设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投搞
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2020,10(9),914-920
PublishedOnlineSeptember2020inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2020.109106
2
Â
C
X
ê
K(
m
,
n
)
•
§
°
(
)
´´´
æææ
xxx
§§§
‡‡‡
ùùù
∗
H
u
Œ
Æ
ê
n
Æ
§
H
ï
Email:
∗
418495670@qq.com
Â
v
F
Ï
µ
2020
c
8
30
F
¶
¹
^
F
Ï
µ
2020
c
9
20
F
¶
u
Ù
F
Ï
µ
2020
c
9
27
F
Á
‡
©
8
´
|
^
z
E
|
z
{
p
š
‚
5
•
§
g
Ž
5
ï
Ä
2
Â
C
X
ê
K(
m
,
n
)
•
§
°
(
)
"
Ï
L
Î
Ò
O
Ž
¼
T
•
§
#
°
(
)
"
'
…
c
°
(
)
§
2
Â
K(
m
,
n
)
•
§
§
Î
Ò
O
Ž
ExactSolutionsfortheGeneralizedK(
m
,
n
)
EquationwithVariableCoefficients
YatingYi,ChaohongPan
∗
SchoolofMathematicsandPhysics,UniversityofSouthChina,HengyangHunan
Email:
∗
418495670@qq.com
Received:Aug.30
th
,2020;accepted:Sep.20
th
,2020;published:Sep.27
th
,2020
Abstract
The objective of thispaperis toinvestigate exact solutionsfor thegeneralizedK(
m
,
n
)
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
´
æ
x
,
‡
ù
.
2
Â
C
X
ê
K(
m
,
n
)
•
§
°
(
)
[J].
n
Ø
ê
Æ
,2020,10(9):914-920.
DOI:10.12677/pm.2020.109106
´
æ
x
§
‡
ù
withvariablecoefficients.Anextendedapproachisproposedforreducingtheorder
oftheequationswithhigherordernonlinearity.Newexactsolutionsarefoundby
symboliccomputation.
Keywords
ExactSolutions,GeneralizedK(
m
,
n
)Equation,SymbolicComputation
Copyright
c
2020byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CC BY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
¯
¤
±•
§
Korteweg-deVries(KdV)
•
§
u
t
+
auu
x
+
bu
xxx
= 0
,
(1
.
1)
´
˜
‡
^
5
£
ã
f
Y
Å
3
š
Ê
5
6
N
L
¡
$
Ä
[1],
Ù
¥
a
Ú
b
´
?
¿
š
"
~
ê
"
C
c
5
§
du
K
(
n,n
)
•
§
2
•
A^
§
˜
ï
Ä
Æ
ö
ò
8
1
=
•
C
X
ê
KdV
.
•
§
[2–6]
"
Ï
L
e
¡
C
†
u
(
x,t
) =
v
1
n
−
1
(
x,t
)
,
(1
.
2)
†
9
Ï
•
§
E
|
§
Lv
<
[7]
¼
X
e
K
(
n,n
)
•
§
N
õ
w
ª
ä
k
Ø
Ó
(
1
Å
)
u
t
+
a
(
t
)
u
x
+
b
(
t
)(
u
n
)
x
+
k
(
t
)(
u
n
)
xxx
= 0
,n
6
= 0
,
1
.
(1
.
3)
ù
)
•
)
n
¼
ê
±
Ï
Å
)
Ú
V
-
¼
ê
)
"
ù
Ÿ
©
Ù
§
É
©
Ù
[7]
é
u
§
·
‚
Ï
L
X
e
C
†
ï
Ä
2
Â
KdV
•
§
µ
u
t
+
a
(
t
)
u
x
+
b
(
t
)(
u
m
)
x
+
k
(
t
)(
u
n
)
xxx
= 0
,m,n
6
= 0
,
1
,
(1
.
4)
Ù
¥
a
(
t
)
b
(
t
)
k
(
t
)
6
= 0.
ù
p
§
·
‚
•
é
•
§
(1.4)
compacton
)
a
,
"
compacton
)
(
Ò
´
ä
k
;
|
8
á
Å
)
)
"
Compacton
)
®
²
3
©
z
[8–12]
2
•
ï
Ä
"
´
é
u
m
6
=
n
ž
•
§
(1.4)
compacton
)
„
v
k
ï
Ä
"
DOI:10.12677/pm.2020.109106915
n
Ø
ê
Æ
´
æ
x
§
‡
ù
2.
•
§
(1.4)
z
•
¼
compacton
)
§
·
‚
ò
e
¡
•
§
u
(
x,t
) =
c
1
+
c
2
z
(
ξ
)
,ξ
=
p
(
t
)
x
+
q
(
t
)
,
(2
.
1)
“
\
(1.4)
¥
,
Ù
¥
z
0
=
√
a
1
+
a
2
z
+
a
3
z
2
,
=
±
1,
a
1
,
a
2
,
a
3
,
c
1
†
c
2
´¢
~
ê
§
p
(
t
)
†
q
(
t
)
´
™
•
¼
ê
"
4
∆=
a
2
2
−
4
a
1
a
3
,
Ò
¬
k
e
¡
¯¢
[13]
"
a
3
<
0
†
∆
>
0,
·
‚
k
z
(
ξ
)=
√
∆
2
a
3
sin(
√
−
a
3
ξ
)
−
a
2
2
a
3
†
z
(
ξ
) =
√
∆
2
a
3
cos(
√
−
a
3
ξ
)
−
a
2
2
a
3
.
5
Ÿ
1.
m
=
n
,
|
^
C
†
u
=
v
p
,
(3
.
1)
Ù
¥
p
=
α
n
−
1
,
α
∈
Z
†
α
6
= 0,
•
§
(1.4)
U
C
¤
e
¡
ü
«
œ
/
"
(i)
X
J
α
≥
2,
•
§
(1.4)
U
C
†
¤
v
t
+
a
(
t
)
v
x
+
b
(
t
)
nv
α
v
x
+
k
(
t
)
n
(
np
−
1)(
np
−
2)
v
α
−
2
v
3
x
+3
k
(
t
)
n
(
np
−
1)
v
α
−
1
v
x
v
xx
+
k
(
t
)
nv
α
v
xxx
= 0
.
(3
.
2)
(ii)
X
J
α<
2,
•
§
(1.4)
U
C
†
¤
v
2
−
α
v
t
+
a
(
t
)
v
2
−
α
v
x
+
b
(
t
)
nv
2
v
x
+
k
(
t
)
n
(
np
−
1)(
np
−
2)
v
3
x
+3
k
(
t
)
n
(
np
−
1)
vv
x
v
xx
+
k
(
t
)
nv
2
v
xxx
= 0
.
(3
.
3)
5
Ÿ
2.
m
6
=
n
Ú
n
−
1
m
−
1
=
β
+2
α
6
= 1,
|
^
C
†
u
=
v
p
,
(3
.
4)
Ù
¥
α
,
β
∈
Z
,
α
6
=0,
β
6
=
−
2and
p
=
α
m
−
1
=
β
+2
n
−
1
,
•
§
(1.4)
U
z
{
¤
v
t
+
a
(
t
)
v
x
+
b
(
t
)
mv
α
v
x
+
k
(
t
)
n
(
np
−
1)(
np
−
2)
v
β
v
3
x
+3
k
(
t
)
n
(
np
−
1)
v
β
+1
v
x
v
xx
+
k
(
t
)
nv
β
+2
v
xxx
= 0
.
(3
.
5)
5
Ÿ
1
Ú
2
y
²
|
^
C
†
(3.1),
·
‚
k
u
t
=
pv
p
−
1
v
t
,
u
x
=
pv
p
−
1
v
x
,
(
u
m
)
x
=
mpv
mp
−
1
v
x
,
(
u
n
)
xxx
=
np
(
np
−
1)(
np
−
2)
v
np
−
3
v
3
x
+3
np
(
np
−
1)
v
np
−
2
v
x
v
xx
+
npv
np
−
1
v
xxx
.
(3
.
6)
ò
(3.6)
“
\
•
§
(1.4),
·
‚
pv
p
−
1
v
t
+
a
(
t
)
pv
p
−
1
v
x
+
b
(
t
)
mpv
mp
−
1
v
x
+
k
(
t
)
np
(
np
−
1)(
np
−
2)
v
np
−
3
v
3
x
+3
k
(
t
)
np
(
np
−
1)
v
np
−
2
v
x
v
xx
+
k
(
t
)
npv
np
−
1
v
xxx
= 0
.
(3
.
7)
DOI:10.12677/pm.2020.109106916
n
Ø
ê
Æ
´
æ
x
§
‡
ù
þ
ª
ü
à
¦
±
v
s
,
·
‚
k
v
s
[
pv
p
−
1
v
t
+
a
(
t
)
pv
p
−
1
v
x
+
b
(
t
)
mpv
mp
−
1
v
x
+
k
(
t
)
np
(
np
−
1)(
np
−
2)
v
np
−
3
v
3
x
+3
k
(
t
)
np
(
np
−
1)
v
np
−
2
v
x
v
xx
+
k
(
t
)
npv
np
−
1
v
xxx
] = 0
,
(3
.
8)
½
ö
pv
s
+
p
−
1
v
t
+
a
(
t
)
pv
s
+
p
−
1
v
x
+
b
(
t
)
mpv
s
+
mp
−
1
v
x
+
k
(
t
)
np
(
np
−
1)(
np
−
2)
v
s
+
np
−
3
v
3
x
+3
k
(
t
)
np
(
np
−
1)
v
s
+
np
−
2
v
x
v
xx
+
k
(
t
)
npv
s
+
np
−
1
v
xxx
= 0
,
(3
.
9)
Ù
¥
s
´
˜
‡
?
¿
~
ê
"
4
s
+
p
−
1 =
A,
s
+
mp
−
1 =
B,
s
+
np
−
3 =
C,
(3
.
10)
Ù
¥
A
,
B
Ú
C
´
?
¿
~
ê
"
l
(3.10)
·
‚
Œ
±
p
=
B
−
A
m
−
1
=
C
−
A
+2
n
−
1
.
(3
.
11)
e
¡
§
·
‚
ò
©
m
=
n
Ú
m
6
=
n
5
©
O
y
²
5
Ÿ
1
Ú
2
"
Case(1)
m
=
n
,i.e.
B
=
C
+2,
Ï
L
|
^
(3.10)
Ú
(3.11),
•
§
(3.9)
Œ
±
z
•
v
A
v
t
+
a
(
t
)
v
A
v
x
+
b
(
t
)
mv
B
v
x
+
k
(
t
)
n
(
np
−
1)(
np
−
2)
v
B
−
2
v
3
x
+3
k
(
t
)
n
(
np
−
1)
v
B
−
1
v
x
v
xx
+
k
(
t
)
nv
B
v
xxx
= 0
.
(3
.
12)
B
−
2
≥
A
,
þ
ª
ü
à
¦
±
v
−
A
,
·
‚
v
t
+
a
(
t
)
v
x
+
b
(
t
)
mv
B
−
A
v
x
+
k
(
t
)
n
(
np
−
1)(
np
−
2)
v
B
−
A
−
2
v
3
x
+3
k
(
t
)
n
(
np
−
1)
v
B
−
A
−
1
v
x
v
xx
+
k
(
t
)
nv
B
−
A
v
xxx
= 0
.
(3
.
13)
•
{
ü
å
„
§
·
‚
4
B
−
A
=
α
.
•
§
(3.13)
U
s
¤
•
§
(3.2)
"
B
−
2
<A
,
þ
ª
ü
à
¦
±
v
−
B
+2
,
·
‚
v
A
−
B
+2
v
t
+
a
(
t
)
v
A
−
B
+2
v
x
+
b
(
t
)
mv
2
v
x
+
k
(
t
)
n
(
np
−
1)(
np
−
2)
v
3
x
+3
k
(
t
)
n
(
np
−
1)
vv
x
v
xx
+
k
(
t
)
nv
2
v
xxx
= 0
.
(3
.
14)
?
˜
Ú
•
§
(3.14)
Ò
U
z
¤
•
§
(3.3).
u
´
·
‚
Ò
¤
5
Ÿ
1
y
²
"
Case(2)
m
6
=
n
,
|
^
(3.10)
†
(3.11),
•
§
(3.9)
U
¤
v
t
+
a
(
t
)
v
x
+
b
(
t
)
mv
B
−
A
v
x
+
k
(
t
)
n
(
np
−
1)(
np
−
2)
v
C
−
A
v
3
x
+3
k
(
t
)
n
(
np
−
1)
v
C
−
A
+1
v
x
v
xx
+
k
(
t
)
nv
C
−
A
+2
v
xxx
= 0
.
(3
.
15)
4
B
−
A
=
α
Ú
C
−
A
=
β
,
·
‚
Ò
¤
5
Ÿ
2
y
²
"
DOI:10.12677/pm.2020.109106917
n
Ø
ê
Æ
´
æ
x
§
‡
ù
3.
•
§
(1.4)
Compacton
)
3.1
m
=
n
4
α
= 2,
•
§
(3.2)
C
¤
v
t
+
a
(
t
)
v
x
+
nb
(
t
)
v
2
v
x
+
2
n
(
n
+1)
(
n
−
1)
2
k
(
t
)
v
3
x
+
3
n
(
n
+1)
n
−
1
k
(
t
)
vv
x
v
xx
+
nk
(
t
)
v
2
v
xxx
= 0
.
(4
.
1)
ò
(2.1)
“
\
(4.1)
4
X
ê
x
s
z
i
(
ξ
)
√
a
1
+
a
2
z
+
a
3
z
2
(
s
=0
,
1
,i
=0
,
1
,
2)
u
0,
·
‚
Ò
Œ
±
'
u
c
2
,
p
(
t
)
†
q
(
t
)
“
ê
•
§
"
Ï
L
ê
Æ
^
‡
Mathematica
¦
)
ù
•
§
§
·
‚
c
2
=
2
a
3
c
1
a
2
,
p
(
t
) =
±
n
−
1
2
n
q
−
b
(
t
)
a
3
k
(
t
)
,
p
0
(
t
) = 0
,
q
0
(
t
) =
∓
n
−
1
4
n
2
a
2
2
q
−
b
(
t
)
a
3
k
(
t
)
(2
na
(
t
)
a
2
2
+(
n
+1)
b
(
t
)(
a
2
2
−
4
a
1
a
3
)
c
2
1
)
,
(4
.
2)
Ù
¥
a
2
a
3
c
1
6
= 0,
a
1
,
a
2
,
a
3
†
c
1
´
?
¿
~
ê
"
3
(4.2),
·
‚
‡
¦
b
(
t
)
k
(
t
)
7
L
´
˜
‡
~
ê
"
(i)
X
J
a
3
<
0,∆
>
0
…
b
(
t
)
k
(
t
)
>
0,
·
‚
u
1
(
x,t
) =
"
c
1
√
∆
a
2
sin
n
−
1
2
n
s
b
(
t
)
k
(
t
)
x
+
√
−
a
3
q
(
t
)
!#
2
n
−
1
,
Ú
u
2
(
x,t
) =
"
c
1
√
∆
a
2
cos
n
−
1
2
n
s
b
(
t
)
k
(
t
)
x
+
√
−
a
3
q
(
t
)
!#
2
n
−
1
.
3.2
m
6
=
n
m
6
=
n
,
•
§
(3.5)
Œ
±
¤
v
3
v
t
+
a
(
t
)
v
3
v
x
+
mb
(
t
)
v
4
v
x
+
k
(
t
)(2
−
m
)
(3
−
2
m
)(4
−
3
m
)
(
m
−
1)
2
v
3
x
+
9
−
6
m
m
−
1
vv
x
v
xx
+
v
2
v
xxx
= 0
.
(4
.
7)
ò
(2.1)
“
\
(4.7)
¿
4
X
ê
x
s
z
i
(
ξ
)
√
a
1
+
a
2
z
+
a
3
z
2
(
s
=0
,
1
,i
=0
,
1
,
2
,
3)
u
0
§
·
‚
Œ
±
¼
'
u
a
3
,
c
2
,
p
(
t
)
Ú
q
(
t
)
“
ê
•
§
"
Ï
L
^
‡
Mathematica
§
·
‚
Œ
±
q
0
(
t
) =
−
16
M
3
2
M
5
a
(
t
)
a
3
1
−
mM
3
3
b
(
t
)
a
3
2
c
4
1
4
M
3
2
M
6
a
3
1
,
c
2
=
M
3
a
2
c
1
4
M
2
a
1
,
p
(
t
) =
±
4
M
5
M
6
,
p
0
(
t
) = 0
,
a
3
=
3
M
4
a
2
2
8(3
m
−
4)
M
2
1
a
1
,
(4
.
8)
DOI:10.12677/pm.2020.109106918
n
Ø
ê
Æ
´
æ
x
§
‡
ù
Ù
¥
M
1
= 14
m
2
−
41
m
+29,
M
2
=
−
116+251
m
−
179
m
2
+42
m
3
,
M
3
=
−
164+374
m
−
281
m
2
+69
m
3
,
M
4
=
−
2460+8726
m
−
12305
m
2
+8618
m
3
−
2997
m
4
+414
m
5
,
M
5
=
p
(
m
−
1)
2
m
(3
m
−
4)
M
2
1
b
(
t
)
a
1
c
2
1
,
M
6
=
p
(
m
−
2)
3
M
4
k
(
t
)
a
2
2
,
a
1
a
2
a
3
c
1
6
=0.
3
(4.8)
¥
,
·
‚
‡
¦
Ï
f
b
(
t
)
k
(
t
)
7
L
´
˜
‡
~
ê
"
?
˜
Ú
§
·
‚
k
µ
(i)
a
3
<
0
†
∆
>
0,
·
‚
¼
•
§
(1.4)
)
u
6
(
x,t
) =
"
c
1
+
c
2
√
∆
2
a
3
sin(
√
−
a
3
(
p
(
t
)
x
+
q
(
t
)))
−
a
2
2
a
3
!#
1
m
−
1
,
†
u
7
(
x,t
) =
"
c
1
+
c
2
√
∆
2
a
3
cos(
√
−
a
3
(
p
(
t
)
x
+
q
(
t
)))
−
a
2
2
a
3
!#
1
m
−
1
.
4.
(
Ø
ù
Ÿ
©
Ù
¥
·
‚
Ï
L
˜
‡
{
ü
E
|
¼
2
Â
K(
m
,
n
)
•
§
°
(
)
"
¯¢
þ
§
·
‚
Ï
L
e
¡
C
†
u
(
x,t
) =
n
X
i
=0
c
i
z
i
(
ξ
)
,ξ
=
p
(
t
)
x
+
q
(
t
)
,
Ù
¥
c
i
(
i
= 0
,
1
,
2
,
3
,
···
)
´¢
~
ê
"
Ó
ž
·
‚
Ú
\
9
Ï
•
§
z
0
=
p
a
1
+
a
2
z
+
a
3
z
2
+
a
4
z
3
+
a
5
z
4
,
Ù
¥
a
i
(
i
= 1
,
2
,
3
,
4
,
5)
´¢
~
ê
"
·
‚
Œ
±
¼
2
Â
K(
m
,
n
)
•
§
Ù
{
°
(
)
"
Ä
7
‘
8
H
Ž
˜
e
]
Ï
‘
8
(17C1363)
"
ë
•
©
z
[1]Olver,P.J.andRosenau,P.(1996)Tri-HamiltonianDualitybetweenSolitonsandSolitary-
WaveSolutionsHaveCompactSupport.
PhysicalReviewE
,
53
,1900-1906.
https://doi.org/10.1103/PhysRevE.53.1900
[2]Bona,J.L.andSmith,R.(1975)TheInitialProblemfortheKorteweg-deVriesEquation.
PhilosophicalTransactionsoftheRoyalSocietyofLondon.SeriesA
,
278
,555-601.
https://doi.org/10.1098/rsta.1975.0035
DOI:10.12677/pm.2020.109106919
n
Ø
ê
Æ
´
æ
x
§
‡
ù
[3]Saut,J.C.andTzetkov,N. (2004)GlobalWell-Posedness for the KP-BBM Equations.
Applied
MathematicsResearcheXpress
,
1
,1-6.
[4]Lai,S.Y.,Wu,Y.H.andWiwatanapataphee,B.(2008)OnExactTravellingWaveSolutions
forTwoTypesofNonlinear
K
(
n,n
)EquationsandaGeneralizedKPEquation.
Journalof
ComputationalandAppliedMathematics
,
212
,291-299.
https://doi.org/10.1016/j.cam.2006.12.008
[5]Wazwaz,A.M.(2002)GeneralCompactonsSolutionsfortheFocusingBranchoftheNon-
linearDispersive
K
(
n,n
)EquationsinHigher-DimensionalSpaces.
AppliedMathematicsand
Computation
,
133
,213-227.https://doi.org/10.1016/S0096-3003(01)00233-8
[6]Wazwaz, A.M. (2007) TheTanh-Coth Methodfor NewCompactons and SolitonsSolutions for
the
K
(
n,n
)andthe
K
(
n
+1
,n
+1)Equations.
AppliedMathematicsandComputation
,
188
,
1930-1940.https://doi.org/10.1016/j.amc.2006.11.076
[7]Lv,X.M.,Lai,S.Y.andWu,Y.H.(2010)ThePhysicalStructuresofSolutionsforGener-
alized
K
(
n,n
)and
BBM
EquationswithVariableCoefficients.
MathematicalandComputer
Modelling
,
52
,781-790.https://doi.org/10.1016/j.mcm.2010.05.007
[8]Wazwaz,A.M.(2005)TheTanhMethodforaReliableTreatmentofthe
K
(
n,n
)andthe
KP
(
n,n
)EquationsandItsVariants.
AppliedMathematicsandComputation
,
170
,361-379.
https://doi.org/10.1016/j.amc.2004.12.008
[9]Wazwaz,A.M.(2007)AnalyticStudyforFifth-OrderKdV-TypeEquationswithArbitrary
PowerNonlinearities.
CommunicationsinNonlinearScienceandNumericalSimulation
,
12
,
904-909.https://doi.org/10.1016/j.cnsns.2005.10.001
[10]Wazwaz,A.M.(2002)CompactonsDispersiveStructuresforVariantsofthe
K
(
n,n
)andthe
KP
Equations.
Chaos,SolitonsandFractals
,
13
,1053-1062.
https://doi.org/10.1016/S0960-0779(01)00109-6
[11]Wazwaz,A.M.(2003)CompactonsandSolitaryPatternsStructuresforVariantsoftheKdV
andtheKPEquations.
AppliedMathematicsandComputation
,
139
,37-54.
https://doi.org/10.1016/S0096-3003(02)00120-0
[12]Zhu,Y.G.andGao,X.S.(2006)ExactSpecialSolitarySolutionswithCompactSupportfor
theNonlinearDispersive
K
(
m,n
)Equations.
Chaos,SolitonsandFractals
,
27
,487-493.
https://doi.org/10.1016/j.chaos.2005.04.028
[13]Gradshteyn,I.S.andRyzhik,I.M.(1965)TableofIntegrals,Series,andProducts.Academic
Press,NewYork.(Trans.ScriptaTechnica,Inc.,A.JeffreyEd.)
DOI:10.12677/pm.2020.109106920
n
Ø
ê
Æ