设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投搞
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2020,10(1),30-37
PublishedOnlineJanuary2020inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2020.101006
OnFiniteGroupsofSSH-Subgroups
JianquanLiang
GuangxiUniversity,NanningGuangxi
Email:934819017@qq.com
Received:Dec.20
th
,2019;accepted:Jan.10
th
,2020;published:Jan.17
th
,2020
Abstract
LetGbeafinitegroup.AsubgroupHofGiss-permutableinGifHpermuteswith
everySylowsubgroupofG.AsubgroupHofGiscalledanSSH-subgroupinGifG
hasans-permutablesubgroupKsuchthatH
sG
=HKandH
g
∩N
K
(H)≤H,forall
g∈G,whereH
sG
istheintersectionofalls-permutablesubgroupsofGcontainingH.
ThisarticlestudiesthestructureoffinitegroupswithSSH-subgroupwhichisprime
power order.Some characterizations of a finite group as a p-nilpotent group are given.
Keywords
SSH-Subgroups,p-NilpotentGroups,Sylowp-Subgroups
,f+•SSH-f+k•+
ùùùjjj
2܌Ƨ2ÜHw
Email:934819017@qq.com
ÂvFϵ2019c1220F¶¹^Fϵ2020c110F¶uÙFϵ2020c117F
©ÙÚ^:ùj.,f+•SSH-f+k•+[J].nØêÆ,2020,10(1):30-37.
DOI:10.12677/pm.2020.101006
ùj
Á‡
H´+G˜‡f+§XJ•3G˜‡s-˜†f+K§¦H
sG
= HK¿…é?¿g∈G
ÑkH
g
∩N
K
(H)≤H¤á§K¡H•GSSH-f+"Ù¥H
sG
´G•¹XH•
s-˜†f+"©ÙïÄäkƒê˜SSH-f+k•+(§‰Ñk•+•p-˜"+˜
•x^‡"
'…c
SSH-f+§p-˜"+§Sylowp-f+
Copyright
c
2020byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CC BY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
©¤?Ø+Ñ•k•+"U´¤k‡Œ)+a§Z
U
(G)´GÌÏf´ƒê5f+
¦È"E´G˜‡5f+§G3E¥ÌÏf´Ì‚§K¡G˜‡5f+E
•‡Ì‚i\"eG/L´‡Œ)+§KG´‡Œ)…=L3G¥´‡Ì‚i\"
f+s-˜†5é+(kX4Ù-‡K•§áÚNõ+ØóŠölØÓ Ý5í
2f+s-˜†5"@32000c§IÆöBianchi3©z[1]Ú\H-f+Vg§H´+G
˜‡f+§XJé+Gz‡ƒgÑkH
g
∩N
K
(H)≤H¤á§K¡H•G˜‡H-f
+"32012c§Asaad(Üc-5f+ÚH-f+ü‡Vg§3©z[2]¥Ú\fH-f+§=
H´+G˜‡f+§e•3G˜‡5f+K¦G=HK¿…H∩K´GH-f
+§K¡H´G˜‡fH-f+"X32016c§Ramadan ÚAsaad 3©z[3]‰ÑfH-i
\f+Vg§=H´+G˜‡f+§XJ•3G˜‡5f+K¦H
G
=HK¿
…H∩K´GH-f+§K¡H´G˜‡fH-i\f+",32012c§ISÆöŸkJ
ÚHD3©z[4]‰ÑHC-f+Vg§=H´+G˜‡f+§•3G˜‡5f
+K¦G=HK…é?¿g∈G§H
g
∩N
K
(H)≤HѤá§K¡H´G˜‡HC-f+"
;X32016c§Ramadan ÚAsaad3©z[5]uÐHC-f+VgfHC-i\f+V
g§=H´+G˜‡f+§•3G˜‡5f+K¦H
G
=HK…é?¿g∈G§
H
g
∩N
K
(H) ≤HѤá§K¡H´G˜‡fHC-i\f+"
X32018cT.M.AI-GafriÚS.K.Nauman3©z[6]Ú\SSH-f+Vg"
DOI:10.12677/pm.2020.10100631nØêÆ
ùj
½Â1.1H´+G˜‡f+§XJ•3G˜‡s-˜†f+K§¦H
sG
=HK§¿
…é?¿g∈G§H
g
∩N
K
(H) ≤HѤá§K¡H•GSSH-f+§Ù¥H
sG
´G•¹X
H•s-˜†f+"
T.M.AI-GafriÚS. K.NaumanïÄSylow-f+4Œf+•SSH-f+é+(K•§
¼±eA‡¤J"
½n1.1p•Ø+G•ƒÏf§P´+G˜‡Sylowp-f+§KG´p-˜"
+…=Pz‡4Œf+Ñ´GSSH-f+"
½n1.2-N´G˜‡5f+§¦G/N´‡Œ)+§eNšÌ‚Sylowp-f+
4Œf+´GSSH-f+§KG´‡Œ)+"
©ÏLb,af+äkƒê˜SSH-f+k•+(§‰Ñk•+p-˜"+˜
#˜•x^‡§¼˜k¿Â(J"
2.ý•£
Ún2.1 ([6]§Ún2.4)HÚK•Gf+§H´G˜‡SSH-f+§
1)eH≤K§KH•´KSSH-f+¶
2)eN•G5f+§…N≤H§@oH´GSSH-f+…=H/N´G/N
SSH-f+¶
3) eH´G˜‡p-f+§N´G˜‡p
0
-f+§@oHN´G/NSSH-f+§…
HN/N´G/NSSH-f+"
Ún2.2 ([7]§Ún2.1)H•GH-f+§eH•Gg5f+§KH5uG"
Ún2.3 ([6]§Ún2.2)HÚK´Gf+§…H≤K§H´Gs-˜†f+§KH
sG
´Gs-˜†f+…H
sG
≤H
G
"
Ún2.4 ([6]§Ún2.1)H´Gs-˜†f+§eéu,ƒêp§H´G˜‡p-+§K
O
p
(G) ≤N
G
(H)"
Ún2.5 ([8]§Ún3.12)p•ØG•ƒÏf§P´G˜‡Sylowp-f+"X
J|P|≤p
2
§…G†A
4
Ã'§KG•p-˜"+"
Ún2.6 ( [9]§Ún7.2.2)p•ØG•ƒÏf§P´+G˜‡Sylowp-f+…
•Ì‚+§KG•p-˜"+"
Ún2.7([10]§½n8.3.1)-p´Ûƒê¿Ø|G|§P´GSylowp-f+"KG´p-˜
"+…=N
G
(Z(J(P)))´p-˜"+§Ù¥J(P)´PThompsonf+"
Ún2.8 ( [6]§½n3.1)-P´GSylowp-f+§KG´p-˜"+…=N
G
(P)´p-˜
"+§…Pz‡4Œf+Ñ´GSSH-f+"
Ún2.9 ([11]§Ún3.3)eG´p-‡Œ)+…O
p
0
(G) = 1§KG´‡Œ)+"
Ún2.10([12]§Ún2.6)-P´G˜‡š²…5p-f+§eP¥•3f+D§÷v
1 <|D|<|P|§¦P¥|D|½4(e|D|= 2 )f+•GH-f+§KP≤Z
U
(G)"
Ún2.11([6]§½n3.5)-p´ØG•ƒÏf§¿…P´G˜‡Sylowp-f
+"KG´p-˜"+…=Pz‡p½4(ep= 2)Ì‚f+´GSSH-f+"
DOI:10.12677/pm.2020.10100632nØêÆ
ùj
Ún2.12-P´G˜‡š²…5p-f+§ePz ‡4Œf+•GSSH-f+§K
P≤Z
U
(G)"
y²eΦ(P)6=1§K•ÄG/Φ(P)§²wG/Φ(P) ÷vb§P/Φ(P)≤Z
U
(G/Φ(P))§
d([12]§½n1.7.19)kP≤Z
U
(G)"eΦ(P)=1§KP´†+"N•G45f+
…N≤P§KG/N÷vb^‡§P/N≤Z
U
(G/N)"e•3,˜‡G5f+N
1
§K
P/N
1
≤Z
U
(G/N
1
)§²wNN
1
/N
1
´G/N
1
45f+"Ïd|N|=p§P≤Z
U
(G)"
N´•˜"L´P˜‡4Œf+…LØ•¹XN§KkP =LN§²wL´G
˜‡SSH-f+§K•3G˜‡s-˜†f+K§¦L
sG
=LK§¿…é?¿g∈G§
L
g
∩N
K
(L) ≤LѤá"Ïdé?¿g∈G§L
g
∩N
K
(L)∩N≤L∩N§Ï•K´Gs-˜†f
+§KO
p
(G)≤N
G
(K)§K5uG"L
g
∩N
K
(L)∩N=L
g
∩N∩K=L
g
∩N§¤±é
?¿g∈G§L
g
∩N
g
= L
g
∩N
g
∩K= L
g
∩N
g
∩N
K
(L) ≤L∩N"ÏdL∩N5uG"dN
45•L∩N= 1§|N|= p§ÏdP≤Z
U
(G)"
Ún2.13-P´G˜‡š²…5p-f+§epz‡p½4(ep=2)f+´G
SSH-f+§KP≤Z
U
(G)"
y²ep= 2§-Q´GSylowq-f+§…q6= p"²wkM= PQ…M≤G§d2.1(1)
ÚÚn2.14§M´p-˜"+§ÏdM= P×Q§|G/C
G
(P)|´2•˜§¿…d( [12]§Appendix
C½n6.3)kP≤Z
∞
(G)§qd([12]§Ún1.7.1)kZ
∞
(G) ≤Z
U
(G)§?kP≤Z
U
(G)"
ep>2§N´G45f+§-H´Ppf+"db^‡§H´GSSH-
f+§=•3G˜‡s-˜†f+K§¦H
sG
= HK§¿…é?¿g∈G§H
g
∩N
K
(H)≤H
Ѥá"Ïdé?¿g∈G§H
g
∩N
K
(H)∩N≤H∩N§Ï•K´Gs-˜†f+§K
O
p
(G)≤N
G
(K)§K5uG"H
g
∩N
K
(H)∩N=H
g
∩N∩K=H
g
∩N§¤±é?¿
g∈G§H
g
∩N
g
= H
g
∩N
g
∩K= H
g
∩N
g
∩N
K
(H) ≤H∩N"ÏdH∩N5uG"dN
45•H∩N= 1§|N|= p§ÏdP≤Z
U
(G)"
Ún2.14-P´G˜‡š²…5p-f+§eP¥•3f+D§÷v1 <|D|<|P|§¦
P¥|D|½4(e|D|= 2 )f+•GSSH-f+§KP≤Z
U
(G)"
y²ePz‡|D|½4(e|D|=2)f+´G˜‡H-f+§KdÚn2.10kP≤
Z
U
(G)"b•3P÷v|H|=|D|f+H§¦HØ´GH-f+§db^‡§
H´GSSH-f+§K•3G˜‡s-˜†f+K§¦H
sG
=HK§¿…é?¿g∈G§
H
g
∩N
K
(H)≤HѤá"G˜‡s-5f+M§¦K≤M§¿…|G:M|=p§²w
P∩M´P4Œf+"e|P:D|=p§KdÚn2.11P≤Z
U
(G)"b|P:D|>p§K
P∩Mz‡|D|½4(e|D|=2 )f+Ñ´G˜‡SSH-f+"d8Bb§P∩M≤
Z
U
(G)§Ï•|P/P∩M|= p§ŒíÑP≤Z
U
(G)"
3.̇(J
½n3.1p´+G•ƒÏf"P´G˜‡Sylowp-f+§XJG†A
4
Ã'§
…P¥p
2
f+•GSSH-f+§KG•p-˜"+"
y²b½nØý§¿G´•4‡~§KdÚn2.5•§|P|≥p
3
"M<G…
p||M|§M
p
•M˜‡Sylowf+"e|M
p
|p
2
§dÚn2.5§M•p-˜"+"e|M
p
|>p
2
§d
DOI:10.12677/pm.2020.10100633nØêÆ
ùj
8Bb9Ún2.1(1)§M•p-˜"+"Œ±bG´4šp-˜"+§d([13],Satz5.4,
p.434)G= PQ§Ù¥Q•Ì‚+§ExpP=p½ExpP≤4(p=2ž)§P/Φ(P) ´G
ÌÏf§Ù¥Q∈Syl
q
(G)…q6= p"
3P/Φ(P)¥˜‡ƒx§K|hxi|= p½|hxi|= 4"
e|hxi|=4"db^‡§|hxi|•GSSH-f+§K•3˜‡s-˜†f+K§¦
hxi
sG
=hxiK§…hxi
g
∩N
K
(hxi)≤hxi,∀g∈G"K=Gž§hxi•GH-f+§…hxiG§
dÚn2.2§hxiG§KkhxiΦ(P)/Φ(P)G/Φ(P)§qÏ•P/Φ(P)´G/Φ(P)ÌÏf§Ïk
hxiΦ(P) = P§KP= hxiΦ(P) = hxi§dÚn2.6•§G´˜"+§gñ"
|hxi|=p§duPØ´Ì‚+§ŒP¥ƒa¦a/∈hxi§-B=hai×hxi§
KB´˜‡p
2
f+"db^‡§B´G˜‡SSH-f+§•3˜‡s-˜†f+K§
¦B
sG
=BK§…B∩N
K
(B)≤B§K=G§B•GH-f+§…BG§dÚn2.2k
BG§u´kBΦ(P)/Φ(P)G/Φ(P)"duP/Φ(P) ´G/Φ(P) ÌÏf§ÏkBΦ(P)=Φ(P)
½BΦ(P)=P"eBΦ(P)=Φ(P)§KB≤Φ(P)§†hxiΦ(P)§gñ"eBΦ(P)=P§K
P=BΦ(P)=B=hai×hxi§†|P|≥p
3
gñ"K<Gž§PH=hxi§eO
p
(G)G§
KdG45§O
p
(G)´˜"+§QcharO
p
(G)G§ÏdQG§gñ"ÏdO
p
(G)=G§
dG45ÚÚn2.3Œ•H
sG
≤H
G
≤P§…H
sG
´Gs-˜†f+§bH
sG
P§K
H
sG
QG…dG45ŒíѧH
sG
Q´˜"+§Q≤C
G
(H
sG
)§éu∀Q∈Syl
q
(G)§
kO
p
(G)≤C
G
(H
sG
)…ŒíÑHG"ÏdH=hxi
p
G"qÏ•p´+G•ƒÏf§
H∈Syl
p
(G) …HÌ‚§G•p-˜"+§gñ"ù¿›XP=HK§bK=P§5¿
H
g
∩N
G
(H) = H
g
∩P∩N
G
(H) = H
g
∩N
K
(H) ≤H,∀g∈G§KH´GH-f+"dÚn2.2•§
HG§ÏdH= hxi
p
G"qÏ•p´+G•ƒÏf§H∈Syl
p
(G) …HÌ‚§G•p-˜"
+§gñ"¿›XKP§dÚn2.4§O
p
(G) ≤N
G
(K)§KG"-N:= Φ(P)§eKN= P§
KK= P§gñ"ÏdKNP§w,KN/NG/N§…dG45§P/N´G/N45f
+§KN/N=1"ù¿›XK≤N"ÏdP=HN=H´Ì‚+"G´p-˜"+§gñ"
l½ny"
½n3.2p´+GÛƒÏf"bL´G˜‡5f+§¦G/L´p-˜"+…
P´LSylowp-f+"e•3Pf+D§÷v1<|D|<|P|§¦Pz‡•|H|=|D|
f+H´GSSH-f+§…N
G
(P) ´p-˜"+§KG´p-˜"+"
y²b½nØý§¿G•4‡~"
(1)O
p
0
(G) = 1"
PT=O
p
0
(G)=1§eT>1§•ÄG/T§²wk(G/T)/(LT/T)
∼
=
G/LT´p-˜"+"-
HT/T´PT/T|D|f+§Ù¥§H´P|D|f+§Ï•H´GSSH-f+§dÚ
n2.1(3)kHT/T´G/TSSH-f+"2ÏN
G
(P)´p-˜"+§N
G/T
(PT/T) = N
G
(P)T/T´
p-˜"+"G/T÷vb^‡§dG45•§G/T´p-˜"+§gñ"
(2)-K•G˜‡ýf+§¦P≤K§KK´p-˜"+"
d Ún2.1(1)•§Pz‡|D|f+H´KSSH-f+§ÏN
K
(P)≤N
G
(P) …N
G
(P)
´p-˜"+§N
K
(P) ´p-˜"+"K÷vb^‡§dG45•K´p-˜"+"
(3)L= G"
eL<G§Kd(2)•L´p-˜"+"-T•L5p-Ö§KTcharLG§TG…Š
DOI:10.12677/pm.2020.10100634nØêÆ
ùj
â(1)kT= 1§?íÑL= P…G= N
G
(P) ´p-˜"+§gñ"
(4)O
p
(G) 6= 1"
•Ä+Z(J(P))§Ù¥J(P)´PThompsonf+§eN
G
(Z(J(P)))<G§d(2)
N
G
(Z(J(P)))´p-˜"+"dÚn2.7•§G´p-˜"+§gñ"ÏdN
G
(Z(J(P)))=G…k
1 <Z(J(P)) ≤O
p
(G) <P"
(5)G/O
p
(G)´p-˜"+§AOkG/O
p
(G)´p-‡Œ)+"
-
¯
G=G/O
p
(G)§
¯
P =P/O
p
(G)§
¯
K=Z(J(
¯
P))§…G
1
/O
p
(G)=N
¯
G
(Z(J(
¯
P)))"Ï•
O
p
(
¯
G) = 1§kN
¯
G
(Z(J(
¯
P))) <
¯
G§ÏdG
1
<G"d(2)G
1
´p-˜"+§KN
¯
G
(Z(J(
¯
P)))
´p-˜"+"dÚn2.7•§
¯
G´p-˜"+"
(6)G= PQ§Ù¥Q´G˜‡Sylowq-f+"
d(5)§G´pŒ)§K•3GSylowq-f+Q¦PQ´Gf+§éu?¿
q∈π(G),q6=p([10]§½n6.3.5)"ePQ<G§d(2) PQ´p-˜"+"kQ≤C
G
(O
p
(G))≤
O
p
(G)([14]§½n9.3.1)§gñ"ÏdPQ= G"
(7)|P|>p|D|"
dÚn2.8=ŒíÑ"
(8)O
p
(G)´P4Œf+"
d(5)·‚bG/O
p
(G) k˜5Hallp
0
-f+T/O
p
(G)"²wT´G5f+§…G/T
´˜‡p-+§K•3G˜‡5f+M§¦T≤M…|G:M|=p§…´P∩M´P
4Œf+§…´MSylowp-f+"eN
G
(P∩M)<G§Kd(2)•N
G
(P∩M) ´p-˜"
+"ÓnN
M
(P∩M) ´p-˜"+"d(7)ÚÚn2.1(1)Œ§P∩Mz‡|D|f+H´M
SSH-f+§M÷v½nb§dG45M´p-˜"+§KG´p-˜"+§gñ"ù
¿›XP∩M´G˜‡5p-f+"Ï•O
p
(G) <P§P∩M= O
p
(G)…O
p
(G)´P4
Œf+"
(9)O
p
(G)´‡Ì‚i\uG"
d(7)Ú(8)k|D|<|O
p
(G)|§d½nb§O
p
(G) z‡|D|f+H´GSSH-f+"
dÚn2.14=Œ(9)"
(10)G´‡Œ)+"
ÏG/O
p
(G)´p-‡Œ)+§…O
p
(G)´‡Ì‚i\uG§G´p-‡Œ)+"dÚ
n2.9Ú(1)§G´‡Œ)+"
(11)•ªgñ"
Ï•Gk‡ Œ).Sylow©§d(6)P´5uG"ÏddbkG= N
G
(P) ´p-˜"
+§gñ"½ny"
½n3.3-p•Ø|G|ƒÏf§bGk˜‡5f+L§¦G/L´p-˜"+…P´
LSylowf+"e•3Pf+D§÷v1 <|D|<|P|§¦Pz‡|D|f+H•G
SSH-f+…N
G
(H) ´p-˜"+§KG´p-˜"+"
y²•ıeü«œ¹"
œ¹1µL= G"
b½nØý§G•4‡~§aq½n3.2(1)§(2)¥?Øk
DOI:10.12677/pm.2020.10100635nØêÆ
ùj
(1)O
p
0
(G) = 1"
(2)-K•Gýf+§¦P≤K§KK´p-˜"+"
(3)P´G˜‡5f+"
eN
G
(P) <G§Kd(2)kN
G
(P)´p-˜"+§d½n3.2kG´p-˜"+§gñ"P´
5uG"
(4)P´‡Ì‚i\uG"
dbPz‡|D|f+H´GSSH-f+§KdÚn2.14§P´‡Ì‚i\uG"
(5)-N´G45f+§K|N|<|D|<|P|"
d(3)•G´p-Œ)"Kd(1)N´˜‡p-f+§N≤P"d(4)Œ•|N|=p§e
|N|= |D|§Kdb^‡G= N
G
(N) ´p-˜"+§gñ§|N|<|D|"
(6)•ªgñ"
dÚn2.1(2)•G/N÷v½nb§dG45•G/N´p-˜"+"Ï•¤kp-˜"
+´˜‡Ú+X§ÏdN´G•˜45f+…Φ(G)=1"F(G)= N§d(1)Ú(3)k
F(G) = O
p
(G) = P§N= P§†(5)gñ"
œ¹2µL<G"
dÚn2.1(1)kz‡P|D|f+H´LSSH-f+§²wN
L
(H)´p-˜"+"dœ
¹1§L´p-˜"+§-L
p
0
´LHallp
0
-f+§KL
p
0
G"eL
p
0
6=1§KdÚn2.1(3)•G/L
p
0
÷v½nb§G/L
p
0
´p-˜"+§KG´p-˜"+"ÏdbL
p
0
=1§KL=P"Ï•
G/P´p-˜"+§-V/P´G/P5Hallp
0
-f+§dSchur-Zassenhaus½n§Vk˜
‡Hallp
0
-f+V
p
0
"dÚn2.1(1)kPz‡|D|f+´VSSH-f+"²wN
V
(H) ´p-˜
"+"dœ¹1kV=PV
p
0
´p-˜"+"V
p
0
3V¥5§²wV
p
0
•´G˜‡5p-Ö§
G´p-˜"+"½ny"
ë•©z
[1]Bianchi,M.,Mauri,A.G.B.,Herzog,M.andVerardi,L.(2000)OnFiniteSolvableGroupsin
WhichNormalityIsaTransitiveRelation.JournalofGroupTheory,3,147-156.
https://doi.org/10.1515/jgth.2000.012
[2]Asaad,M.,Heliel,A.A.andAl-MosaAl-Shomrani,M.M.(2012)OnWeaklyH-Subgroupsof
FiniteGroups.CommunicationsinAlgebra,40,3540-3550.
https://doi.org/10.1080/00927872.2011.591218
[3]Asaad,M.andRamadan,M.(2016)OnWeaklyH-EmbeddedSubgroupsofFiniteGroups.
CommunicationsinAlgebra,44,4564-4574.https://doi.org/10.1080/00927872.2015.1130139
[4]Wei,X.andGuo,X.(2012)OnHC-SubgroupsandtheStructureofFiniteGroups.Commu-
nicationsinAlgebra,40,3245-3256.https://doi.org/10.1080/00927872.2011.565846
[5]Asaad,M.andRamadan,M.(2016)OnWeaklyHC-EmbeddedSubgroupsofFiniteGroups.
JournalofAlgebraandItsApplications,15,ArticleID:1650077.
DOI:10.12677/pm.2020.10100636nØêÆ
ùj
https://doi.org/10.1142/S0219498816500778
[6]Al-Gafri,T.M.andNauman,S.K.(2018)OnSSH-SubgroupsofFiniteGroups.Annalidell.
UniversitadiFerrara,64,209-225.https://doi.org/10.1007/s11565-018-0299-1
[7]Ballester-Bolinches,A.andEsteban-Romero,R.(2003)OnFiniteT-Groups.Journalofthe
AustralianMathematicalSociety,75,181-191.https://doi.org/10.1017/S1446788700003712
[8]Guo,X.Y.andShum,K.P.(2003)Cover-AvoidancePropertiesandtheStructureofFinite
Groups.JournalofPureandAppliedAlgebra,181,297-308.
https://doi.org/10.1016/S0022-4049(02)00327-4
[9]Kurzweil,H.andStellmacher,B.(2004)TheTheoryofFiniteGroupsAnIntroduction.
Springer-Universitext,NewYork-Berlin-Heidelberg-HongKong-London-Milan-Paris-Tokyo.
https://doi.org/10.1007/b97433
[10]Gorenstein,D.(1980)FiniteGroups.Chelsea,NewYork.
[11]Guo,W.,Shum, K.P. andSkiba, A.N.(2004) G-CoveringSystems ofSubgroups forClassesof
p-Supersolubleandp-NilpotentFiniteGroups.SiberianMathematicalJournal,45,433-442.
https://doi.org/10.1023/B:SIMJ.0000028608.59920.af
[12]Weinstein,M.(1982)BetweenNilpotentandSolvable.PolygonalPublishingHouse,Passaic,
NJ.
[13]Huppert,B.(1967)EndlicheGruppenI.Springer,Berlin.
https://doi.org/10.1007/978-3-642-64981-3
[14]Robinson,D.J.S.(1993)ACourseintheTheoryofGroups.Spring-Verlag,NewYork-Berlin.
DOI:10.12677/pm.2020.10100637nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2020 Hans Publishers Inc. All rights reserved.