设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投搞
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2020,10(1),30-37
PublishedOnlineJanuary2020inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2020.101006
OnFiniteGroupsof
SSH
-Subgroups
JianquanLiang
GuangxiUniversity,NanningGuangxi
Email:934819017@qq.com
Received:Dec.20
th
,2019;accepted:Jan.10
th
,2020;published:Jan.17
th
,2020
Abstract
Let
G
beafinitegroup.Asubgroup
H
of
G
iss-permutablein
G
if
H
permuteswith
everySylowsubgroupof
G
.Asubgroup
H
of
G
iscalledan
SSH
-subgroupin
G
if
G
hasans-permutablesubgroup
K
suchthat
H
sG
=
HK
and
H
g
∩
N
K
(
H
)
≤
H
,forall
g
∈
G
,where
H
sG
istheintersectionofalls-permutablesubgroupsof
G
containing
H
.
Thisarticlestudiesthestructureoffinitegroupswith
SSH
-subgroupwhichisprime
power order.Some characterizations of a finite group as a
p
-nilpotent group are given.
Keywords
SSH
-Subgroups,
p
-NilpotentGroups,
Sylowp
-Subgroups
,
f
+
•
SSH
-
f
+
k
•
+
ùùù
jjj
2
Ü
Œ
Æ
§
2
Ü
Hw
Email:934819017@qq.com
Â
v
F
Ï
µ
2019
c
12
20
F
¶
¹
^
F
Ï
µ
2020
c
1
10
F
¶
u
Ù
F
Ï
µ
2020
c
1
17
F
©
Ù
Ú
^
:
ù
j
.
,
f
+
•
SSH
-
f
+
k
•
+
[J].
n
Ø
ê
Æ
,2020,10(1):30-37.
DOI:10.12677/pm.2020.101006
ù
j
Á
‡
H
´
+
G
˜
‡
f
+
§
X
J
•
3
G
˜
‡
s
-
˜
†
f
+
K
§
¦
H
sG
=
HK
¿
…
é
?
¿
g
∈
G
Ñ
k
H
g
∩
N
K
(
H
)
≤
H
¤
á
§
K
¡
H
•
G
SSH
-
f
+
"
Ù
¥
H
sG
´
G
•
¹
X
H
•
s
-
˜
†
f
+
"
©
Ù
ï
Ä
ä
k
ƒ
ê
˜
SSH
-
f
+
k
•
+
(
§
‰
Ñ
k
•
+
•
p
-
˜
"
+
˜
•
x
^
‡
"
'
…
c
SSH
-
f
+
§
p
-
˜
"
+
§
Sylowp
-
f
+
Copyright
c
2020byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CC BY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
©
¤
?
Ø
+
Ñ
•
k
•
+
"
U
´
¤
k
‡
Œ
)
+
a
§
Z
U
(
G
)
´
G
Ì
Ï
f
´
ƒ
ê
5
f
+
¦
È
"
E
´
G
˜
‡
5
f
+
§
G
3
E
¥
Ì
Ï
f
´
Ì
‚
§
K
¡
G
˜
‡
5
f
+
E
•
‡
Ì
‚
i
\
"
e
G/L
´
‡
Œ
)
+
§
K
G
´
‡
Œ
)
…
=
L
3
G
¥
´
‡
Ì
‚
i
\
"
f
+
s
-
˜
†
5
é
+
(
k
X
4
Ù
-
‡
K
•
§
á
Ú
N
õ
+
Ø
ó
Š
ö
l
Ø
Ó
Ý
5
í
2
f
+
s
-
˜
†
5
"
@3
2000
c
§
I
Æ
ö
Bianchi
3
©
z
[1]
Ú
\
H
-
f
+
V
g
§
H
´
+
G
˜
‡
f
+
§
X
J
é
+
G
z
‡
ƒ
g
Ñ
k
H
g
∩
N
K
(
H
)
≤
H
¤
á
§
K
¡
H
•
G
˜
‡
H
-
f
+
"
3
2012
c
§
Asaad
(
Ü
c
-
5
f
+
Ú
H
-
f
+
ü
‡V
g
§
3
©
z
[2]
¥
Ú
\
f
H
-
f
+
§
=
H
´
+
G
˜
‡
f
+
§
e
•
3
G
˜
‡
5
f
+
K
¦
G
=
HK
¿
…
H
∩
K
´
G
H
-
f
+
§
K
¡
H
´
G
˜
‡
f
H
-
f
+
"
X
3
2016
c
§
Ramadan
Ú
Asaad
3
©
z
[3]
‰
Ñ
f
H
-
i
\
f
+
V
g
§
=
H
´
+
G
˜
‡
f
+
§
X
J
•
3
G
˜
‡
5
f
+
K
¦
H
G
=
HK
¿
…
H
∩
K
´
G
H
-
f
+
§
K
¡
H
´
G
˜
‡
f
H
-
i
\
f
+
"
,
3
2012
c
§
I
S
Æ
ö
Ÿ
k
J
ÚH
D
3
©
z
[4]
‰
Ñ
HC
-
f
+
V
g
§
=
H
´
+
G
˜
‡
f
+
§
•
3
G
˜
‡
5
f
+
K
¦
G
=
HK
…
é
?
¿
g
∈
G
§
H
g
∩
N
K
(
H
)
≤
H
Ñ
¤
á
§
K
¡
H
´
G
˜
‡
HC
-
f
+
"
;
X
3
2016
c
§
Ramadan
Ú
Asaad
3
©
z
[5]
u
Ð
HC
-
f
+
V
g
f
HC
-
i
\
f
+
V
g
§
=
H
´
+
G
˜
‡
f
+
§
•
3
G
˜
‡
5
f
+
K
¦
H
G
=
HK
…
é
?
¿
g
∈
G
§
H
g
∩
N
K
(
H
)
≤
H
Ñ
¤
á
§
K
¡
H
´
G
˜
‡
f
HC
-
i
\
f
+
"
X
3
2018
c
T.M.AI-Gafri
Ú
S.K.Nauman
3
©
z
[6]
Ú
\
SSH
-
f
+
V
g
"
DOI:10.12677/pm.2020.10100631
n
Ø
ê
Æ
ù
j
½
Â
1.1
H
´
+
G
˜
‡
f
+
§
X
J
•
3
G
˜
‡
s
-
˜
†
f
+
K
§
¦
H
sG
=
HK
§
¿
…
é
?
¿
g
∈
G
§
H
g
∩
N
K
(
H
)
≤
H
Ñ
¤
á
§
K
¡
H
•
G
SSH
-
f
+
§
Ù
¥
H
sG
´
G
•
¹
X
H
•
s
-
˜
†
f
+
"
T.M.AI-Gafri
Ú
S. K.Nauman
ï
Ä
Sylow
-
f
+
4
Œ
f
+
•
SSH
-
f
+
é
+
(
K
•
§
¼
±
e
A
‡
¤
J
"
½
n
1.1
p
•
Ø
+
G
•
ƒ
Ï
f
§
P
´
+
G
˜
‡
Sylowp
-
f
+
§
K
G
´
p
-
˜
"
+
…
=
P
z
‡
4
Œ
f
+
Ñ
´
G
SSH
-
f
+
"
½
n
1.2
-
N
´
G
˜
‡
5
f
+
§
¦
G/N
´
‡
Œ
)
+
§
e
N
š
Ì
‚
Sylowp
-
f
+
4
Œ
f
+
´
G
SSH
-
f
+
§
K
G
´
‡
Œ
)
+
"
©
Ï
L
b
,
a
f
+
ä
k
ƒ
ê
˜
SSH
-
f
+
k
•
+
(
§
‰
Ñ
k
•
+
p
-
˜
"
+
˜
#
˜
•
x
^
‡
§
¼
˜
k
¿Â
(
J
"
2.
ý
•
£
Ú
n
2.1
([6]
§
Ú
n
2.4)
H
Ú
K
•
G
f
+
§
H
´
G
˜
‡
SSH
-
f
+
§
1)
e
H
≤
K
§
K
H
•
´
K
SSH
-
f
+
¶
2)
e
N
•
G
5
f
+
§
…
N
≤
H
§
@
o
H
´
G
SSH
-
f
+
…
=
H/N
´
G/N
SSH
-
f
+
¶
3)
e
H
´
G
˜
‡
p
-
f
+
§
N
´
G
˜
‡
p
0
-
f
+
§
@
o
HN
´
G/N
SSH
-
f
+
§
…
HN/N
´
G/N
SSH
-
f
+
"
Ú
n
2.2
([7]
§
Ú
n
2.1)
H
•
G
H
-
f
+
§
e
H
•
G
g
5
f
+
§
K
H
5
u
G
"
Ú
n
2.3
([6]
§
Ú
n
2.2)
H
Ú
K
´
G
f
+
§
…
H
≤
K
§
H
´
G
s
-
˜
†
f
+
§
K
H
sG
´
G
s
-
˜
†
f
+
…
H
sG
≤
H
G
"
Ú
n
2.4
([6]
§
Ú
n
2.1)
H
´
G
s
-
˜
†
f
+
§
e
é
u
,
ƒ
ê
p
§
H
´
G
˜
‡
p
-
+
§
K
O
p
(
G
)
≤
N
G
(
H
)
"
Ú
n
2.5
([8]
§
Ú
n
3.12)
p
•
Ø
G
•
ƒ
Ï
f
§
P
´
G
˜
‡
Sylowp
-
f
+
"
X
J
|
P
|≤
p
2
§
…
G
†
A
4
Ã
'
§
K
G
•
p
-
˜
"
+
"
Ú
n
2.6
( [9]
§
Ú
n
7.2.2)
p
•
Ø
G
•
ƒ
Ï
f
§
P
´
+
G
˜
‡
Sylowp
-
f
+
…
•
Ì
‚
+
§
K
G
•
p
-
˜
"
+
"
Ú
n
2.7
([10]
§
½
n
8.3.1)
-
p
´
Û
ƒ
ê
¿
Ø
|
G
|
§
P
´
G
Sylowp
-
f
+
"
K
G
´
p
-
˜
"
+
…
=
N
G
(
Z
(
J
(
P
)))
´
p
-
˜
"
+
§
Ù
¥
J
(
P
)
´
P
Thompson
f
+
"
Ú
n
2.8
( [6]
§
½
n
3.1)
-
P
´
G
Sylowp
-
f
+
§
K
G
´
p
-
˜
"
+
…
=
N
G
(
P
)
´
p
-
˜
"
+
§
…
P
z
‡
4
Œ
f
+
Ñ
´
G
SSH
-
f
+
"
Ú
n
2.9
([11]
§
Ú
n
3.3)
e
G
´
p
-
‡
Œ
)
+
…
O
p
0
(
G
) = 1
§
K
G
´
‡
Œ
)
+
"
Ú
n
2.10
([12]
§
Ú
n
2.6)
-
P
´
G
˜
‡
š
²
…
5
p
-
f
+
§
e
P
¥
•
3
f
+
D
§
÷
v
1
<
|
D
|
<
|
P
|
§
¦
P
¥
|
D
|
½
4
(
e
|
D
|
= 2 )
f
+
•
G
H
-
f
+
§
K
P
≤
Z
U
(
G
)
"
Ú
n
2.11
([6]
§
½
n
3.5)
-
p
´
Ø
G
•
ƒ
Ï
f
§
¿
…
P
´
G
˜
‡
Sylowp
-
f
+
"
K
G
´
p
-
˜
"
+
…
=
P
z
‡
p
½
4
(
e
p
= 2)
Ì
‚
f
+
´
G
SSH
-
f
+
"
DOI:10.12677/pm.2020.10100632
n
Ø
ê
Æ
ù
j
Ú
n
2.12
-
P
´
G
˜
‡
š
²
…
5
p
-
f
+
§
e
P
z
‡
4
Œ
f
+
•
G
SSH
-
f
+
§
K
P
≤
Z
U
(
G
)
"
y
²
e
Φ(
P
)
6
=1
§
K
•
Ä
G/
Φ(
P
)
§
²
w
G/
Φ(
P
)
÷
v
b
§
P/
Φ(
P
)
≤
Z
U
(
G/
Φ(
P
))
§
d
([12]
§
½
n
1.7.19)
k
P
≤
Z
U
(
G
)
"
e
Φ(
P
)=1
§
K
P
´
†
+
"
N
•
G
4
5
f
+
…
N
≤
P
§
K
G/N
÷
v
b
^
‡
§
P/N
≤
Z
U
(
G/N
)
"
e
•
3
,
˜
‡
G
5
f
+
N
1
§
K
P/N
1
≤
Z
U
(
G/N
1
)
§
²
w
NN
1
/N
1
´
G/N
1
4
5
f
+
"
Ï
d
|
N
|
=
p
§
P
≤
Z
U
(
G
)
"
N
´
•
˜
"
L
´
P
˜
‡
4
Œ
f
+
…
L
Ø
•
¹
X
N
§
K
k
P
=
LN
§
²
w
L
´
G
˜
‡
SSH
-
f
+
§
K
•
3
G
˜
‡
s
-
˜
†
f
+
K
§
¦
L
sG
=
LK
§
¿
…
é
?
¿
g
∈
G
§
L
g
∩
N
K
(
L
)
≤
L
Ñ
¤
á
"
Ï
d
é
?
¿
g
∈
G
§
L
g
∩
N
K
(
L
)
∩
N
≤
L
∩
N
§
Ï
•
K
´
G
s
-
˜
†
f
+
§
K
O
p
(
G
)
≤
N
G
(
K
)
§
K
5
u
G
"
L
g
∩
N
K
(
L
)
∩
N
=
L
g
∩
N
∩
K
=
L
g
∩
N
§
¤
±
é
?
¿
g
∈
G
§
L
g
∩
N
g
=
L
g
∩
N
g
∩
K
=
L
g
∩
N
g
∩
N
K
(
L
)
≤
L
∩
N
"
Ï
d
L
∩
N
5
u
G
"
d
N
4
5
•
L
∩
N
= 1
§
|
N
|
=
p
§
Ï
d
P
≤
Z
U
(
G
)
"
Ú
n
2.13
-
P
´
G
˜
‡
š
²
…
5
p
-
f
+
§
e
p
z
‡
p
½
4
(
e
p
=2)
f
+
´
G
SSH
-
f
+
§
K
P
≤
Z
U
(
G
)
"
y
²
e
p
= 2
§
-
Q
´
G
Sylowq
-
f
+
§
…
q
6
=
p
"
²
w
k
M
=
PQ
…
M
≤
G
§
d
2.1(1)
Ú
Ú
n
2.14
§
M
´
p
-
˜
"
+
§
Ï
d
M
=
P
×
Q
§
|
G/C
G
(
P
)
|
´
2
•
˜
§
¿
…
d
( [12]
§
Appendix
C
½
n
6.3)
k
P
≤
Z
∞
(
G
)
§
qd
([12]
§
Ú
n
1.7.1)
k
Z
∞
(
G
)
≤
Z
U
(
G
)
§
?
k
P
≤
Z
U
(
G
)
"
e
p>
2
§
N
´
G
4
5
f
+
§
-
H
´
P
p
f
+
"
d
b
^
‡
§
H
´
G
SSH
-
f
+
§
=
•
3
G
˜
‡
s
-
˜
†
f
+
K
§
¦
H
sG
=
HK
§
¿
…
é
?
¿
g
∈
G
§
H
g
∩
N
K
(
H
)
≤
H
Ñ
¤
á
"
Ï
d
é
?
¿
g
∈
G
§
H
g
∩
N
K
(
H
)
∩
N
≤
H
∩
N
§
Ï
•
K
´
G
s
-
˜
†
f
+
§
K
O
p
(
G
)
≤
N
G
(
K
)
§
K
5
u
G
"
H
g
∩
N
K
(
H
)
∩
N
=
H
g
∩
N
∩
K
=
H
g
∩
N
§
¤
±
é
?
¿
g
∈
G
§
H
g
∩
N
g
=
H
g
∩
N
g
∩
K
=
H
g
∩
N
g
∩
N
K
(
H
)
≤
H
∩
N
"
Ï
d
H
∩
N
5
u
G
"
d
N
4
5
•
H
∩
N
= 1
§
|
N
|
=
p
§
Ï
d
P
≤
Z
U
(
G
)
"
Ú
n
2.14
-
P
´
G
˜
‡
š
²
…
5
p
-
f
+
§
e
P
¥
•
3
f
+
D
§
÷
v
1
<
|
D
|
<
|
P
|
§
¦
P
¥
|
D
|
½
4
(
e
|
D
|
= 2 )
f
+
•
G
SSH
-
f
+
§
K
P
≤
Z
U
(
G
)
"
y
²
e
P
z
‡
|
D
|
½
4
(
e
|
D
|
=2)
f
+
´
G
˜
‡
H
-
f
+
§
K
d
Ú
n
2.10
k
P
≤
Z
U
(
G
)
"
b
•
3
P
÷
v
|
H
|
=
|
D
|
f
+
H
§
¦
H
Ø
´
G
H
-
f
+
§
d
b
^
‡
§
H
´
G
SSH
-
f
+
§
K
•
3
G
˜
‡
s
-
˜
†
f
+
K
§
¦
H
sG
=
HK
§
¿
…
é
?
¿
g
∈
G
§
H
g
∩
N
K
(
H
)
≤
H
Ñ
¤
á
"
G
˜
‡
s
-
5
f
+
M
§
¦
K
≤
M
§
¿
…
|
G
:
M
|
=
p
§
²
w
P
∩
M
´
P
4
Œ
f
+
"
e
|
P
:
D
|
=
p
§
K
d
Ú
n
2.11
P
≤
Z
U
(
G
)
"
b
|
P
:
D
|
>p
§
K
P
∩
M
z
‡
|
D
|
½
4
(
e
|
D
|
=2 )
f
+
Ñ
´
G
˜
‡
SSH
-
f
+
"
d
8
B
b
§
P
∩
M
≤
Z
U
(
G
)
§
Ï
•
|
P/P
∩
M
|
=
p
§
Œ
í
Ñ
P
≤
Z
U
(
G
)
"
3.
Ì
‡
(
J
½
n
3.1
p
´
+
G
•
ƒ
Ï
f
"
P
´
G
˜
‡
Sylowp
-
f
+
§
X
J
G
†
A
4
Ã
'
§
…
P
¥
p
2
f
+
•
G
SSH
-
f
+
§
K
G
•
p
-
˜
"
+
"
y
²
b
½
n
Ø
ý
§
¿
G
´
•
4
‡
~
§
K
d
Ú
n
2.5
•
§
|
P
|≥
p
3
"
M<G
…
p
||
M
|
§
M
p
•
M
˜
‡
Sylow
f
+
"
e
|
M
p
|
p
2
§
d
Ú
n
2.5
§
M
•
p
-
˜
"
+
"
e
|
M
p
|
>p
2
§
d
DOI:10.12677/pm.2020.10100633
n
Ø
ê
Æ
ù
j
8
B
b
9
Ú
n
2.1(1)
§
M
•
p
-
˜
"
+
"
Œ
±
b
G
´
4
š
p
-
˜
"
+
§
d
([13],Satz5.4,
p.434)
G
=
PQ
§
Ù
¥
Q
•
Ì
‚
+
§
ExpP
=
p
½
ExpP
≤
4(
p
=2
ž
)
§
P/
Φ(
P
)
´
G
Ì
Ï
f
§
Ù
¥
Q
∈
Syl
q
(
G
)
…
q
6
=
p
"
3
P/
Φ(
P
)
¥
˜
‡
ƒ
x
§
K
|h
x
i|
=
p
½
|h
x
i|
= 4
"
e
|h
x
i|
=4
"
d
b
^
‡
§
|h
x
i|
•
G
SSH
-
f
+
§
K
•
3
˜
‡
s
-
˜
†
f
+
K
§
¦
h
x
i
sG
=
h
x
i
K
§
…
h
x
i
g
∩
N
K
(
h
x
i
)
≤h
x
i
,
∀
g
∈
G
"
K
=
G
ž
§
h
x
i
•
G
H
-
f
+
§
…
h
x
i
G
§
d
Ú
n
2.2
§
h
x
i
G
§
K
k
h
x
i
Φ(
P
)
/
Φ(
P
)
G/
Φ(
P
)
§
q
Ï
•
P/
Φ(
P
)
´
G/
Φ(
P
)
Ì
Ï
f
§
Ï
k
h
x
i
Φ(
P
) =
P
§
K
P
=
h
x
i
Φ(
P
) =
h
x
i
§
d
Ú
n
2.6
•
§
G
´
˜
"
+
§
g
ñ
"
|h
x
i|
=
p
§
du
P
Ø
´
Ì
‚
+
§
Œ
P
¥
ƒ
a
¦
a/
∈h
x
i
§
-
B
=
h
a
i×h
x
i
§
K
B
´
˜
‡
p
2
f
+
"
d
b
^
‡
§
B
´
G
˜
‡
SSH
-
f
+
§
•
3
˜
‡
s
-
˜
†
f
+
K
§
¦
B
sG
=
BK
§
…
B
∩
N
K
(
B
)
≤
B
§
K
=
G
§
B
•
G
H
-
f
+
§
…
BG
§
d
Ú
n
2.2
k
BG
§
u
´
k
B
Φ(
P
)
/
Φ(
P
)
G/
Φ(
P
)
"
du
P/
Φ(
P
)
´
G/
Φ(
P
)
Ì
Ï
f
§
Ï
k
B
Φ(
P
)=Φ(
P
)
½
B
Φ(
P
)=
P
"
e
B
Φ(
P
)=Φ(
P
)
§
K
B
≤
Φ(
P
)
§
†
h
x
i
Φ(
P
)
§
g
ñ
"
e
B
Φ(
P
)=
P
§
K
P
=
B
Φ(
P
)=
B
=
h
a
i×h
x
i
§
†
|
P
|≥
p
3
g
ñ
"
K<G
ž
§
P
H
=
h
x
i
§
e
O
p
(
G
)
G
§
K
d
G
4
5
§
O
p
(
G
)
´
˜
"
+
§
QcharO
p
(
G
)
G
§
Ï
d
QG
§
g
ñ
"
Ï
d
O
p
(
G
)=
G
§
d
G
4
5
Ú
Ú
n
2.3
Œ
•
H
sG
≤
H
G
≤
P
§
…
H
sG
´
G
s
-
˜
†
f
+
§
b
H
sG
P
§
K
H
sG
QG
…
d
G
4
5
Œ
í
Ñ
§
H
sG
Q
´
˜
"
+
§
Q
≤
C
G
(
H
sG
)
§
é
u
∀
Q
∈
Syl
q
(
G
)
§
k
O
p
(
G
)
≤
C
G
(
H
sG
)
…
Œ
í
Ñ
HG
"
Ï
d
H
=
h
x
i
p
G
"
q
Ï
•
p
´
+
G
•
ƒ
Ï
f
§
H
∈
Syl
p
(
G
)
…
H
Ì
‚
§
G
•
p
-
˜
"
+
§
g
ñ
"
ù
¿
›
X
P
=
HK
§
b
K
=
P
§
5
¿
H
g
∩
N
G
(
H
) =
H
g
∩
P
∩
N
G
(
H
) =
H
g
∩
N
K
(
H
)
≤
H,
∀
g
∈
G
§
K
H
´
G
H
-
f
+
"
d
Ú
n
2.2
•
§
HG
§
Ï
d
H
=
h
x
i
p
G
"
q
Ï
•
p
´
+
G
•
ƒ
Ï
f
§
H
∈
Syl
p
(
G
)
…
H
Ì
‚
§
G
•
p
-
˜
"
+
§
g
ñ
"
¿
›
X
KP
§
d
Ú
n
2.4
§
O
p
(
G
)
≤
N
G
(
K
)
§
KG
"
-
N
:= Φ(
P
)
§
e
KN
=
P
§
K
K
=
P
§
g
ñ
"
Ï
d
KNP
§
w
,
KN/NG/N
§
…
d
G
4
5
§
P/N
´
G/N
4
5
f
+
§
KN/N
=1
"
ù
¿
›
X
K
≤
N
"
Ï
d
P
=
HN
=
H
´
Ì
‚
+
"
G
´
p
-
˜
"
+
§
g
ñ
"
l
½
n
y
"
½
n
3.2
p
´
+
G
Û
ƒ
Ï
f
"
b
L
´
G
˜
‡
5
f
+
§
¦
G/L
´
p
-
˜
"
+
…
P
´
L
Sylowp
-
f
+
"
e
•
3
P
f
+
D
§
÷
v
1
<
|
D
|
<
|
P
|
§
¦
P
z
‡
•
|
H
|
=
|
D
|
f
+
H
´
G
SSH
-
f
+
§
…
N
G
(
P
)
´
p
-
˜
"
+
§
K
G
´
p
-
˜
"
+
"
y
²
b
½
n
Ø
ý
§
¿
G
•
4
‡
~
"
(1)
O
p
0
(
G
) = 1
"
P
T
=
O
p
0
(
G
)=1
§
e
T>
1
§
•
Ä
G/T
§
²
w
k
(
G/T
)
/
(
LT/T
)
∼
=
G/LT
´
p
-
˜
"
+
"
-
HT/T
´
PT/T
|
D
|
f
+
§
Ù
¥
§
H
´
P
|
D
|
f
+
§
Ï
•
H
´
G
SSH
-
f
+
§
d
Ú
n
2.1(3)
k
HT/T
´
G/T
SSH
-
f
+
"
2
Ï
N
G
(
P
)
´
p
-
˜
"
+
§
N
G/T
(
PT/T
) =
N
G
(
P
)
T/T
´
p
-
˜
"
+
"
G/T
÷
v
b
^
‡
§
d
G
4
5
•
§
G/T
´
p
-
˜
"
+
§
g
ñ
"
(2)
-
K
•
G
˜
‡
ý
f
+
§
¦
P
≤
K
§
K
K
´
p
-
˜
"
+
"
d
Ú
n
2.1(1)
•
§
P
z
‡
|
D
|
f
+
H
´
K
SSH
-
f
+
§
Ï
N
K
(
P
)
≤
N
G
(
P
)
…
N
G
(
P
)
´
p
-
˜
"
+
§
N
K
(
P
)
´
p
-
˜
"
+
"
K
÷
v
b
^
‡
§
d
G
4
5
•
K
´
p
-
˜
"
+
"
(3)
L
=
G
"
e
L<G
§
K
d
(2)
•
L
´
p
-
˜
"
+
"
-
T
•
L
5
p
-
Ö
§
K
TcharLG
§
TG
…
Š
DOI:10.12677/pm.2020.10100634
n
Ø
ê
Æ
ù
j
â
(1)
k
T
= 1
§
?
í
Ñ
L
=
P
…
G
=
N
G
(
P
)
´
p
-
˜
"
+
§
g
ñ
"
(4)
O
p
(
G
)
6
= 1
"
•
Ä
+
Z
(
J
(
P
))
§
Ù
¥
J
(
P
)
´
P
Thompson
f
+
§
e
N
G
(
Z
(
J
(
P
)))
<G
§
d
(2)
N
G
(
Z
(
J
(
P
)))
´
p
-
˜
"
+
"
d
Ú
n
2.7
•
§
G
´
p
-
˜
"
+
§
g
ñ
"
Ï
d
N
G
(
Z
(
J
(
P
)))=
G
…
k
1
<Z
(
J
(
P
))
≤
O
p
(
G
)
<P
"
(5)
G/O
p
(
G
)
´
p
-
˜
"
+
§
A
O
k
G/O
p
(
G
)
´
p
-
‡
Œ
)
+
"
-
¯
G
=
G/O
p
(
G
)
§
¯
P
=
P/O
p
(
G
)
§
¯
K
=
Z
(
J
(
¯
P
))
§
…
G
1
/O
p
(
G
)=
N
¯
G
(
Z
(
J
(
¯
P
)))
"
Ï
•
O
p
(
¯
G
) = 1
§
k
N
¯
G
(
Z
(
J
(
¯
P
)))
<
¯
G
§
Ï
d
G
1
<G
"
d
(2)
G
1
´
p
-
˜
"
+
§
K
N
¯
G
(
Z
(
J
(
¯
P
)))
´
p
-
˜
"
+
"
d
Ú
n
2.7
•
§
¯
G
´
p
-
˜
"
+
"
(6)
G
=
PQ
§
Ù
¥
Q
´
G
˜
‡
Sylowq
-
f
+
"
d
(5)
§
G
´
p
Œ
)
§
K
•
3
G
Sylowq
-
f
+
Q
¦
PQ
´
G
f
+
§
é
u
?
¿
q
∈
π
(
G
)
,q
6
=
p
([10]
§
½
n
6.3.5)
"
e
PQ<G
§
d
(2)
PQ
´
p
-
˜
"
+
"
k
Q
≤
C
G
(
O
p
(
G
))
≤
O
p
(
G
)([14]
§
½
n
9.3.1)
§
g
ñ
"
Ï
d
PQ
=
G
"
(7)
|
P
|
>p
|
D
|
"
d
Ú
n
2.8
=
Œ
í
Ñ
"
(8)
O
p
(
G
)
´
P
4
Œ
f
+
"
d
(5)
·
‚
b
G/O
p
(
G
)
k
˜
5
Hallp
0
-
f
+
T/O
p
(
G
)
"
²
w
T
´
G
5
f
+
§
…
G/T
´
˜
‡
p
-
+
§
K
•
3
G
˜
‡
5
f
+
M
§
¦
T
≤
M
…
|
G
:
M
|
=
p
§
…
´
P
∩
M
´
P
4
Œ
f
+
§
…
´
M
Sylowp
-
f
+
"
e
N
G
(
P
∩
M
)
<G
§
K
d
(2)
•
N
G
(
P
∩
M
)
´
p
-
˜
"
+
"
Ó
n
N
M
(
P
∩
M
)
´
p
-
˜
"
+
"
d
(7)
Ú
Ú
n
2.1(1)
Œ
§
P
∩
M
z
‡
|
D
|
f
+
H
´
M
SSH
-
f
+
§
M
÷
v
½
n
b
§
d
G
4
5
M
´
p
-
˜
"
+
§
K
G
´
p
-
˜
"
+
§
g
ñ
"
ù
¿
›
X
P
∩
M
´
G
˜
‡
5
p
-
f
+
"
Ï
•
O
p
(
G
)
<P
§
P
∩
M
=
O
p
(
G
)
…
O
p
(
G
)
´
P
4
Œ
f
+
"
(9)
O
p
(
G
)
´
‡
Ì
‚
i
\
u
G
"
d
(7)
Ú
(8)
k
|
D
|
<
|
O
p
(
G
)
|
§
d
½
n
b
§
O
p
(
G
)
z
‡
|
D
|
f
+
H
´
G
SSH
-
f
+
"
d
Ú
n
2.14
=
Œ
(9)
"
(10)
G
´
‡
Œ
)
+
"
Ï
G/O
p
(
G
)
´
p
-
‡
Œ
)
+
§
…
O
p
(
G
)
´
‡
Ì
‚
i
\
u
G
§
G
´
p
-
‡
Œ
)
+
"
d
Ú
n
2.9
Ú
(1)
§
G
´
‡
Œ
)
+
"
(11)
•
ª
g
ñ
"
Ï
•
G
k
‡
Œ
)
.
Sylow
©
§
d
(6)
P
´
5
u
G
"
Ï
d
d
b
k
G
=
N
G
(
P
)
´
p
-
˜
"
+
§
g
ñ
"
½
n
y
"
½
n
3.3
-
p
•
Ø
|
G
|
ƒ
Ï
f
§
b
G
k
˜
‡
5
f
+
L
§
¦
G/L
´
p
-
˜
"
+
…
P
´
L
Sylow
f
+
"
e
•
3
P
f
+
D
§
÷
v
1
<
|
D
|
<
|
P
|
§
¦
P
z
‡
|
D
|
f
+
H
•
G
SSH
-
f
+
…
N
G
(
H
)
´
p
-
˜
"
+
§
K
G
´
p
-
˜
"
+
"
y
²
•
Ä
±
e
ü
«
œ
¹
"
œ
¹
1
µ
L
=
G
"
b
½
n
Ø
ý
§
G
•
4
‡
~
§
a
q
½
n
3.2
(1)
§
(2)
¥
?
Ø
k
DOI:10.12677/pm.2020.10100635
n
Ø
ê
Æ
ù
j
(1)
O
p
0
(
G
) = 1
"
(2)
-
K
•
G
ý
f
+
§
¦
P
≤
K
§
K
K
´
p
-
˜
"
+
"
(3)
P
´
G
˜
‡
5
f
+
"
e
N
G
(
P
)
<G
§
K
d
(2)
k
N
G
(
P
)
´
p
-
˜
"
+
§
d
½
n
3.2
k
G
´
p
-
˜
"
+
§
g
ñ
"
P
´
5
u
G
"
(4)
P
´
‡
Ì
‚
i
\
u
G
"
d
b
P
z
‡
|
D
|
f
+
H
´
G
SSH
-
f
+
§
K
d
Ú
n
2.14
§
P
´
‡
Ì
‚
i
\
u
G
"
(5)
-
N
´
G
4
5
f
+
§
K
|
N
|
<
|
D
|
<
|
P
|
"
d
(3)
•
G
´
p
-
Œ
)
"
K
d
(1)
N
´
˜
‡
p
-
f
+
§
N
≤
P
"
d
(4)
Œ
•
|
N
|
=
p
§
e
|
N
|
=
|
D
|
§
K
d
b
^
‡
G
=
N
G
(
N
)
´
p
-
˜
"
+
§
g
ñ
§
|
N
|
<
|
D
|
"
(6)
•
ª
g
ñ
"
d
Ú
n
2.1(2)
•
G/N
÷
v
½
n
b
§
d
G
4
5
•
G/N
´
p
-
˜
"
+
"
Ï
•
¤
k
p
-
˜
"
+
´
˜
‡
Ú
+
X
§
Ï
d
N
´
G
•
˜
4
5
f
+
…
Φ(
G
)=1
"
F
(
G
)=
N
§
d
(1)
Ú
(3)
k
F
(
G
) =
O
p
(
G
) =
P
§
N
=
P
§
†
(5)
g
ñ
"
œ
¹
2
µ
L<G
"
d
Ú
n
2.1(1)
k
z
‡
P
|
D
|
f
+
H
´
L
SSH
-
f
+
§
²
w
N
L
(
H
)
´
p
-
˜
"
+
"
d
œ
¹
1
§
L
´
p
-
˜
"
+
§
-
L
p
0
´
L
Hallp
0
-
f
+
§
K
L
p
0
G
"
e
L
p
0
6
=1
§
K
d
Ú
n
2.1(3)
•
G/L
p
0
÷
v
½
n
b
§
G/L
p
0
´
p
-
˜
"
+
§
K
G
´
p
-
˜
"
+
"
Ï
d
b
L
p
0
=1
§
K
L
=
P
"
Ï
•
G/P
´
p
-
˜
"
+
§
-
V/P
´
G/P
5
Hallp
0
-
f
+
§
d
Schur
-
Zassenhaus
½
n
§
V
k
˜
‡
Hallp
0
-
f
+
V
p
0
"
d
Ú
n
2.1(1)
k
P
z
‡
|
D
|
f
+
´
V
SSH
-
f
+
"
²
w
N
V
(
H
)
´
p
-
˜
"
+
"
d
œ
¹
1
k
V
=
PV
p
0
´
p
-
˜
"
+
"
V
p
0
3
V
¥
5
§
²
w
V
p
0
•
´
G
˜
‡
5
p
-
Ö
§
G
´
p
-
˜
"
+
"
½
n
y
"
ë
•
©
z
[1]Bianchi,M.,Mauri,A.G.B.,Herzog,M.andVerardi,L.(2000)OnFiniteSolvableGroupsin
WhichNormalityIsaTransitiveRelation.
JournalofGroupTheory
,
3
,147-156.
https://doi.org/10.1515/jgth.2000.012
[2]Asaad,M.,Heliel,A.A.andAl-MosaAl-Shomrani,M.M.(2012)OnWeakly
H
-Subgroupsof
FiniteGroups.
CommunicationsinAlgebra
,
40
,3540-3550.
https://doi.org/10.1080/00927872.2011.591218
[3]Asaad,M.andRamadan,M.(2016)OnWeakly
H
-EmbeddedSubgroupsofFiniteGroups.
CommunicationsinAlgebra
,
44
,4564-4574.https://doi.org/10.1080/00927872.2015.1130139
[4]Wei,X.andGuo,X.(2012)On
HC
-SubgroupsandtheStructureofFiniteGroups.
Commu-
nicationsinAlgebra
,
40
,3245-3256.https://doi.org/10.1080/00927872.2011.565846
[5]Asaad,M.andRamadan,M.(2016)OnWeakly
HC
-EmbeddedSubgroupsofFiniteGroups.
JournalofAlgebraandItsApplications
,
15
,ArticleID:1650077.
DOI:10.12677/pm.2020.10100636
n
Ø
ê
Æ
ù
j
https://doi.org/10.1142/S0219498816500778
[6]Al-Gafri,T.M.andNauman,S.K.(2018)On
SSH
-SubgroupsofFiniteGroups.
Annalidell
.
UniversitadiFerrara
,
64
,209-225.https://doi.org/10.1007/s11565-018-0299-1
[7]Ballester-Bolinches,A.andEsteban-Romero,R.(2003)OnFinite
T
-Groups.
Journalofthe
AustralianMathematicalSociety
,
75
,181-191.https://doi.org/10.1017/S1446788700003712
[8]Guo,X.Y.andShum,K.P.(2003)Cover-AvoidancePropertiesandtheStructureofFinite
Groups.
JournalofPureandAppliedAlgebra
,
181
,297-308.
https://doi.org/10.1016/S0022-4049(02)00327-4
[9]Kurzweil,H.andStellmacher,B.(2004)TheTheoryofFiniteGroupsAnIntroduction.
Springer-Universitext,NewYork-Berlin-Heidelberg-HongKong-London-Milan-Paris-Tokyo.
https://doi.org/10.1007/b97433
[10]Gorenstein,D.(1980)FiniteGroups.Chelsea,NewYork.
[11]Guo,W.,Shum, K.P. andSkiba, A.N.(2004) G-CoveringSystems ofSubgroups forClassesof
p-Supersolubleandp-NilpotentFiniteGroups.
SiberianMathematicalJournal
,
45
,433-442.
https://doi.org/10.1023/B:SIMJ.0000028608.59920.af
[12]Weinstein,M.(1982)BetweenNilpotentandSolvable.PolygonalPublishingHouse,Passaic,
NJ.
[13]Huppert,B.(1967)EndlicheGruppenI.Springer,Berlin.
https://doi.org/10.1007/978-3-642-64981-3
[14]Robinson,D.J.S.(1993)ACourseintheTheoryofGroups.Spring-Verlag,NewYork-Berlin.
DOI:10.12677/pm.2020.10100637
n
Ø
ê
Æ