设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投搞
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2020,10(8),771-783
PublishedOnlineAugust2020inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2020.108090
TheNumericalSchemeofEnergy
ConservationfortheKdVEquation
YuTian,YanfenCui
CollegeofSciences,ShanghaiUniversity,Shanghai
Received:Jul.31
st
,2020;accepted:Aug.18
th
,2020;published:Aug.26
th
,2020
Abstract
WedesignaclassofimprovedschemesatisfyingtwoconservationlawsfortheKdV
equation,whichsatisfiesboththenumericalsolutionandnumericalenergyconserva-
tive.Numerical experimentsshow thatthe schemes have good stability and structure-
preservingpropertyinlongtimenumericalsimulations.
Keywords
Cell-Average,NumericalEnergy,ConservationLaws,StructurePreservation
KdV
•
§
÷
v
U
þ
Å
ð
ê
Š
•{
XXX
………
§§§
www
ýýý
¥¥¥
þ
°
Œ
Æ
n
Æ
§
þ
°
©
Ù
Ú
^
:
X
…
,
w
ý
¥
.KdV
•
§
÷
v
U
þ
Å
ð
ê
Š
•{
[J].
n
Ø
ê
Æ
,2020,10(8):771-783.
DOI:10.12677/pm.2020.108090
X
…
§
w
ý
¥
Â
v
F
Ï
µ
2020
c
7
31
F
¶
¹
^
F
Ï
µ
2020
c
8
18
F
¶
u
Ù
F
Ï
µ
2020
c
8
26
F
Á
‡
©
é
KdV
•
§
O
˜
a
u
Ð
÷
v
ü
‡
Å
ð
Æ
ê
Š
‚
ª
§
T‚
ª
Ø
=
U
÷
v
ê
Š
)
Å
ð
§
…
U
÷
v
ê
Š
U
þ
Å
ð
"
ê
Š
Ž
~
(
J
L
²
§
ù
a
÷
v
ü
‡
Å
ð
Æ
ê
Š
‚
ª
§
3
•
ž
m
ê
Š
[
¥
ä
k
éÐ
-
½
5
Ú
(
5
"
'
…
c
‚
²
þ
§
ê
Š
U
þ
§
Å
ð
Æ
§
(
5
Copyright
c
2019byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
C
c
5
§
©
z
[1]
é
‚
5
D
Ñ
•
§
O
÷
v
ü
‡
Ú
n
‡
Å
ð
Æ
©
‚
ª
§
¿
…
í
2
C
X
ê
Ú
‘
‚
5
D
Ñ
•
§
¥
"
©
z
[2],[3]
O
˜
a
Å
ð
.
©
‚
ª
§
T‚
ª´
Godunov
.
§
´
Ú
D
Ú
‚
ª
Ø
Ó
´
§
T‚
ª
Ó
ž
[
ü
‡
ƒ
'
Å
ð
Æ
"
©
z
[4]
é
‚
5
D
Ñ
•
§
÷
v
ü
‡
Å
ð
Æ
ê
Š
•{
?
1
n
Ø
©
Û
§
l
n
Ø
þ
y
²
ù
a
‚
ª
ä
k
Ø
p
ƒ
-
ž
‡
Â
ñ
5
Ÿ
"
©
z
[5]
ò
þ
ã
±
õ
‡
Å
ð
Æ
g
Ž
A^
š
‚
5
KdV
•
§
§
é
Ù
O
÷
v
ü
‡
Å
ð
Æ
š
‚
5
©
‚
ª
"
du
KdV
•
§
•
¹
š
‚
5
‘
Ú
n
ê
‘
§
Ï
d
©
z
[5]
æ
^
©
Ž
f
{
§
ò
KdV
•
§
¤
š
‚
5
Å
ð
•
§
Ü
©
Ú
n
‚
5
Ñ
•
§
Ü
©
§
3
©
z
¥
§
é
š
‚
5
Å
ð
.
•
§
Ü
©
O
÷
v
ü
‡
Å
ð
Æ
ê
Š
•{
§
´
é
u
n
Ñ
•
§
Ü
©
æ
^
´
D
Ú
¥
%
©
‚
ª
§
ê
Š
(
J
L
²
ù
a
÷
v
ü
‡
Å
ð
Æ
ê
Š
•{
ä
k
éÐ
/
(
5
Ÿ
"
©
´
þ
ã
ó
Š
U
Y
§
·
‚
é
KdV
•
§
O
˜
a
U
?
÷
v
ü
‡
Å
ð
Æ
ê
Š
•{
"
$
DOI:10.12677/pm.2020.108090772
n
Ø
ê
Æ
X
…
§
w
ý
¥
^
©
Ž
f
{
[6]
ò
KdV
•
§
©
¤
Å
ð
•
§
Ü
©
†
Ñ
•
§
Ü
©
§
´
†
©
z
[5]
Ø
Ó
´
§
3
©
¥
§
·
‚
¤
O
‚
ª
§
Ø
=
U
±
Å
ð
•
§
Ü
©
÷
v
ü
‡
Å
ð
Æ
§
•
U
±
n
Ñ
•
§
Ü
©
÷
v
ü
‡
Å
ð
Æ
"
¿
…
Ï
L
ê
Š
Ž
~
y
Ž
{
k
5
§
l
ê
Š
(
J
Œ
±
w
Ñ
§
T
•{
3
•
ž
m
ê
Š
[
¥
U
éÐ
±
)
(
"
©
(
S
ü
X
e
µ
1
˜
!
´
Ú
ó
¶
1
!
´
‚
ª
ä
N
£
ã
¶
1
n
!
‰
Ñ
ê
Š
Ž
~
§
(
J
L
²
T‚
ª
3
•
ž
m
ê
Š
[
¥
U
±
Ð
-
½
5
¶
1
o
!
´
(
Ø
"
2.
‚
ª
£
ã
2.1.
ê
Š
)
½
Â
•
Ä
KdV
•
§
Ð
Š
¯
K
u
t
+(
1
2
u
2
)
x
+
u
xxx
= 0
,
−∞
<x<
+
∞
.
u
(
x,
0) =
u
0
(
x
)
.
(1)
Ù
¥
u
0
(
x
)
´
Ð
Š
¼
ê
"
KdV
•
§
÷
v
Ã
¡
õ
‡
Å
ð
Æ
§
Ù
c
ü
‡
Å
ð
Æ
©
O
´
(1)
Ú
(
u
2
)
t
+(
2
3
u
3
)
x
+(2
uu
xx
−
(
u
x
)
2
)
x
= 0
.
(2)
Ù
¥
(2)
L
«
U
þ
Å
ð
§
3
±
e
?
Ø
¥
·
‚
P
U
þ
u
2
•
U
(
u
)
"
Ä
k
é
(
x,t
)
²
¡
?
1
‚
¿
©
§
Ù
é
Au
(
x,t
)
²
¡
S
ü
|
²
1
‚
µ
x
j
=
jh,j
= 0
,
±
1
,
±
2
,
···
Ú
t
n
=
nτ,n
= 0
,
1
,
2
,
···
§
ò
‚
¿
©
•
I
j
= [
x
j
−
1
/
2
,x
j
+1
/
2
],
j
=1
,
2
,
3
...N
§
z
‡
l
Ñ
«
m
¥
:
•
x
j
=
(
x
j
−
1
2
+
x
j
+
1
2
)
2
§
…
∆
x
j
=
x
j
+
1
2
−
x
j
−
1
2
"
Ù
¥
h
Ú
τ
©
O
•
˜
m
Ú
•
Ú
ž
m
Ú
•
"
·
‚
¤
O
ê
Š
‚
ª
•
¹
ü
‡
ê
Š
¢
N
§
=
ê
Š
Ä
þ
u
n
j
Ú
ê
Š
U
þ
U
n
j
"
‚
ª
æ
^k
•
N
È
{
§
½
Â
ê
Š
)
u
n
j
´
é
°
(
)
‚
²
þ
C
q
u
n
j
'
1
h
Z
x
j
+
1
2
x
j
−
1
2
u
(
x,t
n
)
dx,
(3)
Ù
¥
u
(
x,t
n
)
L
«
Ä
þ
Å
ð
Æ
•
§
°
(
)
"
du
·
‚
¤
O
‚
ª
„
ò
9
1
‡
Å
ð
þ
U
(
u
(
x,t
n
))
ê
Š
%
C
§
·
‚
¡
ê
Š
¼
ê
U
n
j
¡
•
ê
Š
U
þ
§
´
é
°
(
U
þ
U
(
u
(
x,t
))=
u
2
(
x,t
n
)
‚
²
þ
C
q
U
n
j
'
1
h
Z
x
j
+
1
2
x
j
−
1
2
U
(
u
(
x,t
n
))
dx
=
1
h
Z
x
j
+
1
2
x
j
−
1
2
u
2
(
x,t
n
)
dx.
(4)
DOI:10.12677/pm.2020.108090773
n
Ø
ê
Æ
X
…
§
w
ý
¥
2.2.
‚
ª
£
ã
l
KdV
•
§
c
ü
‡
Å
ð
Æ
(1)
Ú
(2)
Œ
±
w
Ñ
§
Ú
D
Ñ
•
§
Ø
Ó
´
Ù
é
A
ü
‡
6
¼
ê
Ø
=
Ú
u
k
'
§
…
†
§
˜
ê
u
x
Ú
ê
u
xx
k
'
§
ù
‰
ê
Š
‚
ª
O
‘
5
˜
½
E
,
5
"
•
d
§
3
©·
‚
ò
æ
^
©
Ž
f
{
(
„
[6],[7])
§
ò
KdV
•
§
©
¤
Å
ð
•
§
Ü
©
Ú
Ñ
•
§
Ü
©
§
é
Ù
O
˜
a
±
ü
‡
Å
ð
Æ
ê
Š
•{
"
Ù
¥
Å
ð
•
§
Ü
©
•
u
t
+(
1
2
u
2
)
x
= 0
,
(
u
2
)
t
+(
2
3
u
3
)
x
= 0
.
(5)
Ñ
•
§
Ü
©
•
u
t
+
u
xxx
= 0
,
(
u
2
)
t
+(2
uu
xx
−
(
u
x
)
2
)
x
= 0
.
(6)
þ
÷
v
Ð
Š
u
(
x,
0)=
u
0
(
x
)
,
(
u
(
x,
0))
2
=(
u
0
(
x
))
2
.
e
P
Å
ð
•
§
Ü
©
(5)
Ž
f
•
A
τ
§
K
•
§
(5)
)
Œ
d
Ž
f
A
τ
L
«
X
e
u
(
x,t
)
U
(
u
(
x,t
))
=
A
τ
u
0
(
x
)
U
(
u
0
(
x
))
.
(7)
Ó
§
·
‚
Œ
ò
)
Ñ
•
§
Ü
©
(6)
Ž
f
P
•
B
τ
"
3
©
¥
§
·
‚
æ
^
´
Strang
©
Ž
f
{
°
Ý
„
[7]
§
•
§
O
Ž
˜
Ú
)
Œ
±
L
ˆ
•
u
(
x,
(
n
+1)
τ
)
U
(
u
(
x,
(
n
+1)
τ
))
= [
A
τ
2
◦
B
τ
2
◦
B
τ
2
◦
A
τ
2
]
u
(
x,nτ
)
U
(
u
(
x,nτ
))
.
(8)
ù
p
τ
•
ž
m
Ú
•
"
3
¢
S
ê
Š
O
Ž
¥
§
Ž
f
A
τ
Ú
B
τ
ò
ƒ
A
ê
Š
Ž
{
¤
“
O
"
2.3.
Å
ð
•
§
Ü
©
©
‚
ª
Å
ð
•
§
Ü
©
(5)
Ž
f
A
τ
•
¹
ü
‡
ê
Š
¢
N
§
=
ê
Š
Ä
þ
u
n
j
Ú
ê
Š
U
þ
U
n
j
§
‚
ª
Ó
ž
[
(5)
¥
ü
‡
Å
ð
Æ
"
X
Ó
Godunov
.
‚
ª
[8]
˜
§
·
‚
‚
ª
U
ì
-
(Reconstruction)
§
u
Ð
(Evolution)
Ú
‚
²
þ
(Averaging)
n
Ú
?
1
"
1
˜
Ú
(Reconstruction)
-
µ
3
t
n
þ
é
ê
Š
)
(
u
n
j
,U
n
j
)
?
1
-
§
-
¼
ê
R
(
x
;
u
n
,U
n
)
•
˜
g
¼
ê
§
DOI:10.12677/pm.2020.108090774
n
Ø
ê
Æ
X
…
§
w
ý
¥
R
(
x
;
u
n
,U
n
) =
u
n
j
+
s
n
j
(
x
−
x
j
)
,x
∈
[
x
j
−
1
2
,x
j
+
1
2
)
.
(9)
w
,
R
(
x
;
u
n
,U
n
)
÷
v
1
h
Z
x
j
+
1
2
x
j
−
1
2
R
(
x
;
u
n
,U
n
)
dx
=
u
n
j
.
(10)
´
†
D
Ú
Godunov
.
‚
ª
Ø
Ó
´
§
·
‚
„
‡
¦
R
(
x
;
u
n
,U
n
)
÷
v
1
h
Z
x
j
+
1
2
x
j
−
1
2
U
(
R
(
x
;
u
n
,U
n
))
dx
=
U
n
j
.
(11)
=
-
¼
ê
U
þ
‚
²
þ
Ú
T
‚
þ
ê
Š
U
þ
ƒ
"
Ç
s
n
j
Ø
2
´
D
Ú
Š
•{
(
½
§
´
Š
•
˜
‡
g
d
Ý
§
Ï
L
•
§
(11)
(
½
§
)
s
n
j
Š
•
s
n
j
= sgn(
u
n
j
+1
−
u
n
j
−
1
)
r
12(
U
n
j
−
(
u
n
j
)
2
)
h
2
.
(12)
1
Ú
(Evolution)
u
Ð
µ
±
-
¼
ê
R
(
x
;
u
n
,U
n
)
Š
•
t
n
Ð
Š
§
¦
)
•
§
(5)
1
˜
ª
Ð
Š
¯
K
v
t
+
f
(
v
)
x
= 0
,
−∞
<x<
∞
,t
n
<t
≤
t
n
+1
,
v
(
x,t
n
) =
R
(
x
;
u
n
,U
n
)
,
−∞
<x<
∞
.
(13)
Ù
¥
§
f
(
v
) =
1
2
v
2
§
Ù
°
(
)
•
v
(
x,t
)
§
ž
m
Ú
•
τ
÷
v
CFL
^
‡
λ
max
u
|
f
0
(
u
)
|
<
1
"
1
n
Ú
(Averaging)
‚
²
þ
µ
t
n
+1
þ
ê
Š
)
Ú
ê
Š
U
þ
©
O
•
u
n
+1
j
'
1
h
Z
x
j
+
1
2
x
j
−
1
2
v
(
x,t
n
+1
)
dx.
(14)
U
n
+1
j
'
1
h
Z
x
j
+
1
2
x
j
−
1
2
v
2
(
x,t
n
+1
)
dx.
(15)
¢
SO
Ž
¥
§
3
‚
(
x
j
−
1
2
,x
j
+
1
2
)
×
(
t
n
,t
n
+1
)
þ
é
(5)
-
È
©
§
Œ
‚
ª
•
u
n
+1
j
=
u
n
j
−
λ
(
ˆ
f
n
j
+
1
2
−
ˆ
f
n
j
−
1
2
)
.
(16)
U
n
+1
j
=
U
n
j
−
λ
(
ˆ
F
n
j
+
1
2
−
ˆ
F
n
j
−
1
2
)
.
(17)
Ù
¥
λ
=
τ
h
´
‚
Ú
•
'
§
ê
Š
6
¼
ê
•
DOI:10.12677/pm.2020.108090775
n
Ø
ê
Æ
X
…
§
w
ý
¥
ˆ
f
n
j
±
1
2
=
1
τ
Z
t
n
+1
t
n
1
2
(
v
(
x
j
±
1
2
,t
))
2
dt.
(18)
a
q
ê
Š
U
þ
6
¼
ê
•
ˆ
F
n
j
±
1
2
=
1
τ
Z
t
n
+1
t
n
2
3
(
v
(
x
j
±
1
2
,t
))
3
dt.
(19)
l
¤
˜
Ú
O
Ž
§
•
y
‚
ª
-
½
5
§
‚
Ú
•
'
‡
÷
v
CFL
^
‡
λ
max
j
{|
u
n
j
|}
<
1
.
(20)
d
þ
©
Œ
•
§
Ï
•·
‚
¤
?
Ø
´
š
‚
5
•
§
§
¤
±
ê
Š
6
¼
ê
(18)
Ú
U
þ
6
¼
ê
(19)
Ø
U
¦
Ñ
°
(
Š
§
Ï
d
‡
O
Ž
6
¼
ê
C
q
Š
(
„
[9])
§
3ù
p
·
‚
^
¥
:
ú
ª
5
C
q
¦
È
©
Š
§
ˆ
f
n
j
+
1
2
'
1
2
(
v
(
x
j
+
1
2
,t
n
+
1
2
))
2
.
(21)
ˆ
F
n
j
+
1
2
'
2
3
(
v
(
x
j
+
1
2
,t
n
+
1
2
))
3
.
(22)
Ù
¥
v
(
x
j
+
1
2
,t
n
+
1
2
)
Š
Œ
±
Ï
L
ë
•
©
z
[10]
¥
Cauchy-Kowalewski
Ð
m
•{
C
q
¦
Ñ
"
Ä
k
·
‚
I
‡
¦
v
(
x
j
+
1
2
±
0
,t
n
+
1
2
)
Š
§
é
v
(
x
j
+
1
2
±
0
,t
n
+
1
2
)
3
(
x
j
±
1
2
,t
n
)
?
Š
Taylor
Ð
m
§
Š
â
•
§
(5)
Ú
-
¼
ê
(9)
Œ
v
(
x
j
+
1
2
±
0
,t
n
+
1
2
) =
v
(
x
j
+
1
2
±
0
,t
n
)+
τ
2
v
t
(
x
j
+
1
2
±
0
,t
n
)+
O
(
τ
2
)
=
v
(
x
j
+
1
2
±
0
,t
n
)
−
τ
2
{
1
2
(
v
(
x
j
+
1
2
±
0
,t
n
))
2
}
x
+
O
(
τ
2
)
=
R
(
x
j
+
1
2
±
0
;
u
n
,U
n
)
−
τ
2
R
(
x
j
+
1
2
±
0
;
u
n
,U
n
)
s
n
j
+
1
2
±
1
2
+
O
(
τ
2
)
.
(23)
·
‚
Ñ
þ
ª
¥
Ø
‘
O
(
τ
2
)
§
Œ
O
Ž
Ñ
v
(
x
j
+
1
2
±
0
,t
n
+
1
2
)
Š
§
Ï
L
)
Riemann
¯
K
Rie
(
v
(
x
j
+
1
2
−
0
,t
n
+
1
2
)
,v
(
x
j
+
1
2
+0
,t
n
+
1
2
))
Ò
Œ
±
v
(
x
j
+
1
2
,t
n
+
1
2
)
Š
(
„
[8])
"
2.4.
Ñ
•
§
Ü
©
©
‚
ª
©
é
n
Ñ
•
§
Ü
©
¤
O
ê
Š
‚
ª
†
ë
•
©
z
[5]
Ø
Ó
§
T‚
ª
Ó
ž
÷
v
ü
‡
Å
ð
Æ
"
•
Ä
n
Ñ
•
§
Ð
Š
¯
K
§
u
t
+
u
xxx
= 0
,
u
(
x,
0) =
u
0
(
x
)
.
(24)
DOI:10.12677/pm.2020.108090776
n
Ø
ê
Æ
X
…
§
w
ý
¥
•
§
(24)
÷
v
Ã
¡
õ
‡
Å
ð
Æ
§
Ù
1
‡
Å
ð
Æ
•
U
t
+((2
uu
xx
−
(
u
x
)
2
)
x
= 0
.
(25)
ù
p
U
=
u
2
L
«
U
þ
"
du
n
Ñ
•
§
ä
k
n
ê
‘
§
Ï
d
3
‚
ª
O
¥
§
æ
^
m
ä
k
•
‚
ª
g
Ž
§
ò
Ù
¤
n
‡
˜
•
§
|
§
u
t
+
p
x
= 0
,
p
−
q
x
= 0
,
q
−
u
x
= 0
.
(26)
´
Ø
Ó
u
D
Ú
m
ä
k
•
‚
ª
´
§
©
Ó
ž
‡
é1
‡
Å
ð
•
§
(25)
?
1
ê
Š
[
§
O
Ž
ê
Š
U
þ
"
2.4.1.
Ñ
•
§
Ü
©
©
‚
ª
½
Â
I
j
S
©
ãõ
‘
ª
˜
m
•
V
∆
x
V
∆
x
=
{
v
:
v
∈
P
k
(
I
j
)
,forx
∈
I
j
}
,
(27)
Ù
¥
P
k
(
I
j
)
L
«
I
j
¥
g
ê
Ø
‡
L
k
õ
‘
ª
8
Ü
"
3
V
∆
x
¥
½
Â
õ
‘
ª
¼
ê
u
h
,p
h
,q
h
§
Ù
•
(26)
°
(
)
u,p,q
C
q
§
ò
(26)
¦
±
Á
&
¼
ê
v,w,z
∈
V
∆
x
§
¿
3
z
‡
‚
I
j
?
1
©
Ü
È
©
§
Œ
Z
I
j
u
h
t
vdx
−
Z
I
j
p
h
v
x
dx
+ˆ
p
h
(
x
j
+
1
2
,t
)
v
−
j
+
1
2
−
ˆ
p
h
(
x
j
−
1
2
,t
)
v
+
j
−
1
2
= 0
,
Z
I
j
p
h
wdx
+
Z
I
j
q
h
w
x
dx
−
ˆ
q
h
(
x
j
+
1
2
,t
)
w
−
j
+
1
2
+ ˆ
q
h
(
x
j
−
1
2
,t
)
w
+
j
−
1
2
= 0
,
Z
I
j
q
h
zdx
+
Z
I
j
u
h
z
x
dx
−
ˆ
u
h
(
x
j
+
1
2
,t
)
z
−
j
+
1
2
+ ˆ
u
h
(
x
j
−
1
2
,t
)
z
+
j
−
1
2
= 0
.
(28)
Ù
¥
v
−
j
+
1
2
=lim
x
→
x
−
j
+
1
2
v
(
x,t
),
v
+
j
−
1
2
=lim
x
→
x
+
j
−
1
2
v
(
x,t
)
§
w
†
z
k
ƒ
Ó
½
Â
"
·
‚
ò
(28)
¥
/
X
ˆ
p
¼
ê
¡
•
ê
Š
6
¼
ê
[11]
µ
ˆ
p
h
(
x
j
±
1
2
,t
) =
p
h,
+
(
x
j
±
1
2
,t
)
,
ˆ
q
h
(
x
j
±
1
2
,t
) =
q
h,
+
(
x
j
±
1
2
,t
)
,
ˆ
u
h
(
x
j
±
1
2
,t
) =
u
h,
−
(
x
j
±
1
2
,t
)
.
(29)
DOI:10.12677/pm.2020.108090777
n
Ø
ê
Æ
X
…
§
w
ý
¥
3
·
‚
O
‚
ª
¥
†
D
Ú
m
ä
k
•
‚
ª
Ø
Ó
´
§
©
ò
‡
é1
‡
Å
ð
•
§
(25)
?
1
ê
Š
[
¿
±
ê
Š
U
þ
Å
ð
"
é
(25)
§
3
I
j
È
©
§
Œ
Z
I
j
U
t
(
x,t
)
dx
+
1
h
n
ˆ
F
(
x
j
+
1
2
,t
)
−
ˆ
F
(
x
j
−
1
2
,t
)
o
= 0
.
(30)
Ù
¥
U
þ
6
¼
ê´
ˆ
F
j
+
1
2
(
t
) = 2ˆ
u
(
x
j
+
1
2
,t
)ˆ
p
(
x
j
+
1
2
,t
)
−
ˆ
q
2
(
x
j
+
1
2
,t
)
.
(31)
3
©
¥
§
^
©
ã
‚
5
¼
ê
é
ê
Š
)?
1
-
§
=
•
§
(28)
ê
Š
)
u
h
∈
V
∆
x
•
u
h
(
x,t
) =
u
0
j
(
t
)
ϕ
(
j
)
0
(
x
)+
u
1
j
(
t
)
ϕ
(
j
)
1
(
x
)
,x
∈
I
j
.
(32)
ù
p
ϕ
(
j
)
l
(
x
)
,l
= 0
,
1
,
2
...
´
˜
|
¼
ê
Ä
µ
ϕ
(
j
)
0
(
x
) = 1
,ϕ
(
j
)
1
(
x
) =
2(
x
−
x
j
)
h
,...
(33)
ò
(32)
‘
\
(28)
¥
1
˜
‡
•
§
§
Œ
±
ê
Š
)
Œ
l
Ñ
‚
ª
•
d
dt
u
0
j
(
t
)+
1
h
[
ˆ
f
j
+
1
2
(
t
)
−
ˆ
f
j
−
1
2
(
t
)] = 0
.
(34)
ê
Š
6
¼
ê
•
ˆ
f
j
±
1
2
(
t
) =ˆ
p
h
(
x
j
±
1
2
,t
)
.
(35)
3
·
‚
‚
ª
¥
§
Ó
ž
O
Ž
1
‡
Å
ð
þ
§
d
(30)
Œ
d
dt
U
j
(
t
)+
1
∆
x
[
ˆ
F
(
x
j
+
1
2
,t
)
−
ˆ
F
(
x
j
−
1
2
,t
)] = 0
.
(36)
U
þ
6
¼
ê
•
ˆ
F
j
±
1
2
(
t
) = 2ˆ
u
h
(
x
j
±
1
2
,t
)ˆ
p
h
(
x
j
±
1
2
,t
)
−
(ˆ
q
h
(
x
j
±
1
2
,t
))
2
.
(37)
Ø
Ó
u
D
Ú
m
ä
k
•
‚
ª
´
§
·
‚
¤
O
‚
ª
•
¹
ü
Ü
©
µ
ê
Š
)
¥
u
0
j
(
t
)
‘
Ú
ê
Š
U
þ
U
j
(
t
)
"
ê
Š
)
¥
u
1
j
(
t
)
Š
•
˜
‡
g
d
Ý
"
·
‚
‡
¦
ê
Š
)
U
þ
‚
²
þ
Ú
T
‚
þ
ê
Š
U
þ
ƒ
§
=
1
h
Z
x
j
+1
/
2
x
j
−
1
/
2
U
(
u
h
(
x,t
))
dx
=
1
h
Z
x
j
+1
/
2
x
j
−
1
/
2
(
u
h
(
x,t
))
2
dx
=
U
j
(
t
)
.
(38)
d
þ
ª
O
Ž
Œ
(
u
1
j
(
t
))
2
= 3(
U
j
(
t
)
−
(
u
0
j
(
t
))
2
)
,
(39)
DOI:10.12677/pm.2020.108090778
n
Ø
ê
Æ
X
…
§
w
ý
¥
du
u
1
j
(
t
)
´
é
u
x
(
x
j
,t
)
C
q
§
3
·
‚
‚
ª
¥
§
m
Š
Ò
Î
Ò
†
(
u
j
+1
(
t
)
−
u
j
−
1
(
t
))
ƒ
Ó
§
=
u
1
j
(
t
) = sgn(
u
j
+1
(
t
)
−
u
j
−
1
(
t
))
q
3(
U
j
(
t
)
−
(
u
0
j
(
t
))
2
)
.
(40)
d
d
Œ
„
§
ù
O
‚
ª
p
u
0
j
(
t
)
Ú
U
j
(
t
)
Ñ
´Å
ð
"
•
(
½
ê
Š
6
¼
ê
†
U
þ
6
¼
ê
§
é
q
h
(
x,t
)
Ú
p
h
(
x,t
)
E
æ
^
‚
5
¼
ê
?
1
-
§
Á
&
¼
ê
w,z
∈
V
∆
x
•
ϕ
0
(
x
)
Ú
ϕ
1
(
x
)
§
Œ
±
p
0
j
(
t
)
−
1
h
(ˆ
q
j
+
1
2
(
t
)
−
ˆ
q
j
−
1
2
(
t
) = 0
,
p
1
j
(
t
)
−
3
h
(
−
2
q
0
j
(
t
)+ ˆ
q
j
+
1
2
(
t
)+ ˆ
q
j
−
1
2
(
t
)) = 0
.
(41)
q
0
j
(
t
)
−
1
h
(ˆ
u
j
+
1
2
(
t
)
−
ˆ
u
j
−
1
2
(
t
) = 0
,
q
1
j
(
t
)
−
3
h
(
−
2
u
0
j
(
t
)+ ˆ
u
j
+
1
2
(
t
)+ ˆ
q
j
−
1
2
(
t
)) = 0
.
(42)
Ù
¥
ˆ
u
j
±
1
2
(
t
)
Ú
ˆ
q
j
±
1
2
(
t
)
•
(29)
¥
¤
L
«
/
ª
"
2.4.2.
ê
Š
‚
ª
ž
m
l
Ñ
·
‚
ò
Œ
l
Ñ
•
§
(34)
Ú
(36)
3
ž
m
•
•
þ
l
Ñ
§
æ
^
Crank
−
Nickson
‚
ª
§
u
0
,n
+1
j
=
u
0
,n
j
−
λ
(
ˆ
f
n
+
1
2
j
+
1
2
−
ˆ
f
n
+
1
2
j
−
1
2
)
,
U
n
+1
j
=
U
n
j
−
λ
(
ˆ
F
n
+
1
2
j
+
1
2
−
ˆ
F
n
+
1
2
j
−
1
2
)
.
(43)
ê
Š
6
¼
ê
ˆ
f
n
+
1
2
j
±
1
2
Ú
ê
Š
U
þ
¼
ê
ˆ
F
n
+
1
2
j
±
1
2
©
O
X
e
ˆ
f
n
+
1
2
j
±
1
2
= (
p
h
)
+
,n
+
1
2
j
±
1
2
,
(44)
ˆ
F
n
+
1
2
j
±
1
2
= 2(
u
h
)
−
,n
+
1
2
j
±
1
2
(
p
h
)
+
,n
+
1
2
j
±
1
2
−
((
q
h
)
h,n
+
1
2
j
±
1
2
)
2
,
(45)
±
9
(
p
h
)
+
,n
+
1
2
j
+
1
2
=
1
2
((
p
h
)
+
,n
j
+
1
2
+(
p
h
)
+
,n
+1
j
+
1
2
)
,
(46)
(
q
h
)
+
,n
+
1
2
j
+
1
2
=
1
2
((
q
h
)
+
,n
j
+
1
2
+(
q
h
)
+
,n
+1
j
+
1
2
)
,
(47)
(
u
h
)
−
,n
+
1
2
j
+
1
2
=
1
2
((
u
h
)
−
,n
j
+
1
2
+(
u
h
)
−
,n
+1
j
+
1
2
)
.
(48)
DOI:10.12677/pm.2020.108090779
n
Ø
ê
Æ
X
…
§
w
ý
¥
3.
ê
Š
Ž
~
Ž
~
3.1
•
§
(1)
ü
f
)
u
(
x,t
) =
A
sech
2
(
κx
−
ωt
−
x
0
)
,
(49)
Ù
¥
A
= 12
κ
2
,ω
= 4
κ
3
,
(50)
Figure1.
Numericalresultsatdifferenttimes
ã
1.
Ø
Ó
ž
•
ê
Š
(
J
DOI:10.12677/pm.2020.108090780
n
Ø
ê
Æ
X
…
§
w
ý
¥
ù
p
k
Ú
x
0
´
~
ê
§
Š
•
k
= 0
.
3
Ú
x
0
= 0
§
u
(
x,
0)
•
Ð
Š
"
‚
«
m
•
(-15,15)
§
æ
^
±
Ï
>
.
^
‡
l
(50)
Œ
±
w
Ñ
Å
„
Ý
´
0.36
§
±
Ï
•
T
=30
/
0
.
36=83
.
3
§
3
Ž
~
¥
§
ò
‚
ª
O
Ž
ê
Š
)²
L
ê
±
Ï
†
Ð
©ž
•
ê
Š
)
'
"
3
·
‚
ê
Š
[
¥
§
‚
Ú
•
'
•
λ
=
τ/h
= 0
.
5
"
·
‚
^
100
‡
‚
!
:
(
=
h
= 0
.
3)
?
1
O
Ž
§
ã
1
¥
©
O
‰
Ñ
t
= 83
.
3(1
‡
±
Ï
)
§
t
= 416
.
7(5
‡
±
Ï
)
±
9
t
= 833
.
3(10
‡
±
Ï
)
ê
Š
(
J
"
l
ã
¥
Œw
Ñ
ê
Š
)
3
•
ž
m
ê
Š
)
U
éÐ
[
)
(
"
Ž
~
3.2
•
§
(1)
V
f
)
u
(
x,t
) = 12
κ
2
1
e
θ
1
+
κ
2
2
e
θ
2
+2(
κ
2
−
κ
1
)
2
e
θ
1
+
θ
2
+
a
2
(
κ
2
2
e
θ
1
+
κ
2
1
e
θ
2
)
e
θ
1
+
θ
2
(1+
e
θ
1
+
e
θ
2
+
a
2
e
θ
1
+
θ
2
)
2
,
(51)
Figure2.
Numericalresultsatdifferenttimes
ã
2.
Ø
Ó
ž
•
ê
Š
(
J
DOI:10.12677/pm.2020.108090781
n
Ø
ê
Æ
X
…
§
w
ý
¥
Ù
¥
κ
1
= 0
.
4
,κ
2
= 0
.
6
,a
2
= (
κ
1
−
κ
2
κ
1
+
κ
2
)
2
=
1
25
,
(52)
θ
1
=
κ
1
x
−
κ
3
1
t
+
x
1
,θ
2
=
κ
2
x
−
κ
3
2
t
+
x
2
,x
1
= 4
.
0
,x
2
= 15
.
(53)
3
·
‚
ê
Š
[
¥
§
‚
«
m
•
(-40,40)
§
æ
^
±
Ï
>
.
^
‡
"
u
(
x,
0)
•
Ð
©
Š
§
‚
Ú
•
•
h
=0
.
4(
=
^
200
‡
:
O
Ž
)
§
‚
Ú
•
'
•
λ
=
τ/h
=0
.
5
"
ã
2
©
O
‰
Ñ
t
=100
ž
•
§
t
= 400
Ú
t
= 1000
ž
•
ê
Š
)
"
l
ã
¥
Œ
±
w
ü
‡
Å
Z
œ
¹
"
4.
(
Ø
©
é
KdV
•
§
E
˜
‡
÷
v
ü
‡
Å
ð
Æ
©
‚
ª
§
æ
^
©
Ž
f
{
ò
KdV
•
§
©
¤
Å
ð
•
§
Ü
©
†
Ñ
•
§
Ü
©
§
é
Å
ð
•
§
Ü
©
Ú
n
Ñ
•
§
Ü
©
Ó
ž
O
÷
v
ü
‡
Å
ð
Æ
ê
Š
‚
ª
"
ê
Š
Á
L
²
ù
a
‚
ª
k
éÐ
-
½
5
§
A
O
3
õ
‡
Å
œ
¹
e
§
ËÄ
5
²
w
k
U
õ
"
ë
•
©
z
[1]
“
f
.
‚
5
D
Ñ
•
§
÷
v
õ
‡
Å
ð
Æ
©
‚
ª
[D]:[
a
¬
Æ
Ø
©
].
þ
°
:
þ
°
Œ
Æ
,2005:No.11903-
99118086.
[2]Li,H.,Wang,Z.andMao,D.(2008)NumericallyNeitherDissipativeNorCompressiveSchemeforLinear
AdvectionEquationandItsApplicationtotheEulerSystem.
JournalofScientificComputing
,
36
,285-331.
https://doi.org/10.1007/s10915-008-9192-x
[3]
o
ù
_
,
d
x
.
ü
‡
Å
ð
.
•
§
Ñ
Ñ
‚
ª
¥
Ñ
Ñ
¼
ê
E
[J].
O
Ž
Ô
n
,2004,21(3):319-331.
[4]Cui,Y.andMao,D.(2012)ErrorSelf-CancelingofaDifferenceSchemeMaintainingTwoConservation
LawsforLinearAdvectionEquation.
MathematicsofComputation
,
81
,715-741.
https://doi.org/10.1090/S0025-5718-2011-02523-8
[5]Cui, Y.and Mao, D.(2007)Numerical Method SatisfyingtheFirst TwoConservationLawsforthe Korteweg-
deVriesEquation.
JournalofComputationalPhysics
,
227
,376-399.
https://doi.org/10.1016/j.jcp.2007.07.031
[6]Holden, H., Hvistendahl, K. andRisebro, N. (1999) Operator SplittingMethods forGeneralized Korteweg-de
VriesEquations.
JournalofComputationalPhysics
,
153
,203-222.
https://doi.org/10.1006/jcph.1999.6273
[7]Strang,G.(1968)OntheConstruction andComparisonofDifferenceSchemes.
SIAMJournalonNumerical
Analysis
,
5
,506-517.
https://doi.org/10.1137/0705041
[8]LeVeque,R.J.(2002)FiniteVolumeMethodsforHyperbolicProblems.CambridgeUniversityPress,Cam-
bridge.
https://doi.org/10.1017/CBO9780511791253
[9]Harten,A.(1989)ENOSchemeswithSubcellResolution.
JournalofComputationalPhysics
,
83
,148-184.
https://doi.org/10.1016/0021-9991(89)90226-X
[10]Harten,A.,Harten,A.,Engquist,B.,Osher,S.andChakravarthy,S.R.(1987)UniformlyHighOrder
AccurateEssentiallyNon-OscillatorySchemes,III.
JournalofComputationalPhysics
,
71
,231-303.
https://doi.org/10.1016/0021-9991(87)90031-3
DOI:10.12677/pm.2020.108090782
n
Ø
ê
Æ
X
…
§
w
ý
¥
[11]Yan, J. and Shu, C. (2002) A Local Discontinuous Galerkin Method for KdV Type Equation.
SIAMJournal
onNumericalAnalysis
,
40
,769-791.
https://doi.org/10.1137/S0036142901390378
DOI:10.12677/pm.2020.108090783
n
Ø
ê
Æ