设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投搞
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2020,10(8),771-783
PublishedOnlineAugust2020inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2020.108090
TheNumericalSchemeofEnergy
ConservationfortheKdVEquation
YuTian,YanfenCui
CollegeofSciences,ShanghaiUniversity,Shanghai
Received:Jul.31
st
,2020;accepted:Aug.18
th
,2020;published:Aug.26
th
,2020
Abstract
WedesignaclassofimprovedschemesatisfyingtwoconservationlawsfortheKdV
equation,whichsatisfiesboththenumericalsolutionandnumericalenergyconserva-
tive.Numerical experimentsshow thatthe schemes have good stability and structure-
preservingpropertyinlongtimenumericalsimulations.
Keywords
Cell-Average,NumericalEnergy,ConservationLaws,StructurePreservation
KdV•§÷vUþÅðꊕ{
XXX………§§§wwwýýý¥¥¥
þ°ŒÆnÆ§þ°
©ÙÚ^:X…,wý¥.KdV•§÷vUþÅðꊕ{[J].nØêÆ,2020,10(8):771-783.
DOI:10.12677/pm.2020.108090
X…§wý¥
ÂvFϵ2020c731F¶¹^Fϵ2020c818F¶uÙFϵ2020c826F
Á‡
©éKdV•§O˜auÐ÷vü‡ÅðÆꊂª§T‚ªØ=U÷vêŠ)Åð§
…U÷vêŠUþÅð"ꊎ~(JL²§ùa÷vü‡ÅðÆꊂª§3•žmê
Š[¥äkéÐ-½5Ú(5"
'…c
‚²þ§êŠUþ§ÅðƧ(5
Copyright
c
2019byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
Cc5§©z[1]é‚5DÑ•§O÷vü‡Ún‡ÅðÆ©‚ª§¿…í2CX
êÚ‘‚5DÑ•§¥"©z[2],[3]O˜aÅð.©‚ª§T‚ª´Godunov.§
´ÚDÚ‚ªØÓ´§T‚ªÓž[ü‡ƒ'ÅðÆ"©z[4]é‚5DÑ•§÷vü‡
ÅðÆꊕ{?1nةۧlnØþy²ùa‚ªäkØpƒ-ž‡Âñ5Ÿ"
©z[5]òþã±õ‡ÅðÆgŽA^š‚5KdV•§§éÙO÷vü‡ÅðÆ
š‚5©‚ª"duKdV•§•¹š‚5‘Únê‘§Ïd©z[5]æ^©Žf{§
òKdV•§¤š‚5Åð•§Ü©Ún‚5Ñ•§Ü©§3©z¥§éš‚5Åð.•§
Ü©O÷vü‡ÅðÆꊕ{§´éunÑ•§Ü©æ^´DÚ¥%©‚
ª§êŠ(JL²ùa÷vü‡ÅðÆꊕ{äkéÐ/(5Ÿ"
©´þãóŠUY§·‚ éKdV•§O˜aU?÷vü‡ÅðÆꊕ{"$
DOI:10.12677/pm.2020.108090772nØêÆ
X…§wý¥
^©Žf{[6]òKdV•§©¤Åð•§Ü©†Ñ•§Ü©§´†©z[5]ØÓ´§3
©¥§·‚¤O‚ª§Ø=U±Åð•§Ü©÷vü‡ÅðÆ§•U±nÑ•§Ü
©÷vü‡ÅðÆ"¿…Ï Lꊎ~yŽ{k5§lêŠ(JŒ±wѧT•{3•
žmêŠ[¥UéÐ±)("
©(SüXeµ1˜!´Úó¶1!´‚ªäN£ã¶1n!‰Ñꊎ ~§(
JL²T‚ª3•žmêŠ[¥U±Ð-½5¶1o!´(Ø"
2.‚ª£ã
2.1.êŠ)½Â
•ÄKdV•§Њ¯K



u
t
+(
1
2
u
2
)
x
+u
xxx
= 0, −∞<x<+∞.
u(x,0) = u
0
(x).
(1)
Ù¥u
0
(x)´Ðмê"KdV•§÷váõ‡ÅðƧÙcü‡ÅðÆ©O´(1)Ú
(u
2
)
t
+(
2
3
u
3
)
x
+(2uu
xx
−(u
x
)
2
)
x
= 0.(2)
Ù¥(2)L«UþÅð§3±e?Ø¥·‚PUþu
2
•U(u)"
Äké(x,t)²¡?1‚¿©§ÙéAu(x,t)²¡Sü|²1‚µx
j
= jh,j= 0,±1,±2,···
Út
n
= nτ,n= 0,1,2,···§ò ‚¿©•I
j
= [x
j−1/2
,x
j+1/2
],j=1,2,3...N§z‡l Ñ«m¥:
•x
j
=
(x
j−
1
2
+x
j+
1
2
)
2
§…∆x
j
= x
j+
1
2
−x
j−
1
2
"Ù¥hÚτ©O•˜mÚ•ÚžmÚ•"
·‚¤Oꊂª•¹ü‡êŠ¢N§=êŠÄþu
n
j
ÚêŠUþU
n
j
"‚ªæ^k•N
È{§½ÂêŠ)u
n
j
´é°()‚²þCq
u
n
j
'
1
h
Z
x
j+
1
2
x
j−
1
2
u(x,t
n
)dx,(3)
Ù¥u(x,t
n
)L«ÄþÅðÆ•§°()"du·‚¤O‚ª„ò91‡Å
ðþU(u(x,t
n
))êŠ%C§·‚¡êмêU
n
j
¡•êŠUþ§´é°(UþU(u(x,t))=
u
2
(x,t
n
)‚²þCq
U
n
j
'
1
h
Z
x
j+
1
2
x
j−
1
2
U(u(x,t
n
))dx=
1
h
Z
x
j+
1
2
x
j−
1
2
u
2
(x,t
n
)dx.(4)
DOI:10.12677/pm.2020.108090773nØêÆ
X…§wý¥
2.2.‚ª£ã
lKdV•§cü‡ÅðÆ(1)Ú(2)Œ±wѧÚDÑ•§ØÓ´Ù éAü‡6¼êØ=
Úuk'§…†§˜êu
x
Úêu
xx
k'§ù‰êŠ‚ªO‘5˜½E,5"
•d§3©·‚òæ^©Žf{(„[6],[7])§òKdV•§©¤Åð•§Ü©ÚÑ•§Ü
©§éÙO˜a±ü‡ÅðÆꊕ{"Ù¥Åð•§Ü©•



u
t
+(
1
2
u
2
)
x
= 0,
(u
2
)
t
+(
2
3
u
3
)
x
= 0.
(5)
Ñ•§Ü©•



u
t
+u
xxx
= 0,
(u
2
)
t
+(2uu
xx
−(u
x
)
2
)
x
= 0.
(6)
þ÷vЊu(x,0)=u
0
(x),(u(x,0))
2
=(u
0
(x))
2
.ePÅð•§Ü©(5)Žf•A
τ
§K•§(5)
)ŒdŽfA
τ
L«Xe


u(x,t)
U(u(x,t))


= A
τ


u
0
(x)
U(u
0
(x))


.(7)
Ó§·‚Œò)Ñ•§Ü©(6)ŽfP•B
τ
"
3©¥§·‚æ^´Strang©Žf{°Ý„[7]§•§OŽ˜Ú)Œ±Lˆ
•


u(x,(n+1)τ)
U(u(x,(n+1)τ))


= [A
τ
2
◦
B
τ
2
◦
B
τ
2
◦
A
τ
2
]


u(x,nτ)
U(u(x,nτ))


.(8)
ùpτ•žmÚ•"3¢SêŠOŽ¥§ŽfA
τ
ÚB
τ
òƒAꊎ{¤“O"
2.3.Åð•§Ü©©‚ª
Åð•§Ü©(5)ŽfA
τ
•¹ü‡êŠ¢N§=êŠÄþu
n
j
ÚêŠUþU
n
j
§‚ªÓž[
(5)¥ü‡ÅðÆ"
XÓGodunov.‚ª[8]˜§·‚‚ªUì-(Reconstruction)§uÐ(Evolution)Ú‚
²þ(Averaging)nÚ?1"
1˜Ú(Reconstruction)-µ3t
n
þéêŠ)(u
n
j
,U
n
j
)?1-§-¼êR(x;u
n
,U
n
)•
˜g¼ê§
DOI:10.12677/pm.2020.108090774nØêÆ
X…§wý¥
R(x;u
n
,U
n
) = u
n
j
+s
n
j
(x−x
j
),x∈[x
j−
1
2
,x
j+
1
2
).(9)
w,R(x;u
n
,U
n
)÷v
1
h
Z
x
j+
1
2
x
j−
1
2
R(x;u
n
,U
n
)dx= u
n
j
.(10)
´†DÚGodunov.‚ªØÓ´§·‚„‡¦R(x;u
n
,U
n
)÷v
1
h
Z
x
j+
1
2
x
j−
1
2
U(R(x;u
n
,U
n
))dx= U
n
j
.(11)
=-¼êUþ‚²þÚT‚þêŠUþƒ"Çs
n
j
Ø2´DÚŠ•{(½§
´Š•˜‡gdݧÏL•§(11)(½§)s
n
j
Š•
s
n
j
= sgn(u
n
j+1
−u
n
j−1
)
r
12(U
n
j
−(u
n
j
)
2
)
h
2
.(12)
1Ú(Evolution)uе±-¼êR(x;u
n
,U
n
)Еt
n
Њ§¦)•§(5)1˜ªЊ
¯K



v
t
+f(v)
x
= 0,−∞<x<∞,t
n
<t≤t
n+1
,
v(x,t
n
) = R(x;u
n
,U
n
),−∞<x<∞.
(13)
Ù¥§f(v) =
1
2
v
2
§Ù°()•v(x,t)§žmÚ•τ÷vCFL^‡λmax
u
|f
0
(u)|<1"
1nÚ(Averaging)‚²þµt
n+1
þêŠ)ÚêŠUþ©O•
u
n+1
j
'
1
h
Z
x
j+
1
2
x
j−
1
2
v(x,t
n+1
)dx.(14)
U
n+1
j
'
1
h
Z
x
j+
1
2
x
j−
1
2
v
2
(x,t
n+1
)dx.(15)
¢SOŽ¥§3‚(x
j−
1
2
,x
j+
1
2
)×(t
n
,t
n+1
)þé(5)-È©§Œ‚ª•
u
n+1
j
= u
n
j
−λ(
ˆ
f
n
j+
1
2
−
ˆ
f
n
j−
1
2
).(16)
U
n+1
j
= U
n
j
−λ(
ˆ
F
n
j+
1
2
−
ˆ
F
n
j−
1
2
).(17)
Ù¥λ=
τ
h
´‚Ú•'§êŠ6¼ê•
DOI:10.12677/pm.2020.108090775nØêÆ
X…§wý¥
ˆ
f
n
j±
1
2
=
1
τ
Z
t
n+1
t
n
1
2
(v(x
j±
1
2
,t))
2
dt.(18)
aqêŠUþ6¼ê•
ˆ
F
n
j±
1
2
=
1
τ
Z
t
n+1
t
n
2
3
(v(x
j±
1
2
,t))
3
dt.(19)
l¤˜ÚOާ•y‚ª-½5§‚Ú•'‡÷vCFL^‡
λmax
j
{|u
n
j
|}<1.(20)
dþ©Œ•§Ï•·‚¤?Ø´š‚5•§§¤±êŠ6¼ê(18)ÚUþ6¼ê(19)ØU¦
Ѱ(ЧÏd‡OŽ6¼êCqŠ(„[9])§3ùp·‚^¥:úª5Cq¦È©Ч
ˆ
f
n
j+
1
2
'
1
2
(v(x
j+
1
2
,t
n+
1
2
))
2
.(21)
ˆ
F
n
j+
1
2
'
2
3
(v(x
j+
1
2
,t
n+
1
2
))
3
.(22)
Ù¥v(x
j+
1
2
,t
n+
1
2
)ŠŒ±ÏLë•©z[10]¥Cauchy-KowalewskiÐm•{Cq¦Ñ"
Äk·‚I‡¦v(x
j+
1
2
±0
,t
n+
1
2
)Чév(x
j+
1
2
±0
,t
n+
1
2
) 3(x
j±
1
2
,t
n
)?ŠTaylorÐm§Šâ
•§(5)Ú-¼ê(9)Œ
v(x
j+
1
2
±0
,t
n+
1
2
) = v(x
j+
1
2
±0
,t
n
)+
τ
2
v
t
(x
j+
1
2
±0
,t
n
)+O(τ
2
)
= v(x
j+
1
2
±0
,t
n
)−
τ
2
{
1
2
(v(x
j+
1
2
±0
,t
n
))
2
}
x
+O(τ
2
)
= R(x
j+
1
2
±0
;u
n
,U
n
)−
τ
2
R(x
j+
1
2
±0
;u
n
,U
n
)s
n
j+
1
2
±
1
2
+O(τ
2
).
(23)
·‚Ñþª¥Ø‘O(τ
2
)§ŒOŽÑv(x
j+
1
2
±0
,t
n+
1
2
)ЧÏL)Riemann¯K
Rie(v(x
j+
1
2
−0
,t
n+
1
2
),v(x
j+
1
2
+0
,t
n+
1
2
))ÒŒ±v(x
j+
1
2
,t
n+
1
2
)Š(„[8])"
2.4.Ñ•§Ü©©‚ª
©énÑ•§Ü©¤Oꊂª†ë•©z[5]ØÓ§T‚ªÓž÷vü‡Åð
Æ"
•ÄnÑ•§Њ¯K§



u
t
+u
xxx
= 0,
u(x,0) = u
0
(x).
(24)
DOI:10.12677/pm.2020.108090776nØêÆ
X…§wý¥
•§(24)÷váõ‡ÅðƧÙ1‡ÅðÆ•
U
t
+((2uu
xx
−(u
x
)
2
)
x
= 0.(25)
ùpU= u
2
L«Uþ"
dunÑ•§äknê‘§Ïd 3‚ªO¥§æ^mäk•‚ªgާò
Ù¤n‡˜•§|§







u
t
+p
x
= 0,
p−q
x
= 0,
q−u
x
= 0.
(26)
´ØÓuDÚmäk•‚ª´§©Óž‡é1‡Åð•§(25)?1êŠ[§OŽêŠ
Uþ"
2.4.1.Ñ•§Ü©©‚ª
½ÂI
j
S©ãõ‘ª˜m•V
∆x
V
∆x
= {v: v∈P
k
(I
j
),forx∈I
j
},(27)
Ù¥P
k
(I
j
)L«I
j
¥gêØ‡Lkõ‘ª8Ü"
3V
∆x
¥½Âõ‘ª¼êu
h
,p
h
,q
h
§Ù•(26)°()u,p,qCq§ò(26)¦±Á&¼êv,w,z∈
V
∆x
§¿3z‡‚I
j
?1©ÜÈ©§Œ
Z
I
j
u
h
t
vdx−
Z
I
j
p
h
v
x
dx+ˆp
h
(x
j+
1
2
,t)v
−
j+
1
2
−ˆp
h
(x
j−
1
2
,t)v
+
j−
1
2
= 0,
Z
I
j
p
h
wdx+
Z
I
j
q
h
w
x
dx−ˆq
h
(x
j+
1
2
,t)w
−
j+
1
2
+ ˆq
h
(x
j−
1
2
,t)w
+
j−
1
2
= 0,
Z
I
j
q
h
zdx+
Z
I
j
u
h
z
x
dx−ˆu
h
(x
j+
1
2
,t)z
−
j+
1
2
+ ˆu
h
(x
j−
1
2
,t)z
+
j−
1
2
= 0.
(28)
Ù¥v
−
j+
1
2
=lim
x→x
−
j+
1
2
v(x,t), v
+
j−
1
2
=lim
x→x
+
j−
1
2
v(x,t)§w†zkƒÓ½Â"·‚ò(28)¥/Xˆp¼
ê¡•êŠ6¼ê[11]µ
ˆp
h
(x
j±
1
2
,t) = p
h,+
(x
j±
1
2
,t),
ˆq
h
(x
j±
1
2
,t) = q
h,+
(x
j±
1
2
,t),
ˆu
h
(x
j±
1
2
,t) = u
h,−
(x
j±
1
2
,t).
(29)
DOI:10.12677/pm.2020.108090777nØêÆ
X…§wý¥
3·‚O‚ª¥†DÚmäk•‚ªØÓ´§©ò‡é1‡Åð•§(25)?1
êŠ[¿±êŠUþÅð"é(25)§3I
j
È©§Œ
Z
I
j
U
t
(x,t)dx+
1
h
n
ˆ
F(x
j+
1
2
,t)−
ˆ
F(x
j−
1
2
,t)
o
= 0.(30)
Ù¥Uþ6¼ê´
ˆ
F
j+
1
2
(t) = 2ˆu(x
j+
1
2
,t)ˆp(x
j+
1
2
,t)−ˆq
2
(x
j+
1
2
,t).
(31)
3©¥§^©ã‚5¼êéêŠ)?1-§=•§(28)êŠ)u
h
∈V
∆x
•
u
h
(x,t) = u
0
j
(t)ϕ
(j)
0
(x)+u
1
j
(t)ϕ
(j)
1
(x),x∈I
j
.
(32)
ùpϕ
(j)
l
(x),l= 0,1,2...´˜|¼êĵ
ϕ
(j)
0
(x) = 1,ϕ
(j)
1
(x) =
2(x−x
j
)
h
,...(33)
ò(32)‘\(28)¥1˜‡•§§Œ±êŠ)ŒlÑ‚ª•
d
dt
u
0
j
(t)+
1
h
[
ˆ
f
j+
1
2
(t)−
ˆ
f
j−
1
2
(t)] = 0.(34)
êŠ6¼ê•
ˆ
f
j±
1
2
(t) =ˆp
h
(x
j±
1
2
,t).(35)
3·‚‚ª¥§ÓžOŽ1‡Åðþ§d(30)Œ
d
dt
U
j
(t)+
1
∆x
[
ˆ
F(x
j+
1
2
,t)−
ˆ
F(x
j−
1
2
,t)] = 0.(36)
Uþ6¼ê•
ˆ
F
j±
1
2
(t) = 2ˆu
h
(x
j±
1
2
,t)ˆp
h
(x
j±
1
2
,t)−(ˆq
h
(x
j±
1
2
,t))
2
.(37)
ØÓ uDÚmäk•‚ª´§ ·‚¤O‚ª•¹üÜ©µêŠ)¥u
0
j
(t)‘ÚêŠU
þU
j
(t)"êŠ)¥u
1
j
(t)Š•˜‡gdÝ"·‚‡¦êŠ)Uþ‚²þÚT‚þêŠUþƒ
§=
1
h
Z
x
j+1/2
x
j−1/2
U(u
h
(x,t))dx=
1
h
Z
x
j+1/2
x
j−1/2
(u
h
(x,t))
2
dx= U
j
(t).(38)
dþªOŽŒ
(u
1
j
(t))
2
= 3(U
j
(t)−(u
0
j
(t))
2
),(39)
DOI:10.12677/pm.2020.108090778nØêÆ
X…§wý¥
duu
1
j
(t)´éu
x
(x
j
,t)Cq§3·‚‚ª¥§mŠÒÎÒ†(u
j+1
(t)−u
j−1
(t))ƒÓ§=
u
1
j
(t) = sgn(u
j+1
(t)−u
j−1
(t))
q
3(U
j
(t)−(u
0
j
(t))
2
).(40)
ddŒ„§ùO‚ªpu
0
j
(t)ÚU
j
(t)Ñ´Åð"
•(½êŠ6¼ê†Uþ6¼ê§éq
h
(x,t)Úp
h
(x,t)Eæ^‚5¼ê?1-§Á&¼
êw,z∈V
∆x
•ϕ
0
(x)Úϕ
1
(x)§Œ±



p
0
j
(t)−
1
h
(ˆq
j+
1
2
(t)−ˆq
j−
1
2
(t) = 0,
p
1
j
(t)−
3
h
(−2q
0
j
(t)+ ˆq
j+
1
2
(t)+ ˆq
j−
1
2
(t)) = 0.
(41)



q
0
j
(t)−
1
h
(ˆu
j+
1
2
(t)−ˆu
j−
1
2
(t) = 0,
q
1
j
(t)−
3
h
(−2u
0
j
(t)+ ˆu
j+
1
2
(t)+ ˆq
j−
1
2
(t)) = 0.
(42)
Ù¥ˆu
j±
1
2
(t)Úˆq
j±
1
2
(t)•(29)¥¤L«/ª"
2.4.2.ꊂªžmlÑ
·‚òŒlÑ•§(34)Ú(36)3žm••þlѧæ^Crank−Nickson‚ª§
u
0,n+1
j
= u
0,n
j
−λ(
ˆ
f
n+
1
2
j+
1
2
−
ˆ
f
n+
1
2
j−
1
2
),
U
n+1
j
= U
n
j
−λ(
ˆ
F
n+
1
2
j+
1
2
−
ˆ
F
n+
1
2
j−
1
2
).
(43)
êŠ6¼ê
ˆ
f
n+
1
2
j±
1
2
ÚêŠUþ¼ê
ˆ
F
n+
1
2
j±
1
2
©OXe
ˆ
f
n+
1
2
j±
1
2
= (p
h
)
+,n+
1
2
j±
1
2
,(44)
ˆ
F
n+
1
2
j±
1
2
= 2(u
h
)
−,n+
1
2
j±
1
2
(p
h
)
+,n+
1
2
j±
1
2
−((q
h
)
h,n+
1
2
j±
1
2
)
2
,(45)
±9
(p
h
)
+,n+
1
2
j+
1
2
=
1
2
((p
h
)
+,n
j+
1
2
+(p
h
)
+,n+1
j+
1
2
),(46)
(q
h
)
+,n+
1
2
j+
1
2
=
1
2
((q
h
)
+,n
j+
1
2
+(q
h
)
+,n+1
j+
1
2
),(47)
(u
h
)
−,n+
1
2
j+
1
2
=
1
2
((u
h
)
−,n
j+
1
2
+(u
h
)
−,n+1
j+
1
2
).(48)
DOI:10.12677/pm.2020.108090779nØêÆ
X…§wý¥
3.ꊎ~
Ž~3.1 •§(1)üf)
u(x,t) = Asech
2
(κx−ωt−x
0
),(49)
Ù¥
A= 12κ
2
,ω= 4κ
3
,(50)
Figure1.Numericalresultsatdifferenttimes
ã1.ØÓž•êŠ(J
DOI:10.12677/pm.2020.108090780nØêÆ
X…§wý¥
ùpkÚx
0
´~ê§Š•k= 0.3Úx
0
= 0§u(x,0)•Њ"‚«m•(-15,15)§æ^±Ï
>.^‡l(50)Œ±wÑÅ„Ý´0.36§±Ï•T=30/0.36=83.3§3Ž~¥§ò‚ ªO
ŽêŠ)²Lê±Ï†Ð©ž•êŠ)'"
3·‚ êŠ[¥§‚Ú•'•λ=τ/h= 0.5"·‚^100‡‚!:(=h= 0.3)?1O
ާã1¥©O‰Ñt= 83.3(1‡±Ï)§t= 416.7(5‡±Ï)±9t= 833.3(10‡±Ï)êŠ(
J"l㥌wÑêŠ)3•žmêŠ)UéÐ[)("
Ž~3.2 •§(1)Vf)
u(x,t) = 12
κ
2
1
e
θ
1
+κ
2
2
e
θ
2
+2(κ
2
−κ
1
)
2
e
θ
1
+θ
2
+a
2
(κ
2
2
e
θ
1
+κ
2
1
e
θ
2
)e
θ
1
+θ
2
(1+e
θ
1
+e
θ
2
+a
2
e
θ
1
+θ
2
)
2
,(51)
Figure2.Numericalresultsatdifferenttimes
ã2.ØÓž•êŠ(J
DOI:10.12677/pm.2020.108090781nØêÆ
X…§wý¥
Ù¥
κ
1
= 0.4,κ
2
= 0.6,a
2
= (
κ
1
−κ
2
κ
1
+κ
2
)
2
=
1
25
,(52)
θ
1
= κ
1
x−κ
3
1
t+x
1
,θ
2
= κ
2
x−κ
3
2
t+x
2
,x
1
= 4.0,x
2
= 15.(53)
3·‚êŠ[¥§‚«m•(-40,40)§æ^±Ï>.^‡"u(x,0)•Ð©Š§‚Ú
••h=0.4(=^200‡:OŽ)§‚Ú•'•λ=τ/h=0.5"ã2©O‰Ñt=100ž•§
t= 400Út= 1000ž•êŠ)"l㥌±wü‡ÅZœ¹"
4.(Ø
©éKdV•§E˜‡÷vü‡ÅðÆ©‚ª§æ^ ©Žf{òKdV•§©¤
Åð•§Ü©†Ñ•§Ü©§éÅð•§Ü©ÚnÑ•§Ü©ÓžO÷vü‡ÅðÆ
ꊂª"êŠÁL²ùa‚ªkéÐ-½5§AO3õ‡Åœ¹e§ËÄ5²wkU
õ"
ë•©z
[1]“f.‚5DÑ•§÷võ‡ÅðÆ©‚ª[D]:[a¬Æ Ø©].þ°:þ°ŒÆ,2005:No.11903-
99118086.
[2]Li,H.,Wang,Z.andMao,D.(2008)NumericallyNeitherDissipativeNorCompressiveSchemeforLinear
AdvectionEquationandItsApplicationtotheEulerSystem.JournalofScientificComputing,36,285-331.
https://doi.org/10.1007/s10915-008-9192-x
[3]où_,dx.ü‡Åð.•§ÑÑ‚ª¥ÑѼêE[J].OŽÔn,2004,21(3):319-331.
[4]Cui,Y.andMao,D.(2012)ErrorSelf-CancelingofaDifferenceSchemeMaintainingTwoConservation
LawsforLinearAdvectionEquation.MathematicsofComputation,81,715-741.
https://doi.org/10.1090/S0025-5718-2011-02523-8
[5]Cui, Y.and Mao, D.(2007)Numerical Method SatisfyingtheFirst TwoConservationLawsforthe Korteweg-
deVriesEquation.JournalofComputationalPhysics,227,376-399.
https://doi.org/10.1016/j.jcp.2007.07.031
[6]Holden, H., Hvistendahl, K. andRisebro, N. (1999) Operator SplittingMethods forGeneralized Korteweg-de
VriesEquations.JournalofComputationalPhysics,153,203-222.
https://doi.org/10.1006/jcph.1999.6273
[7]Strang,G.(1968)OntheConstruction andComparisonofDifferenceSchemes. SIAMJournalonNumerical
Analysis,5,506-517.
https://doi.org/10.1137/0705041
[8]LeVeque,R.J.(2002)FiniteVolumeMethodsforHyperbolicProblems.CambridgeUniversityPress,Cam-
bridge.
https://doi.org/10.1017/CBO9780511791253
[9]Harten,A.(1989)ENOSchemeswithSubcellResolution.JournalofComputationalPhysics,83,148-184.
https://doi.org/10.1016/0021-9991(89)90226-X
[10]Harten,A.,Harten,A.,Engquist,B.,Osher,S.andChakravarthy,S.R.(1987)UniformlyHighOrder
AccurateEssentiallyNon-OscillatorySchemes,III.JournalofComputationalPhysics,71,231-303.
https://doi.org/10.1016/0021-9991(87)90031-3
DOI:10.12677/pm.2020.108090782nØêÆ
X…§wý¥
[11]Yan, J. and Shu, C. (2002) A Local Discontinuous Galerkin Method for KdV Type Equation. SIAMJournal
onNumericalAnalysis,40,769-791.
https://doi.org/10.1137/S0036142901390378
DOI:10.12677/pm.2020.108090783nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2020 Hans Publishers Inc. All rights reserved.