设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投搞
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2020,10(9),826-836
PublishedOnlineSeptember2020inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2020.109095
9
©
†
²
£
æ
X
¼
ê
k
n
¼
ê
Â
ñ
•
ê
---
•••
§§§
BBB
∗
u
Hà
’
Œ
Æ
A^
ê
Æï
Ä
¤
§
2
À
2
²
Email:yangseawell@foxmail.com,
∗
dyang@scau.edu.cn
Â
v
F
Ï
µ
2020
c
8
13
F
¶
¹
^
F
Ï
µ
2020
c
9
4
F
¶
u
Ù
F
Ï
µ
2020
c
9
11
F
Á
‡
c
´
˜
‡
š
"
k
¡
E
ê
§
f
´
˜
‡
k
¡
?
‡
æ
X
¼
ê
§
R
´
˜
‡
š
~
ê
k
n
¼
ê
,
©
ï
Ä
f
(
z
)
−
R
(
z
)
,
f
(
z
+
c
)
−
R
(
z
)
9
∆
c
f
(
z
)
−
R
(
z
)
"
:
Â
ñ
•
ê
†
f
?
ƒ
m
'
X
"
d
d
í
2
Chen,Zhang-Chen,Chen-Zheng
<
(
J
"
'
…
c
æ
X
¼
ê
§
©
§
²
£
§
Â
ñ
•
ê
TheExponentsofConvergenceof
RationalFunctionsofMeromorphic
FunctionsConcerningDifferences
andShifts
ShiweiYang,DeguiYang
∗
InstituteofAppliedMathematics,SouthChinaAgriculturalUniversity,GuangzhouGuangdong
Email:yangseawell@foxmail.com,
∗
dyang@scau.edu.cn
Received:Aug.13
th
,2020;accepted:Sep.4
th
,2020;published:Sep.11
th
,2020
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
-
•
,
B
.
9
©
†
²
£
æ
X
¼
ê
k
n
¼
ê
Â
ñ
•
ê
[J].
n
Ø
ê
Æ
,2020,10(9):826-836.
DOI:10.12677/pm.2020.109095
-
•
§
B
Abstract
Let
c
beanonzerofinitecomplexnumber,let
f
beatranscendentalmeromorphic
functionoffiniteorder,andlet
R
beanonconstantrationalfunction.Itisstudied
thattherelationshipbetweentheexponentofconvergenceofzerosof
f
(
z
)
−
R
(
z
)
,
f
(
z
+
c
)
−
R
(
z
)
,and
∆
c
f
(
z
)
−
R
(
z
)
and theorderof
f
.Thisimproves theresultsofChen,
Zhang-ChenandChen-Zheng.
Keywords
MeromorphicFunctions,Differences,Shifts,TheExponentofConvergence
Copyright
c
2020byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
9
Ì
‡
(
J
©
¥
,
æ
X
¼
ê
•
´
3
‡E
²
¡
þ
æ
X
¼
ê
.
±
e
ò
¦
^
Š
©
Ù
Ø
¥
I
O
P
Ò
T
(
r,f
),
m
(
r,f
),
N
(
r,f
),
S
(
r,f
)
,
···
(
ë
„
[1][2][3][4]),
Ù
¥
S
(
r,f
)
L
«
?
˜
¼
ê
f
÷
v
S
(
r,f
) =
o
{
T
(
r,f
)
}
,
r
→∞
,
r
6∈
E
,
E
´
˜
‡
é
ê
ÿ
Ý
k
¡
r
Š
8
.
a
´
E
²
¡
þ
æ
X
¼
ê
(
Œ
±
ð
•
∞
),
X
J
a
÷
v
T
(
r,a
)=
S
(
r,f
),
¡
a
´
f
¼
ê
.
©
^
ρ
(
f
),
λ
(
f
)
Ú
λ
(
1
f
)
©
OL
«
f
?
,
f
"
:
Ú
4
:
Â
ñ
•
ê
,
ρ
(
f
) =lim
r
→∞
log
+
T
(
r,f
)
log
r
,
λ
(
f
) =lim
r
→∞
log
+
N
(
r,
1
f
)
log
r
,
λ
(
1
f
) =lim
r
→∞
log
+
N
(
r,f
)
log
r
.
d
´
˜
‡E
ê
,
e
λ
(
f
−
d
)
<ρ
(
f
),
¡
d
•
f
Borel
~
Š
.
f
´
˜
‡E
²
¡
þ
š
~
ê
æ
X
¼
ê
,
c
´
˜
‡
š
"
k
¡
E
ê
,
f
©
•
∆
c
f
(
z
) =
f
(
z
+
c
)
−
f
(
z
).
•
C
A
›
c
5
,
k
'
æ
X
¼
ê
9
©
†
²
£
Ø
Ä:
,
æ
X
¼
ê
†
Ù²
£
Ú
©
Ø
Ä:
†
?
'
X
Ñ
k
N
õ
#
ï
Ä
¤
J
,
X
[5–14].2000
c
,Fang[12]
ï
Ä
æ
X
¼
ê
ê
Ø
Ä
DOI:10.12677/pm.2020.109095827
n
Ø
ê
Æ
-
•
§
B
:
Š
©
Ù
,
y
²
½
n
A
f
´
˜
‡
‡
æ
X
¼
ê
,
e
f
¤
k
"
:
Ú
4
:
-
?
þ
≥
2,
K
f
0
k
Ã
¡
õ
‡
Ø
Ä:
.
2008
c
,Chen-Shon[10]
ï
Ä
‡
¼
ê
Ú
æ
X
¼
ê
"
:
Ú
Ø
Ä:
.2013
c
,Chen[8]
ï
Ä
æ
X
¼
ê
†
Ù²
£
Ú
©
Ø
Ä:
‹
?
ƒ
m
'
X
,
y
²
½
n
B
f
´
E
²
¡
þ
˜
‡
÷
v
λ
(
1
f
)
<ρ
(
f
)
k
¡
?
æ
X
¼
ê
,
c
´
˜
‡
š
"
k
¡
E
ê
,
÷
v
f
(
z
+
c
)
6≡
f
(
z
)+
c
,
K
k
max
{
τ
(
f
(
z
))
,τ
(∆
c
f
(
z
))
}
=
ρ
(
f
)
,
max
{
τ
(
f
(
z
))
,τ
(
f
(
z
+
c
))
}
=
ρ
(
f
)
,
max
{
τ
(∆
c
f
(
z
))
,τ
(
f
(
z
+
c
))
}
=
ρ
(
f
)
.
Ù
¥
τ
(
f
)
L
«
f
Ø
Ä:
Â
ñ
•
ê
(
e
Ó
).
2016
c
,Zhang-Chen[14]
•
Ñ
½
n
B
¥
^
‡
λ
(
1
f
)
<ρ
(
f
)
Ø
U
K
,
¿
ò
^
‡
U
•
λ
(
f
(
z
)
−
d
)
<
ρ
(
f
),
d
´
˜
‡
k
¡
E
ê
,
½
n
B
•
,
¤
á
,
y
²
½
n
C
d
´
˜
‡
k
¡
E
ê
,
f
´
E
²
¡
þ
˜
‡
÷
v
λ
(
f
(
z
)
−
d
)
<ρ
(
f
)
k
¡
?
æ
X
¼
ê
,
c
´
˜
‡
š
"
k
¡
E
ê
,
K
k
max
{
τ
(
f
(
z
))
,τ
(∆
c
f
(
z
))
}
=
ρ
(
f
)
,
max
{
τ
(
f
(
z
))
,τ
(
f
(
z
+
c
))
}
=
ρ
(
f
)
,
max
{
τ
(∆
c
f
(
z
))
,τ
(
f
(
z
+
c
))
}
=
ρ
(
f
)
.
2003
c
,Bergweiler-Pang[6]
í
2
¿
U
?
½
n
A,
y
²
½
n
D
f
´
˜
‡
k
¡
?
‡
æ
X
¼
ê
,
P
6≡
0
´
˜
‡
õ
‘
ª
,
e
f
¤
k
"
:
-
?
≥
2,
K
k
•
‡
~
,
K
f
0
−
P
k
Ã
¡
õ
‡
"
:
.
½
n
E
f
´
˜
‡
‡
æ
X
¼
ê
,
R
6≡
0
´
˜
‡
k
n
¼
ê
,
e
f
¤
k
"
:
Ú
4
:
-
?
þ
≥
2,
K
k
•
‡
~
,
K
f
0
−
R
k
Ã
¡
õ
‡
"
:
.
2019
c
,Chen-Zheng[7]
í
2
½
n
C,
y
²
½
n
F
c
´
˜
‡
š
"
k
¡
E
ê
,
f
´
˜
‡
k
¡
?
‡
æ
X
¼
ê
,
m
∈
N
+
,
P
(
z
)=
p
m
z
m
+
p
m
−
1
z
m
−
1
+
···
+
p
0
´
˜
‡
š
~
ê
õ
‘
ª
,
p
i
∈
C
,i
=0
,
1
,
···
,m
,
…
p
m
6
=0,
e
f
k
˜
‡
Borel
~
Š
d
∈
C
,
K
k
max
{
λ
(
f
(
z
)
−
P
(
z
))
,λ
(∆
c
f
(
z
)
−
P
(
z
))
}
=
ρ
(
f
)
,
max
{
λ
(
f
(
z
)
−
P
(
z
))
,λ
(
f
(
z
+
c
)
−
P
(
z
))
}
=
ρ
(
f
)
,
max
{
λ
(∆
c
f
(
z
)
−
P
(
z
))
,λ
(
f
(
z
+
c
)
−
P
(
z
))
}
=
ρ
(
f
)
.
g
,
¬
¯
,
é
uk
¡
?
‡
æ
X
¼
ê
†k
n
¼
ê
"
:
Â
ñ
•
ê´
Ä
•
k
a
q
u
½
n
F
(
Ø
.
DOI:10.12677/pm.2020.109095828
n
Ø
ê
Æ
-
•
§
B
©
‰
Ñ
’
½
£
‰
,
y
²
½
n
1
c
´
˜
‡
š
"
k
¡
E
ê
,
f
´
˜
‡
k
¡
?
‡
æ
X
¼
ê
,
R
(
z
) =
a
p
z
p
+
a
p
−
1
z
p
−
1
+
···
+
a
0
b
q
z
q
+
b
q
−
1
z
q
−
1
+
···
+
b
0
´
˜
‡
š
~
ê
k
n
¼
ê
,
Ù
¥
a
p
6
=0
,a
p
−
1
,
···
,a
0
,b
q
6
=0
,b
q
−
1
,
···
,b
0
´
k
¡
E
ê
,
p,q
´
š
K
ê
,
…
p
+
q
≥
1.
e
f
k
˜
‡
Borel
~
Š
d
∈
C
,
K
k
max
{
λ
(
f
(
z
)
−
R
(
z
))
,λ
(∆
c
f
(
z
)
−
R
(
z
))
}
=
ρ
(
f
)
,
max
{
λ
(
f
(
z
)
−
R
(
z
))
,λ
(
f
(
z
+
c
)
−
R
(
z
))
}
=
ρ
(
f
)
,
max
{
λ
(∆
c
f
(
z
)
−
R
(
z
))
,λ
(
f
(
z
+
c
)
−
R
(
z
))
}
=
ρ
(
f
)
.
½
n
2
c
´
˜
‡
š
"
k
¡
E
ê
,
f
´
˜
‡
k
¡
?
‡
æ
X
¼
ê
,
R
(
z
) =
a
p
z
p
+
a
p
−
1
z
p
−
1
+
···
+
a
0
b
q
z
q
+
b
q
−
1
z
q
−
1
+
···
+
b
0
´
˜
‡
š
~
ê
k
n
¼
ê
,
Ù
¥
a
p
6
=0
,a
p
−
1
,
···
,a
0
,b
q
6
=0
,b
q
−
1
,
···
,b
0
´
k
¡
E
ê
,
p,q
´
š
K
ê
,
…
p
+
q
≥
1.
e
f
k
˜
‡
Borel
~
Š
d
=
∞
,∆
c
f
(
z
)
´
‡
æ
X
¼
ê
,
K
k
max
{
λ
(
f
(
z
)
−
R
(
z
))
,λ
(∆
c
f
(
z
)
−
R
(
z
))
}
=
ρ
(
f
)
,
max
{
λ
(
f
(
z
)
−
R
(
z
))
,λ
(
f
(
z
+
c
)
−
R
(
z
))
}
=
ρ
(
f
)
,
max
{
λ
(∆
c
f
(
z
)
−
R
(
z
))
,λ
(
f
(
z
+
c
)
−
R
(
z
))
}
=
ρ
(
f
)
.
~
1
f
(
z
)=
e
z
+
R
(
z
),
R
(
z
)
´
k
n
¼
ê
,
c
´
÷
v
e
c
=1
š
"
~
ê
.
K
∆
c
f
(
z
)=
R
(
z
+
c
)
−
R
(
z
),
ρ
(
f
)=1,
λ
(
f
(
z
)
−
R
(
z
))=0
,λ
(∆
c
f
(
z
)
−
R
(
z
))=0
,λ
(
f
(
z
+
c
)
−
R
(
z
))=0.
Ï
d
max
{
λ
(
f
(
z
)
−
R
(
z
))
,λ
(
f
(
z
+
c
)
−
R
(
z
))
,λ
(∆
c
f
(
z
)
−
R
(
z
))
}
<ρ
(
f
).
~
1
`
²
½
n
2
¥
^
‡
∆
c
f
(
z
)
´
‡
æ
X
¼
ê´
7
I
.
2.
˜
Ú
n
•
y
²
©
(
J
,
I
‡
X
e
A
‡
Ú
n
.
Ú
n
2.1
[11][14]
f
´
E
²
¡
þ
˜
‡
k
¡
?
æ
X
¼
ê
,
c
´
˜
‡‰
½
š
"
k
¡
E
ê
,
d
´
˜
‡
k
¡
E
ê
,
K
é
u
?
¿
ε>
0,
k
T
(
r,f
(
z
+
c
)) =
T
(
r,f
)+
O
(
r
ρ
(
f
)
−
1+
ε
)+
O
(log
r
)
,
N
(
r,f
(
z
+
c
)) =
N
(
r,f
)+
O
(
r
ρ
(
f
)
−
1+
ε
)+
O
(log
r
)
,
N
r,
1
f
(
z
+
c
)
−
d
=
N
r,
1
f
(
z
)
−
d
+
O
(
r
ρ
(
f
)
−
1+
ε
)+
O
(log
r
)
.
DOI:10.12677/pm.2020.109095829
n
Ø
ê
Æ
-
•
§
B
Ú
n
2.2
[2]
f
´
E
²
¡
þ
˜
‡
æ
X
¼
ê
,
K
é
u
f
¤
k
Ø
Œ
k
n
¼
ê
R
(
z,f
(
z
)) =
p
P
i
=0
a
i
(
z
)
f
i
(
z
)
q
P
j
=0
b
j
(
z
)
f
j
(
z
)
,
Ù
¥
a
i
(
z
)
,i
= 0
,
1
,
···
,p,b
j
(
z
)
,j
= 0
,
1
,
···
,q
´
f
æ
X
¼
ê
,
K
k
T
(
r,R
(
z,f
(
z
))) = max
{
p,q
}
T
(
r,f
)+
S
(
r,f
)
.
Ú
n
2.3
[14]
f
´
E
²
¡
þ
˜
‡
æ
X
¼
ê
,
÷
v
N
(
r,f
)+
N
(
r,
1
f
) =
S
(
r,f
).
-
F
(
z
) =
a
0
(
z
)
f
p
(
z
)+
a
1
(
z
)
f
p
−
1
(
z
)+
···
+
a
p
(
z
)
b
0
(
z
)
f
q
(
z
)+
b
1
(
z
)
f
q
−
1
(
z
)+
···
+
b
q
(
z
)
,
Ù
¥
a
i
(
z
)
,i
=0
,
1
,
···
,p,b
j
(
z
)
,j
=0
,
1
,
···
,q
´
f
æ
X
¼
ê
,
…
a
0
b
0
a
p
6≡
0,
e
q
≤
p,T
(
r,F
)
≥
T
(
r,f
)+
S
(
r,f
),
K
k
λ
(
F
) =
ρ
(
f
)
.
Ú
n
2.4
[3]
f
1
(
z
)
,f
2
(
z
)
,
···
,f
n
(
z
)
´
E
²
¡
þ
æ
X
¼
ê
,
g
1
(
z
)
,g
2
(
z
)
,
···
,g
n
(
z
)
´
¼
ê
,
÷
v
±
e
^
‡
(1)
n
P
j
=1
f
j
(
z
)
e
g
j
(
z
)
≡
0;
(2)
é
u
1
≤
j<k
≤
n,g
j
(
z
)
−
g
k
(
z
)
Ø
•
~
ê
;
(3)
é
u
1
≤
j
≤
n,
1
≤
h<k
≤
n,
T
(
r,f
j
) =
o
{
T
(
r,e
g
h
−
g
k
)
}
,r
→∞
.
K
é
u
j
= 1
,
2
,
···
,n
,
k
f
j
(
z
)
≡
0.
Ú
n
2.5
[7] [14]
H
´
E
²
¡
þ
˜
‡
æ
X
¼
ê
,
h
´
÷
v
deg
h
≥
1
õ
‘
ª
,
c
´
˜
‡
š
"
k
¡
E
ê
,
e
ρ
(
H
)
<ρ
(
e
h
),
K
k
T
(
r,H
) =
S
(
r,e
h
)
,T
(
r,H
(
z
+
c
)) =
S
(
r,e
h
)
,T
(
r,e
h
(
z
+
c
)
−
h
(
z
)
) =
S
(
r,e
h
)
.
é
u
j
=1
,
2
,
···
,n,T
(
r,H
(
z
+
jc
))=
S
(
r,e
h
).
é
u
k
∈
N
+
,s
∈
N
,k>s,T
(
r,e
h
(
z
+
kc
)
−
h
(
z
+
sc
)
)=
S
(
r,e
h
)
.
3.
½
n
y
²
½
n
1
y
²
DOI:10.12677/pm.2020.109095830
n
Ø
ê
Æ
-
•
§
B
b
λ
(
f
(
z
)
−
R
(
z
))
<ρ
(
f
),
e
y
λ
(∆
c
f
(
z
)
−
R
(
z
)) =
λ
(
f
(
z
+
c
)
−
R
(
z
)) =
ρ
(
f
)
.
-
F
1
(
z
) =
f
(
z
)
−
R
(
z
)
f
(
z
)
−
d
.
(3.1)
d
Ú
n
2.2
T
(
r,F
1
) =
T
(
r,f
)+
S
(
r,f
),
K
ρ
(
F
1
) =
ρ
(
f
)
<
∞
,
Ï
d
k
λ
(
1
F
1
) =
λ
(
f
(
z
)
−
d
)
<ρ
(
f
) =
ρ
(
F
1
)
,
λ
(
F
1
) =
λ
(
f
(
z
)
−
R
(
z
))
<ρ
(
f
) =
ρ
(
F
1
)
,
ù
¿
›
X
0
Ú
∞
´
F
1
Borel
~
Š
.
d
Hadamard
Ï
f
©
)
½
n
,
F
1
(
z
) =
A
1
(
z
)
e
B
1
(
z
)
.
(3.2)
Ù
¥
A
1
(
z
)
6≡
0
´
÷
v
ρ
(
A
1
)
<ρ
(
F
1
)=
ρ
(
f
)
æ
X
¼
ê
.
B
1
(
z
)
´
÷
v
ρ
(
f
)=
ρ
(
F
1
)=deg
B
1
(
z
)
≥
1
õ
‘
ª
.
d
(3.1)(3.2)
f
(
z
) =
R
(
z
)
−
d
1
−
F
1
(
z
)
+
d
=
R
(
z
)
−
d
1
−
A
1
(
z
)
e
B
1
(
z
)
+
d.
(3.3)
d
(3.3)
∆
c
f
(
z
) =
f
(
z
+
c
)
−
f
(
z
)
=
R
(
z
+
c
)
−
d
1
−
A
1
(
z
+
c
)
e
B
1
(
z
+
c
)
−
R
(
z
)
−
d
1
−
A
1
(
z
)
e
B
1
(
z
)
=
(
d
−
R
(
z
+
c
))
A
1
(
z
)+(
R
(
z
)
−
d
)
A
1
(
z
+
c
)
e
B
1
(
z
+
c
)
−
B
1
(
z
)
e
B
1
(
z
)
+
R
(
z
+
c
)
−
R
(
z
)
[
A
1
(
z
)
A
1
(
z
+
c
)
e
B
1
(
z
+
c
)
−
B
1
(
z
)
]
e
2
B
1
(
z
)
+[
−
A
1
(
z
+
c
)
e
B
1
(
z
+
c
)
−
B
1
(
z
)
−
A
1
(
z
)]
e
B
1
(
z
)
+1
=
D
1
(
z
)
e
B
1
(
z
)
+
R
(
z
+
c
)
−
R
(
z
)
D
3
(
z
)
e
2
B
1
(
z
)
+
D
2
(
z
)
e
B
1
(
z
)
+1
,
(3.4)
Ù
¥
D
1
(
z
) = (
d
−
R
(
z
+
c
))
A
1
(
z
)+(
R
(
z
)
−
d
)
A
1
(
z
+
c
)
e
B
1
(
z
+
c
)
−
B
1
(
z
)
,
D
2
(
z
) =
−
A
1
(
z
+
c
)
e
B
1
(
z
+
c
)
−
B
1
(
z
)
−
A
1
(
z
)
,
D
3
(
z
) =
A
1
(
z
)
A
1
(
z
+
c
)
e
B
1
(
z
+
c
)
−
B
1
(
z
)
6≡
0
.
R
(
z
+
c
)
−
R
(
z
) =
a
p
(
z
+
c
)
p
+
a
p
−
1
(
z
+
c
)
p
−
1
+
···
+
a
0
b
q
(
z
+
c
)
q
+
b
q
−
1
(
z
+
c
)
q
−
1
+
···
+
b
0
−
a
p
z
p
+
a
p
−
1
z
p
−
1
+
···
+
a
0
b
q
z
q
+
b
q
−
1
z
q
−
1
+
···
+
b
0
=
a
p
b
q
(
C
1
p
−
C
1
q
)
c
·
z
p
+
q
−
1
+
···
+(
a
p
c
p
+
···
+
a
1
c
)
b
0
−
(
b
q
c
q
+
···
+
b
1
c
)
a
0
[
b
q
(
z
+
c
)
q
+
b
q
−
1
(
z
+
c
)
q
−
1
+
···
+
b
0
][
b
q
z
q
+
b
q
−
1
z
q
−
1
+
···
+
b
0
]
6≡
0
.
DOI:10.12677/pm.2020.109095831
n
Ø
ê
Æ
-
•
§
B
d
(3.4)
∆
c
f
(
z
)
−
R
(
z
) =
D
1
(
z
)
e
B
1
(
z
)
+
R
(
z
+
c
)
−
R
(
z
)
D
3
(
z
)
e
2
B
1
(
z
)
+
D
2
(
z
)
e
B
1
(
z
)
+1
−
R
(
z
)
=
−
R
(
z
)
D
3
(
z
)
e
2
B
1
(
z
)
+(
D
1
(
z
)
−
R
(
z
)
D
2
(
z
))
e
B
1
(
z
)
+
R
(
z
+
c
)
−
2
R
(
z
)
D
3
(
z
)
e
2
B
1
(
z
)
+
D
2
(
z
)
e
B
1
(
z
)
+1
=
−
R
(
z
)
D
3
(
z
)
e
2
B
1
(
z
)
+
D
4
(
z
)
e
B
1
(
z
)
+
R
(
z
+
c
)
−
2
R
(
z
)
D
3
(
z
)
e
2
B
1
(
z
)
+
D
2
(
z
)
e
B
1
(
z
)
+1
,
(3.5)
Ù
¥
D
4
(
z
) =
D
1
(
z
)
−
R
(
z
)
D
2
(
z
) = (
d
−
R
(
z
+
c
)+
R
(
z
))
A
1
(
z
)+(2
R
(
z
)
−
d
)
e
B
1
(
z
+
c
)
−
B
1
(
z
)
.
R
(
z
+
c
)
−
2
R
(
z
) =
a
p
(
z
+
c
)
p
+
a
p
−
1
(
z
+
c
)
p
−
1
+
···
+
a
0
b
q
(
z
+
c
)
q
+
b
q
−
1
(
z
+
c
)
q
−
1
+
···
+
b
0
−
2
a
p
z
p
+
a
p
−
1
z
p
−
1
+
···
+
a
0
b
q
z
q
+
b
q
−
1
z
q
−
1
+
···
+
b
0
=
−
a
p
b
q
z
p
+
q
+
···
+(
a
p
c
p
+
···
+
a
1
c
)
b
0
−
2(
b
q
c
q
+
···
+
b
1
c
)
a
0
−
a
0
b
0
[
b
q
(
z
+
c
)
q
+
b
q
−
1
(
z
+
c
)
q
−
1
+
···
+
b
0
][
b
q
z
q
+
b
q
−
1
z
q
−
1
+
···
+
b
0
]
6≡
0
.
d
(3.4),
R
(
z
+
c
)
−
R
(
z
)
6≡
0
†
(3.5),
R
(
z
)
D
3
(
z
)
6≡
0
Œ
±
w
Ñ
∆
c
f
(
z
)
†
∆
c
f
(
z
)
−
R
(
z
)
´
e
B
1
(
z
)
k
n
¼
ê
.
Ï
•
ρ
(
A
1
)
<ρ
(
e
B
1
),
d
Ú
n
2.5
,
X
ê
D
i
(
z
)(
i
=1
,
2
,
3
,
4)
´
e
B
1
(
z
)
¼
ê
.
w
,
D
i
(
z
)
6≡
0(
i
= 1
,
2
,
3
,
4),
d
Ú
n
2.4
D
1
(
z
)
e
B
1
(
z
)
+
R
(
z
+
c
)
−
R
(
z
)
6≡
0
.
K
d
(3.4)(3.5)
T
(
r,
∆
c
f
(
z
))
≥
T
(
r,e
B
1
(
z
)
)+
S
(
r,e
B
1
(
z
)
)
,
T
(
r,
∆
c
f
(
z
)
−
R
(
z
))
≥
T
(
r,e
B
1
(
z
)
)+
S
(
r,e
B
1
(
z
)
)
.
(3.6)
d
(3.5)(3.6)
†
Ú
n
2.3
λ
(∆
c
f
(
z
)
−
R
(
z
)) =
ρ
(
e
B
1
(
z
)
) =
ρ
(
f
)
,
(3.7)
=
max
{
λ
(
f
(
z
)
−
R
(
z
))
,λ
(∆
c
f
(
z
)
−
R
(
z
))
}
=
ρ
(
f
)
.
d
(3.3)
f
(
z
+
c
)
−
R
(
z
) =
R
(
z
+
c
)
−
d
1
−
A
1
(
z
+
c
)
e
B
1
(
z
+
c
)
+
d
−
R
(
z
)
=
(
R
(
z
)
−
d
)
A
1
(
z
+
c
)
e
B
1
(
z
+
c
)
+
R
(
z
+
c
)
−
R
(
z
)
1
−
A
1
(
z
+
c
)
e
B
1
(
z
+
c
)
.
(3.8)
DOI:10.12677/pm.2020.109095832
n
Ø
ê
Æ
-
•
§
B
Ï
•
(
R
(
z
)
−
d
)
A
1
(
z
+
c
)+(
R
(
z
+
c
)
−
R
(
z
))
A
1
(
z
+
c
) = (
R
(
z
+
c
)
−
d
)
A
1
(
z
+
c
)
6≡
0,
¤
±
f
(
z
+
c
)
−
R
(
z
)
Œ
±
w
Š
e
B
1
(
z
+
c
)
Ø
Œ
k
n
¼
ê
.
Ï
•
ρ
(
A
1
(
z
+
c
)) =
ρ
(
A
1
)
<ρ
(
e
B
1
) =
ρ
(
e
B
1
(
z
+
c
)
),
d
Ú
n
2.5
T
(
r,A
1
(
z
+
c
)) =
S
(
r,e
B
1
(
z
+
c
)
)
.
(3.9)
d
(3.8)(3.9)
†
Ú
n
2.2
T
(
r,f
(
z
+
c
)
−
R
(
z
)) =
T
(
r,e
B
1
(
z
+
c
)
)+
S
(
r,e
B
1
(
z
+
c
)
)
.
d
Ú
n
2.3
λ
(
f
(
z
+
c
)
−
R
(
z
)) =
ρ
(
e
B
1
(
z
+
c
)
) =
ρ
(
e
B
1
) =
ρ
(
f
)
,
(3.10)
=
max
{
λ
(
f
(
z
)
−
R
(
z
))
,λ
(
f
(
z
+
c
)
−
R
(
z
))
}
=
ρ
(
f
)
.
b
λ
(
f
(
z
+
c
)
−
R
(
z
))
<ρ
(
f
),
e
y
λ
(∆
c
f
(
z
)
−
R
(
z
)) =
ρ
(
f
)
.
-
F
2
(
z
) =
f
(
z
+
c
)
−
R
(
z
)
f
(
z
+
c
)
−
d
.
(3.11)
d
(3.11)
f
(
z
) =
R
(
z
−
c
)
−
d
1
−
F
2
(
z
−
c
)
+
d.
(3.12)
d
(3.11)(3.12)
†
Ú
n
2.1
ρ
(
F
2
) =
ρ
(
F
2
(
z
−
c
)) =
ρ
(
f
)
.
d
Ú
n
2.1
†
λ
(
f
(
z
)
−
d
)
<ρ
(
f
),
λ
(
1
F
2
) =
λ
(
f
(
z
+
c
)
−
d
) =
λ
(
f
(
z
)
−
d
)
<ρ
(
f
) =
ρ
(
F
2
)
,
λ
(
F
2
) =
λ
(
f
(
z
+
c
)
−
R
(
z
))
<ρ
(
f
) =
ρ
(
F
2
)
,
ù
¿
›
X
0
Ú
∞
´
F
2
borel
~
Š
.
a
q
u
(3.2)-(3.7)
L
§
Œ
λ
(∆
c
f
(
z
)
−
R
(
z
)) =
ρ
(
f
)
.
(3.13)
=
max
{
λ
(∆
c
f
(
z
)
−
R
(
z
))
,λ
(
f
(
z
+
c
)
−
R
(
z
))
}
=
ρ
(
f
)
.
y
.
.
DOI:10.12677/pm.2020.109095833
n
Ø
ê
Æ
-
•
§
B
½
n
2
y
²
b
λ
(
f
(
z
)
−
R
(
z
))
<ρ
(
f
),
e
y
λ
(∆
c
f
(
z
)
−
R
(
z
))=
λ
(
f
(
z
+
c
)
−
R
(
z
))=
ρ
(
f
)
.
Ï
•
λ
(
1
f
)
<
ρ
(
f
),
R
´
˜
‡
š
~
ê
k
n
¼
ê
,
d
Hadamard
Ï
f
©
)
½
n
,
k
f
(
z
)
−
R
(
z
) =
α
(
z
)
e
p
(
z
)
,
(3.14)
Ù
¥
α
(
z
)
´
÷
v
ρ
(
α
)
<ρ
(
f
)
æ
X
¼
ê
,
p
(
z
)
´
÷
v
deg
p
=
ρ
(
f
)
š
~
ê
õ
‘
ª
.
Ï
d
T
(
r,α
) =
S
(
r,e
p
)
,T
(
r,f
) =
T
(
r,e
p
)+
S
(
r,f
)
.
(3.15)
d
(3.14)
∆
c
f
(
z
) =
f
(
z
+
c
)
−
f
(
z
)
=
R
(
z
+
c
)+
α
(
z
+
c
)
e
p
(
z
+
c
)
−
R
(
z
)
−
α
(
z
)
e
p
(
z
)
=
α
(
z
+
c
)
e
p
(
z
+
c
)
−
p
(
z
)
−
α
(
z
)
e
p
(
z
)
+
R
(
z
+
c
)
−
R
(
z
)
=
D
5
(
z
)
e
p
(
z
)
+
R
(
z
+
c
)
−
R
(
z
)
,
(3.16)
Ù
¥
D
5
(
z
)=
α
(
z
+
c
)
e
p
(
z
+
c
)
−
p
(
z
)
−
α
(
z
)
.
d
(3.15)
T
(
r,D
5
)=
S
(
r,f
)
.
Ï
•
∆
c
f
(
z
)
´
‡
æ
X
¼
ê
,
K
D
5
(
z
)
6≡
0.
d
½
n
1
y
²
,
R
(
z
+
c
)
−
R
(
z
)
6≡
0.
d
(3.15)(3.16)
†
Nevanlinna
1
Ä
½
n
,
T
(
r,
∆
c
f
) =
T
(
r,e
p
)+
S
(
r,f
)
,
N
r,
1
∆
c
f
−
R
=
T
(
r,e
p
)+
S
(
r,f
)
.
Ï
d
λ
(∆
c
f
(
z
)
−
R
(
z
)) =
ρ
(
f
)
.
(3.17)
=
max
{
λ
(∆
c
f
(
z
)
−
R
(
z
))
,λ
(
f
(
z
)
−
R
(
z
))
}
=
ρ
(
f
)
.
d
(3.14)
f
(
z
+
c
)
−
R
(
z
) =
R
(
z
+
c
)+
α
(
z
+
c
)
e
p
(
z
+
c
)
−
R
(
z
)
=
α
(
z
+
c
)
e
p
(
z
+
c
)
−
p
(
z
)
e
p
(
z
)
+
R
(
z
+
c
)
−
R
(
z
)
=
D
6
(
z
)
e
p
(
z
)
+
R
(
z
+
c
)
−
R
(
z
)
,
(3.18)
Ù
¥
D
6
(
z
) =
α
(
z
+
c
)
e
p
(
z
+
c
)
−
p
(
z
)
.
a
q
u
(3.16)(3.17)
L
§
Œ
λ
(
f
(
z
+
c
)
−
R
(
z
)) =
ρ
(
f
)
.
DOI:10.12677/pm.2020.109095834
n
Ø
ê
Æ
-
•
§
B
=
max
{
λ
(
f
(
z
+
c
)
−
R
(
z
))
,λ
(
f
(
z
)
−
R
(
z
))
}
=
ρ
(
f
)
.
b
λ
(
f
(
z
+
c
)
−
R
(
z
))
<ρ
(
f
),
e
y
λ
(∆
c
f
(
z
)
−
R
(
z
)) =
ρ
(
f
)
.
a
q
u
(3.14)-(3.17)
L
§
Œ
λ
(∆
c
f
(
z
)
−
R
(
z
)) =
ρ
(
f
)
.
=
max
{
λ
(∆
c
f
(
z
)
−
R
(
z
))
,λ
(
f
(
z
+
c
)
−
R
(
z
))
}
=
ρ
(
f
)
.
y
.
.
—
Š
ö
é
"
v
<
J
Ñ
B
ï
Æ
L
«
©
%
a
!
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
]
Ï
‘
8
(NNSF11701188)
"
ë
•
©
z
[1]Hayman,W.K.(1964)MeromorphicFunctions.ClarendonPress,Oxford.
[2]Laine,I.(1993)NevanlinnaTheoryandComplexDifferentialEquations.WalterdeGruyter,
Berlin.
[3]Yang,L.(1993)ValueDistributionTheory.Springer-Verlag,Berlin.
[4]Yi,H.X. andYang,C.C. (1995)Uniqueness Theoryof MeromorphicFunctions.SciencePress,
Beijing.
[5]Bergweiler, W.and Langley, J.K. (2007) Zerosof Differencesof MeromorphicFunctions.
Math-
ematicalProceedingsoftheCambridgePhilosophicalSociety
,
142
,133-147.
https://doi.org/10.1017/S0305004106009777
[6]Bergweiler,W.andPang,X.C.(2003)OntheDerivativeofMeromorphicFunctionswith
MultipleZeros.
JournalofMathematicalAnalysisandApplications
,
278
,285-292.
https://doi.org/10.1016/S0022-247X(02)00349-9
[7]Chen, H.Y.and Zheng,X.M.(2019) FixedPoints of MeromorphicFunctions and TheirHigher
OrderDifferencesandShifts.
OpenMathematics
,
17
,677-688.
https://doi.org/10.1515/math-2019-0054
DOI:10.12677/pm.2020.109095835
n
Ø
ê
Æ
-
•
§
B
[8]Chen,Z.X.(2013)FixedPointsofMeromorphicFunctionsandTheirDifferencesandShifts.
AnnalesPoloniciMathematici
,
109
,153-163.https://doi.org/10.4064/ap109-2-4
[9]Chen,Z.X.(2000)TheFixedPointsandHyperOrderofSolutionsofSecondOrderComplex
DifferentialEquations.
ActaMathematicaScientia
,
20
,425-432.
[10]Chen,Z.X.andShon,K.H.(2008)OnZerosandFixedPointsofDifferencesofMeromophic
Function.
JournalofMathematicalAnalysisandApplications
,
344
,373-383.
https://doi.org/10.1016/j.jmaa.2008.02.048
[11]Chiang,Y.M.andFeng,S.J.(2008)OntheNevanlinnaCharacteristicof
f
(z+
ü
)andDif-
ferenceEquationsintheComplexPlane.
TheRamanujanJournal
,
16
,105-129.
https://doi.org/10.1007/s11139-007-9101-1
[12]Fang,M.L.(2000)ANoteonaProblemofHayman.
Analysis(Munich)
,
20
,45-49.
https://doi.org/10.1524/anly.2000.20.1.45
[13]Wang,P.L.,Yang,S.W.andFang,M.L.(2020)TheOrderandExponentsofConvergence
ofSmallFunctionsofMeromorphicFunctionsConcerningDerivativesandDifferences.
Acta
MathematicaSinica(ChineseSeries)
.
http://kns.cnki.net/kcms/detail/11.2038.O1.20200410.1443.079.html
[14]Zhang,R.R.andChen,Z.X.(2016)FixedPointsofMeromorphicFunctionsandofTheir
Differences,DividedDifferencesandShifts.
ActaMathematicaSinica(EnglishSeries)
,
32
,
1189-1202.https://doi.org/10.1007/s10114-016-4286-0
DOI:10.12677/pm.2020.109095836
n
Ø
ê
Æ