阳市科技计划项目:有创–无创序贯机械通气在小儿重症肺炎治疗中的应用(S2018N9031034365)。

文章引用

郑艳兰,赵 峰. 维生素D调控T细胞在儿童重症肺炎发病中的作用研究进展
Research Progress on the Vitamin D in Regulating T Cells in the Pathogenesis of Severe Pneumonia in Children[J]. 临床医学进展, 2024, 14(02): 4586-4596. https://doi.org/10.12677/ACM.2024.142637

参考文献

  1. 1. (2014) Revised WHO Classification and Treatment of Pneumonia in Children at Health Facilities: Evidence Summaries. WHO Guidelines Approved by the Guidelines Review Committee. Geneva.

  2. 2. Leung, A.K.C., Wong, A.H.C. and Hon, K.L. (2018) Community-Acquired Pneumonia in Children. Recent Patents on Inflammation & Allergy Drug Dis-covery, 12, 136-144. https://doi.org/10.2174/1872213X12666180621163821

  3. 3. Chen, K. and Kolls, J.K. (2013) T Cell-Mediated Host Immune Defenses in the Lung. Annual Review of Immunology, 31, 605-633. https://doi.org/10.1146/annurev-immunol-032712-100019

  4. 4. Altare, F., Lammas, D., Revy, P., et al. (1998) In-herited Interleukin 12 Deficiency in a Child with Bacille Calmette-Guerin and Salmonella enteritidis Disseminated Infec-tion. Journal of Clinical Investigation, 102, 2035-2040. https://doi.org/10.1172/JCI4950

  5. 5. Raju, R., Peters, B.S. and Breen, R.A. (2012) Lung Infections in the HIV-Infected Adult. Current Opinion in Pulmonary Medicine, 18, 253-258. https://doi.org/10.1097/MCP.0b013e32835213d3

  6. 6. Van de Veerdonk, F.L. and Netea, M.G. (2010) T-Cell Subsets and Antifungal Host Defenses. Current Fungal Infection Reports, 4, 238-243. https://doi.org/10.1007/s12281-010-0034-6

  7. 7. Paats, M.S., Bergen, I.M., Hanselaar, W.E., et al. (2013) Local and Systemic Cytokine Profiles in Nonsevere and Severe Community-Acquired Pneumonia. European Respiratory Soci-ety, 41, 1378-1385. https://doi.org/10.1183/09031936.00060112

  8. 8. Yunis, J., Short, K.R. and Yu, D. (2023) Severe Respiratory Vi-ral Infections: T-Cell Functions Diverging from Immunity to Inflammation. Trends in Microbiology, 31, 644-656. https://doi.org/10.1016/j.tim.2022.12.008

  9. 9. Sette, A., Sidney, J. and Crotty, S. (2023) T Cell Responses to SARS-CoV-2. Annual Review of Immunology, 41, 343-373. https://doi.org/10.1146/annurev-immunol-101721-061120

  10. 10. Tay, M.Z., Poh, C.M., Rénia, L., et al. (2020) The Trinity of COVID-19: Immunity, Inflammation and Intervention. Nature Reviews Immunology, 20, 363-374. https://doi.org/10.1038/s41577-020-0311-8

  11. 11. Merad, M. and Martin, J.C. (2020) Pathological Inflammation in Patients with COVID-19: A Key Role for Monocytes and Macrophages. Nature Reviews Immunology, 20, 355-362. https://doi.org/10.1038/s41577-020-0331-4

  12. 12. Jarczak, D. and Nierhaus, A. (2022) Cytokine Storm-Definition, Causes, and Implications. International Journal of Molecular Sciences, 23, Article 11740. https://doi.org/10.3390/ijms231911740

  13. 13. Fajgenbaum, D.C. and June, C.H. (2020) Cytokine Storm. The New England Journal of Medicine, 383, 2255-2273. https://doi.org/10.1056/NEJMra2026131

  14. 14. Maucourant, C., Queiroz, G.A.N., Samri, A., et al. (2019) Zika Virus in the Eye of the Cytokine Storm. European Cytokine Network, 30, 74-81. https://doi.org/10.1684/ecn.2019.0433

  15. 15. Chen, H., Wang, F., Zhang, P., et al. (2019) Management of Cytokine Release Syndrome Related to CAR-T Cell Therapy. Frontiers of Medicine, 13, 610-617. https://doi.org/10.1007/s11684-019-0714-8

  16. 16. Indalao, I.L., Sawabuchi, T., Takahashi, E., et al. (2017) IL-1beta Is a Key Cytokine That Induces Trypsin Upregulation in the Influenza Virus-Cytokine-Trypsin Cycle. Archives of Virol-ogy, 162, 201-211. https://doi.org/10.1007/s00705-016-3093-3

  17. 17. Huppert, L.A., Matthay, M.A. and Ware, L.B. (2019) Pathogene-sis of Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 40, 31-39. https://doi.org/10.1055/s-0039-1683996

  18. 18. Tracey, K.J., Lowry, S.F., Fahey 3rd, T.J., et al. (1987) Cachec-tin/Tumor Necrosis Factor Induces Lethal Shock and Stress Hormone Responses in the Dog. Surgery, Gynecology & Obstetrics, 164, 415-422.

  19. 19. Medina, R., Socher, S.H., Han, J.H., et al. (1989) Interleukin-1, Endotoxin or Tumor Necrosis Factor/Cachectin Enhance the Level of Plasminogen Activator Inhibitor Messenger RNA in Bovine Aortic En-dothelial Cells. Thrombosis Research, 54, 41-52. https://doi.org/10.1016/0049-3848(89)90335-6

  20. 20. Afzal, S., Lange, P., Bojesen, S.E., et al. (2014) Plasma 25-Hydroxyvitamin D, Lung Function and Risk of Chronic Obstructive Pulmonary Disease. Thorax, 69, 24-31. https://doi.org/10.1136/thoraxjnl-2013-203682

  21. 21. Rippel, C., South, M., Butt, W.W., et al. (2012) Vitamin D Status in Critically Ill Children. Intensive Care Medicine, 38, 2055-2062. https://doi.org/10.1007/s00134-012-2718-6

  22. 22. Parekh, D., Dancer, R.C., Lax, S., et al. (2013) Vitamin D to Pre-vent Acute Lung Injury Following Oesophagectomy (VINDALOO): Study Protocol for a Randomised Placebo Con-trolled Trial. Trials, 14, Article No. 100. https://doi.org/10.1186/1745-6215-14-100

  23. 23. Hollams, E.M., Hart, P.H., Holt, B.J., et al. (2011) Vitamin D and Atopy and Asthma Phenotypes in Children: A Longitudinal Cohort Study. European Respiratory Society, 38, 1320-1327. https://doi.org/10.1183/09031936.00029011

  24. 24. Wilkinson, R.J., Llewelyn, M., Toossi, Z., et al. (2000) Influence of Vitamin D Deficiency and Vitamin D Receptor Polymorphisms on Tuberculosis among Gujarati Asians in West Lon-don: A Case-Control Study. The Lancet, 355, 618-621. https://doi.org/10.1016/S0140-6736(99)02301-6

  25. 25. Persson, L.J., Aanerud, M., Hiemstra, P.S., et al. (2012) Chronic Obstructive Pulmonary Disease Is Associated with Low Levels of Vitamin D. PLOS ONE, 7, e38934. https://doi.org/10.1371/journal.pone.0038934

  26. 26. Lu, D., Zhang, J., Ma, C., et al. (2018) Link between Commu-nity-Acquired Pneumonia and Vitamin D Levels in Older Patients. Zeitschrift für Gerontologie und Geriatrie, 51, 435-439. https://doi.org/10.1007/s00391-017-1237-z

  27. 27. De Pascale, G., Vallecoccia, M.S., Schiattarella, A., et al. (2016) Clinical and Microbiological Outcome in Septic Patients with Extremely Low 25-Hydroxyvitamin D Levels at Ini-tiation of Critical Care. Clinical Microbiology and Infection, 22, 456.E7-456.E13. https://doi.org/10.1016/j.cmi.2015.12.015

  28. 28. Hansdottir, S., Monick, M.M., Hinde, S.L., et al. (2008) Respirato-ry Epithelial Cells Convert Inactive Vitamin D to Its Active Form: Potential Effects on Host Defense. The Journal of Immunology, 181, 7090-7099. https://doi.org/10.4049/jimmunol.181.10.7090

  29. 29. Zisi, D., Challa, A. and Makis, A. (2019) The Association be-tween Vitamin D Status and Infectious Diseases of the Respiratory System in Infancy and Childhood. Hormones (Ath-ens), 18, 353-363. https://doi.org/10.1007/s42000-019-00155-z

  30. 30. Shi, Y.Y., Liu, T.J., Fu, J.H., et al. (2016) Vitamin D/VDR Sig-naling Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Maintaining the Integrity of the Pulmonary Epitheli-al Barrier. Molecular Medicine Reports, 13, 1186-1194. https://doi.org/10.3892/mmr.2015.4685

  31. 31. Baeke, F., Takiishi, T., Korf, H., et al. (2010) Vitamin D: Modulator of the Immune System. Current Opinion in Pharmacology, 10, 482-496. https://doi.org/10.1016/j.coph.2010.04.001

  32. 32. Berry, D.J., Hesketh, K., Power, C., et al. (2011) Vita-min D Status Has a Linear Association with Seasonal Infections and Lung Function in British Adults. British Journal of Nutrition, 106, 1433-1440. https://doi.org/10.1017/S0007114511001991

  33. 33. Jovanovich, A.J., Ginde, A.A., Holmen, J., et al. (2014) Vita-min D Level and Risk of Community-Acquired Pneumonia and Sepsis. Nutrients, 6, 2196-2205. https://doi.org/10.3390/nu6062196

  34. 34. Fried, D.A., Rhyu, J., Odato, K., et al. (2016) Maternal and Cord Blood Vitamin D Status and Childhood Infection and Allergic Disease: A Systematic Review. Nutrition Reviews, 74, 387-410. https://doi.org/10.1093/nutrit/nuv108

  35. 35. Monlezun, D.J., Bittner, E.A., Christopher, K.B., et al. (2015) Vitamin D Status and Acute Respiratory Infection: Cross Sectional Results from the United States National Health and Nutrition Examination Survey, 2001-2006. Nutrients, 7, 1933-1944. https://doi.org/10.3390/nu7031933

  36. 36. Urashima, M., Segawa, T., Okazaki, M., et al. (2010) Randomized Trial of Vitamin D Supplementation to Prevent Seasonal Influenza A in Schoolchildren. The American Journal of Clinical Nutrition, 91, 1255-1260. https://doi.org/10.3945/ajcn.2009.29094

  37. 37. Nicolae, M., Mihai, C.M., Chisnoiu, T., et al. (2023) Immunomodu-latory Effects of Vitamin D in Respiratory Tract Infections and COVID-19 in Children. Nutrients, 15, Article 3430. https://doi.org/10.3390/nu15153430

  38. 38. Manaseki-Holland, S., Qader, G., Isaq, Masher, M., et al. (2010) Effects of Vitamin D Supplementation to Children Diagnosed with Pneumonia in Kabul: A Randomised Controlled Trial. Tropi-cal Medicine & International Health, 15, 1148-1155. https://doi.org/10.1111/j.1365-3156.2010.02578.x

  39. 39. Remmelts, H.H., Spoorenberg, S.M., Oosterheert, J.J., et al. (2013) The Role of Vitamin D Supplementation in the Risk of Developing Pneumonia: Three Independent Case-Control Studies. Thorax, 68, 990-996. https://doi.org/10.1136/thoraxjnl-2013-203623

  40. 40. Choudhary, N. and Gupta, P. (2012) Vitamin D Supplementa-tion for Severe Pneumonia—A Randomized Controlled Trial. Indian Pediatrics, 49, 449-454. https://doi.org/10.1007/s13312-012-0073-x

  41. 41. Litonjua, A.A. (2013) Vitamin D and Corticosteroids in Asthma: Synergy, Interaction and Potential Therapeutic Effects. Expert Review of Respiratory Medicine, 7, 101-104. https://doi.org/10.1586/ers.12.85

  42. 42. Colotta, F., Jansson, B. and Bonelli, F. (2017) Modulation of Inflammatory and Immune Responses by Vitamin D. Journal of Autoimmunity, 85, 78-97. https://doi.org/10.1016/j.jaut.2017.07.007

  43. 43. Hossein-Nezhad, A. and Holick, M.F. (2012) Optimize Dietary In-take of Vitamin D: An Epigenetic Perspective. Current Opinion in Clinical Nutrition & Metabolic Care, 15, 567-579. https://doi.org/10.1097/MCO.0b013e3283594978

  44. 44. Holick, M.F. (2007) Vitamin D Deficiency. The New Eng-land Journal of Medicine, 357, 266-281. https://doi.org/10.1056/NEJMra070553

  45. 45. Martens, P.J., Gysemans, C., Verstuyf, A., et al. (2020) Vitamin D’s Effect on Immune Function. Nutrients, 12, Article 1248. https://doi.org/10.3390/nu12051248

  46. 46. Liu, P.T., Sten-ger, S., Li, H., et al. (2006) Toll-Like Receptor Triggering of a Vitamin D-Mediated Human Antimicrobial Response. Science, 311, 1770-1773. https://doi.org/10.1126/science.1123933

  47. 47. Abrams, G.D., Feldman, D. and Safran, M.R. (2018) Effects of Vitamin D on Skeletal Muscle and Athletic Performance. Journal of the American Academy of Orthopaedic Surgeons, 26, 278-285. https://doi.org/10.5435/JAAOS-D-16-00464

  48. 48. Luo, W., Liu, L., Yang, L., et al. (2018) The Vitamin D Receptor Regulates miR-140-5p and Targets the MAPK Pathway in Bone Development. Metabolism, 85, 139-150. https://doi.org/10.1016/j.metabol.2018.03.018

  49. 49. Hossein-Nezhad, A. and Holick, M.F. (2013) Vitamin D for Health: A Global Perspective. Mayo Clinic Proceedings, 88, 720-755. https://doi.org/10.1016/j.mayocp.2013.05.011

  50. 50. Unger, W.W., Laban, S., Kleijwegt, F.S., et al. (2009) Induction of Treg by Monocyte-Derived DC Modulated by Vitamin D3 or Dexamethasone: Differential Role for PD-L1. European Journal of Immunology, 39, 3147-3159. https://doi.org/10.1002/eji.200839103

  51. 51. Penna, G. and Adorini, L. (2000) 1α,25-Dihydroxyvitamin D3 Inhibits Differentiation, Maturation, Activation, and Survival of Dendritic Cells Leading to Impaired Alloreactive T Cell Activa-tion. The Journal of Immunology, 164, 2405-2411. https://doi.org/10.4049/jimmunol.164.5.2405

  52. 52. Van Halteren, A.G., Van Etten, E., De Jong, E.C., et al. (2002) Redirection of Human Autoreactive T-Cells upon Interaction with Den-dritic Cells Modulated by TX527, an Analog of 1,25 Dihydroxyvitamin D3. Diabetes, 51, 2119-2125. https://doi.org/10.2337/diabetes.51.7.2119

  53. 53. Xu, H., Soruri, A., Gieseler, R.K., et al. (1993) 1,25-Dihydroxyvitamin D3 Exerts Opposing Effects to IL-4 on MHC Class-II Antigen Expression, Accessory Activity, and Phagocytosis of Human Monocytes. Scandinavian Journal of Immunology, 38, 535-540. https://doi.org/10.1111/j.1365-3083.1993.tb03237.x

  54. 54. Yao, L., Shi, Y., Zhao, X., et al. (2017) Vitamin D At-tenuates Hyperoxia-Induced Lung Injury through Downregulation of Toll-Like Receptor 4. International Journal of Mo-lecular Medicine, 39, 1403-1408. https://doi.org/10.3892/ijmm.2017.2961

  55. 55. Chen, Y., Liu, W., Sun, T., et al. (2013) 1,25-Dihydroxyvitamin D Promotes Negative Feedback Regulation of TLR Signaling via Targeting MicroRNA-155-SOCS1 in Macrophages. The Journal of Immunology, 190, 3687-3695. https://doi.org/10.4049/jimmunol.1203273

  56. 56. Liu, G., Zhang, L. and Zhao, Y. (2010) Modulation of Immune Responses through Direct Activation of Toll-Like Receptors to T Cells. Clinical and Experimental Immunology, 160, 168-175. https://doi.org/10.1111/j.1365-2249.2010.04091.x

  57. 57. Provvedini, D.M., Tsoukas, C.D., Deftos, L.J., et al. (1983) 1,25-Dihydroxyvitamin D3 Receptors in Human Leukocytes. Science, 221, 1181-1183. https://doi.org/10.1126/science.6310748

  58. 58. Tsoukas, C.D., Provvedini, D.M. and Manolagas, S.C. (1984) 1,25-Dihydroxyvitamin D3: A Novel Immunoregulatory Hormone. Science, 224, 1438-1440. https://doi.org/10.1126/science.6427926

  59. 59. Khader, S.A., Guglani, L., Rangel-Moreno, J., et al. (2011) IL-23 Is Required for Long-Term Control of Mycobacterium Tuberculosis and B Cell Follicle Formation in the Infected Lung. The Journal of Immunology, 187, 5402-5407. https://doi.org/10.4049/jimmunol.1101377

  60. 60. Deng, J.C., Tateda, K., Zeng, X., et al. (2001) Transient Transgenic Expression of Gamma Interferon Promotes Legionella pneumophila Clearance in Immunocompetent Hosts. Infection and Immunity, 69, 6382-6390. https://doi.org/10.1128/IAI.69.10.6382-6390.2001

  61. 61. Lettinga, K.D., Weijer, S., Speelman, P., et al. (2003) Re-duced Interferon-Gamma Release in Patients Recovered from Legionnaires’ Disease. Thorax, 58, 63-67. https://doi.org/10.1136/thorax.58.1.63

  62. 62. Guo, H., Santiago, F., Lambert, K., et al. (2011) T Cell-Mediated Pro-tection against Lethal 2009 Pandemic H1N1 Influenza Virus Infection in a Mouse Model. Journal of Virology, 85, 448-455. https://doi.org/10.1128/JVI.01812-10

  63. 63. Sun, K., Ye, J., Perez, D.R., et al. (2011) Seasonal FluMist Vaccination Induces Cross-Reactive T Cell Immunity against H1N1 (2009) Influenza and Secondary Bacterial Infections. The Journal of Immunology, 186, 987-993. https://doi.org/10.4049/jimmunol.1002664

  64. 64. Cautivo, K.M., Bueno, S.M., Cortes, C.M., et al. (2010) Efficient Lung Recruitment of Respiratory Syncytial Virus-Specific Th1 Cells Induced by Recombinant Bacillus Calmette-Guerin Promotes Virus Clearance and Protects from Infection. The Journal of Immunology, 185, 7633-7645. https://doi.org/10.4049/jimmunol.0903452

  65. 65. Ripple, M.J., You, D., Honnegowda, S., et al. (2010) Immuno-modulation with IL-4R Alpha Antisense Oligonucleotide Prevents Respiratory Syncytial Virus-Mediated Pulmonary Disease. The Journal of Immunology, 185, 4804-4811. https://doi.org/10.4049/jimmunol.1000484

  66. 66. Romani, L., Puccetti, P. and Bistoni, F. (1997) Interleukin-12 in Infectious Diseases. Clinical Microbiology Reviews, 10, 611-636. https://doi.org/10.1128/CMR.10.4.611

  67. 67. Chen, G.H., McDonald, R.A., Wells, J.C., et al. (2005) The Gamma Interferon Receptor Is Required for the Protective Pulmo-nary Inflammatory Response to Cryptococcus neoformans. Infection and Immunity, 73, 1788-1796. https://doi.org/10.1128/IAI.73.3.1788-1796.2005

  68. 68. Cenci, E., Mencacci, A., Del Sero, G., et al. (1999) Interleu-kin-4 Causes Susceptibility to Invasive Pulmonary Aspergillosis through Suppression of Protective Type I Responses. The Journal of Infectious Diseases, 180, 1957-1968. https://doi.org/10.1086/315142

  69. 69. Palmer, M.T., Lee, Y.K., Maynard, C.L., et al. (2011) Lineage-Specific Effects of 1,25-Dihydroxyvitamin D3 on the Development of Effector CD4 T Cells. Journal of Biological Chemistry, 286, 997-1004. https://doi.org/10.1074/jbc.M110.163790

  70. 70. Boonstra, A., Barrat, F.J., Crain, C., et al. (2001) 1alpha, 25-Dihydroxyvitamin D3 Has a Direct Effect on Naive CD4+ T Cells to Enhance the Development of Th2 Cells. The Journal of Immunology, 167, 4974-4980. https://doi.org/10.4049/jimmunol.167.9.4974

  71. 71. Paats, M.S., Bergen, I.M., Hanselaar, W.E., et al. (2013) T Helper 17 Cells Are Involved in the Local and Systemic Inflammatory Response in Community-Acquired Pneumonia. Thorax, 68, 468-474. https://doi.org/10.1136/thoraxjnl-2012-202168

  72. 72. Ye, P., Rodriguez, F.H., Kanaly, S., et al. (2001) Requirement of Interleukin 17 Receptor Signaling for Lung CXC Chemokine and Granulocyte Colony-Stimulating Factor Expression, Neutrophil Recruitment, and Host Defense. Journal of Experimental Medicine, 194, 519-527. https://doi.org/10.1084/jem.194.4.519

  73. 73. Happel, K.I., Dubin, P.J., Zheng, M., et al. (2005) Divergent Roles of IL-23 and IL-12 in Host Defense against Klebsiella pneumoniae. Journal of Experimental Medicine, 202, 761-769. https://doi.org/10.1084/jem.20050193

  74. 74. Wu, Q., Martin, R.J., Rino, J.G., et al. (2007) IL-23-Dependent IL-17 Production Is Essential in Neutrophil Recruitment and Activity in Mouse Lung Defense against Respiratory Mycoplasma pneumoniae Infection. Microbes and Infection, 9, 78-86. https://doi.org/10.1016/j.micinf.2006.10.012

  75. 75. Moffitt, K.L., Gierahn, T.M., Lu, Y.J., et al. (2011) TH17-Based Vaccine Design for Prevention of Streptococcus pneumoniae Colonization. Cell Host & Microbe, 9, 158-165. https://doi.org/10.1016/j.chom.2011.01.007

  76. 76. Priebe, G.P., Walsh, R.L., Cederroth, T.A., et al. (2008) IL-17 Is a Critical Component of Vaccine-Induced Protection against Lung Infection by Lipopolysaccharide-Heterologous Strains of Pseudomonas aeruginosa. The Journal of Immunology, 181, 4965-4975. https://doi.org/10.4049/jimmunol.181.7.4965

  77. 77. Brown, D.M., Lee, S., Garcia-Hernandez Mde, L., et al. (2012) Multifunctional CD4 Cells Expressing Gamma Interferon and Perforin Mediate Protection against Lethal In-fluenza Virus Infection. Journal of Virology, 86, 6792-6803. https://doi.org/10.1128/JVI.07172-11

  78. 78. Huang, W., Na, L., Fidel, P.L., et al. (2004) Requirement of Interleu-kin-17A for Systemic Anti-Candida albicans Host Defense in Mice. The Journal of Infectious Diseases, 190, 624-631. https://doi.org/10.1086/422329

  79. 79. Hardison, S.E., Wozniak, K.L., Kolls, J.K., et al. (2010) Interleukin-17 Is Not Required for Classical Macrophage Activation in a Pulmonary Mouse Model of Cryptococcus neoformans Infection. In-fection and Immunity, 78, 5341-5351. https://doi.org/10.1128/IAI.00845-10

  80. 80. Mahon, B.D., Wittke, A., Weaver, V., et al. (2003) The Targets of Vit-amin D Depend on the Differentiation and Activation Status of CD4 Positive T Cells. Journal of Cellular Biochemistry, 89, 922-932. https://doi.org/10.1002/jcb.10580

  81. 81. Borgogni, E., Sarchielli, E., Sottili, M., et al. (2008) Elocalcitol Inhibits In-flammatory Responses in Human Thyroid Cells and T Cells. Endocrinology, 149, 3626-3634. https://doi.org/10.1210/en.2008-0078

  82. 82. Staeva-Vieira, T.P. and Freedman, L.P. (2002) 1,25-Dihydroxyvitamin D3 Inhibits IFN-Gamma and IL-4 Levels During in Vitro Polarization of Primary Murine CD4+ T Cells. The Journal of Immunology, 168, 1181-1189. https://doi.org/10.4049/jimmunol.168.3.1181

  83. 83. Chen, F., Liu, Z., Wu, W., et al. (2012) An Essential Role for TH2-Type Responses in Limiting Acute Tissue Damage During Experimental Helminth Infection. Nature Medicine, 18, 260-266. https://doi.org/10.1038/nm.2628

  84. 84. Marshall, D., Sealy, R., Sangster, M., et al. (1999) TH Cells Primed During Influenza Virus Infection Provide Help for Qualitatively Distinct Antibody Responses to Subsequent Immunization. The Journal of Immunology, 163, 4673-4682. https://doi.org/10.4049/jimmunol.163.9.4673

  85. 85. Clements, M.L., Betts, R.F., Tierney, E.L., et al. (1986) Serum and Nasal Wash Antibodies Associated with Resistance to Experimental Challenge with Influenza a Wild-Type Virus. Journal of Clinical Microbiology, 24, 157-160. https://doi.org/10.1128/jcm.24.1.157-160.1986

  86. 86. Palladino, G., Mozdzanowska, K., Washko, G., et al. (1995) Virus-Neutralizing Antibodies of Immunoglobulin G (IgG) but Not of IgM or IgA Isotypes Can Cure Influenza Virus Pneumonia in SCID Mice. Journal of Virology, 69, 2075-2081. https://doi.org/10.1128/jvi.69.4.2075-2081.1995

  87. 87. Renegar, K.B., Small Jr., PA., Boykins, L.G., et al. (2004) Role of IgA versus IgG in the Control of Influenza Viral Infection in the Murine Respiratory Tract. The Journal of Im-munology, 173, 1978-1986. https://doi.org/10.4049/jimmunol.173.3.1978

  88. 88. Kling, H.M., Shipley, T.W., Patil, S.P., et al. (2010) Relation-ship of Pneumocystis jiroveci Humoral Immunity to Prevention of Colonization and Chronic Obstructive Pulmonary Disease in a Primate Model of HIV Infection. Infection and Immunity, 78, 4320-4330. https://doi.org/10.1128/IAI.00507-10

  89. 89. Weber, S.E., Tian, H. and Pirofski, L.A. (2011) CD8+ Cells Enhance Resistance to Pulmonary Serotype 3 Streptococcus pneumoniae Infection in Mice. The Journal of Immunology, 186, 432-442. https://doi.org/10.4049/jimmunol.1001963

  90. 90. Gohil, S.K., Heo, M., Schoenbaum, E.E., et al. (2012) CD8+ T Cells and Risk for Bacterial Pneumonia and All-Cause Mortality among HIV-Infected Women. Journal of Acquired Im-mune Deficiency Syndromes, 60, 191-198. https://doi.org/10.1097/QAI.0b013e31824d90fe

  91. 91. Carvalho, A., De Luca, A., Bozza, S., et al. (2012) TLR3 Essentially Promotes Protective Class I-Restricted Memory CD8+ T-Cell Responses to Aspergillus fumigatus in Hema-topoietic Transplanted Patients. Blood, 119, 967-977. https://doi.org/10.1182/blood-2011-06-362582

  92. 92. McAllister, F., Steele, C., Zheng, M., et al. (2004) T Cytotox-ic-1 CD8+ T Cells Are Effector Cells against Pneumocystis in Mice. The Journal of Immunology, 172, 1132-1138. https://doi.org/10.4049/jimmunol.172.2.1132

  93. 93. Hamada, H., Garcia-Hernandez Mde, L., Reome, J.B., et al. (2009) Tc17, a Unique Subset of CD8 T Cells That Can Protect against Lethal Influenza Challenge. The Journal of Im-munology, 182, 3469-3481. https://doi.org/10.4049/jimmunol.0801814

  94. 94. Peiris, J.S., Hui, K.P. and Yen, H.L. (2010) Host Response to In-fluenza Virus: Protection versus Immunopathology. Current Opinion in Immunology, 22, 475-481. https://doi.org/10.1016/j.coi.2010.06.003

  95. 95. Meissner, N.N., Lund, F.E., Han, S., et al. (2005) CD8 T Cell-Mediated Lung Damage in Response to the Extracellular Pathogen Pneumocystis Is Dependent on MHC Class I Expression by Radiation-Resistant Lung Cells. The Journal of Immunology, 175, 8271-8279. https://doi.org/10.4049/jimmunol.175.12.8271

  96. 96. Lysandropoulos, A.P., Jaquiery, E., Jilek, S., et al. (2011) Vitamin D Has a Direct Immunomodulatory Effect on CD8+ T Cells of Patients with Early Multiple Sclerosis and Healthy Control Subjects. Journal of Neuroimmunology, 233, 240-244. https://doi.org/10.1016/j.jneuroim.2010.11.008

  97. 97. Chen, J., Bruce, D. and Cantorna, M.T. (2014) Vitamin D Re-ceptor Expression Controls Proliferation of Naive CD8+ T Cells and Development of CD8 Mediated Gastrointestinal In-flammation. BMC Immunology, 15, Article No. 6. https://doi.org/10.1186/1471-2172-15-6

期刊菜单