设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投搞
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2020,10(11),1088-1096
PublishedOnlineNovemb er2020inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/pm.2020.1011130
/
ª
n
Ý
‚
þ
PGF
ÅÅÅ
ÔÔÔ
jjj
§§§
fff
∗
=
²
Ï
Œ
Æ
ê
n
Æ
§
[
‹
=
²
Email:1272944145@qq.com,
∗
yanggang@mail.lzjtu.cn
Â
v
F
Ï
µ
2020
c
10
30
F
¶
¹
^
F
Ï
µ
2020
c
11
20
F
¶
u
Ù
F
Ï
µ
2020
c
11
27
F
Á
‡
T
=
A
0
UB
!
´
/
ª
n
Ý
‚
§
Ù
¥
A
,
B
´
‚
§
U
´
†
B
m
A
V
"
y
²
e
B
U
²
"
‘
ê
k
•
§
U
A
²
"
‘
ê
½
S
‘
ê
k
•
§
K
†
T
-
M
1
M
2
!
ϕ
M
´
PGF
…
=
†
A
-
M
1
´
PGF
§
†
B
-
M
2
/Im
(
ϕ
M
)
´
PGF
§
ϕ
M
:
U
⊗
A
M
1
→
M
2
´
ü
"
'
…
c
/
ª
n
Ý
‚
§
PGF
PGFModulesoverFormalTriangular
MatrixRings
ShuxianXue,GangYang
∗
SchoolofMathematicsandPhysics,LanzhouJiaotongUniversity,LanzhouGansu
Email:1272944145@qq.com,
∗
yanggang@mail.lzjtu.cn
Received:Oct.30
th
,2020;accepted:Nov.20
th
,2020;published:Nov.27
th
,2020
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
Å
Ô
j
,
f
.
/
ª
n
Ý
‚
þ
PGF
[J].
n
Ø
ê
Æ
,2020,10(11):1088-1096.
DOI:10.12677/pm.2020.1011130
Å
Ô
j
§
f
Abstract
Let
T
=
A
0
UB
!
beaformaltriangularmatrixring,where
A
and
B
areringsand
U
is
a
(
B,A
)
-bimodule.Weprovethat,if
B
U
hasfiniteflat dimension,and
U
A
hasfiniteflat
orinjective dimension,thenaleft
T
-module
M
1
M
2
!
ϕ
M
isPGFifandonlyif
M
1
isPGF
in
A
-Mod,
M
2
/Im
(
ϕ
M
)
is PGFin
B
-Mod and
ϕ
M
:
U
⊗
A
M
1
→
M
2
isamonomorphism.
Keywords
FormalTriangularMatrixRing,PGFModule
Copyright
c
2020byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense (CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
9
ý
•
£
Gorenstein
Ó
N
“
ê
å
u
20
-
V
60
c
“
,
ž
Auslander
Ú
Bridger
3
©
z
[1]
¥
Ú
\
V
>
ì
A
‚
þ
k
•
)
¤
G-
‘
ê
V
g
.20
-
V
90
c
“
,Enochs
Ú
Jenda
3
©
z
[2]
¥
É
Auslander
Ú
Bridger
g
Ž
é
u
,
Ú
\
?
¿
‚
þ
Gorenstein
Ý
,Gorenstein
S
Ú
Gorenstein
²
"
V
g
.
•
ï
Ä
Gorenstein
Ý
´
Ä
•
Gorenstein
²
"
, Ding , Li ,Mao
3
©
z
[3][4]
¥
•
Ä
Gorenstein
Ý
A
~
,
¡
•
r
Gorenstein
²
"
.
5
,
3
©
z
[5]
¥
Gillespie
ò
r
Gorenstein
²
"
·¶
•
Ding
Ý
. Yang, Liu, Liang
3
©
z
[6]
¥
ï
Ä
?
¿
‚
þ
Ding
Ý
±
9
Ding
S
˜
Ó
N
5
Ÿ
.
-
A
,
B
´
‚
,
U
´
†
B
m
A
V
.
K
¡
T
=
A
0
UB
!
´
ä
k
Ý
¦
{
Ú
\
{
/
ª
n
Ý
‚
.
/
ª
n
Ý
‚
3
“
ê
L
«
Ø
¥
ä
k
-
‡
Š
^
.
ù
«
‚
•
Ð
^
5
E
‡
~
,
¦
‚
Ú
n
Ø
•
\
´
L
Ú
ä
N
.
g
d
,
/
ª
n
Ý
‚
9
Ù
n
Ø
5
õ
'
5
. Mao
3
©
z
[7]
¥
ï
Ä
Ú
•
x
/
ª
n
Ý
‚
þ
Ding
Ó
N
.
5
¿
PGF
´
q
˜
a
A
Ï
…
-
‡
Gorenstein
²
"
,
©
ò
ï
Ä
Ú
•
x
/
ª
n
Ý
‚
þ
PGF
.
DOI:10.12677/pm.2020.10111301089
n
Ø
ê
Æ
Å
Ô
j
§
f
©
¥
,
¤
k
‚
Ñ
´
k
ü
š
"
(
Ü
‚
.
é
u
‚
R
,
R
-Mod
L
«
†
R
-
‰
Æ
, Mod-
R
L
«
m
R
-
‰
Æ
.
T
=
A
0
UB
!
L
«
/
ª
n
Ý
‚
,
Ù
¥
A
,
B
´
‚
,
U
´
†
B
m
A
V
.
e
5
,
‰
Ñ
˜
©
¤
I
V
g
Ú
®
•
(
Ø
.
d
©
z
([8]
§
½
n
1.5)
•
,
†
T
-
‰
Æ
T
-Mod
d
u
‰
Æ
Ω.
ù
p
‰
Æ
Ω
é
–
´
n
|
M
=
M
1
M
2
!
ϕ
M
,
Ù
¥
M
1
∈
A
-Mod,
M
2
∈
B
-Mod,
ϕ
M
:
U
⊗
A
M
1
−→
M
2
´
B
-
.
l
M
1
M
2
!
ϕ
M
N
1
N
2
!
ϕ
N
´
f
1
f
2
!
,
Ù
¥
f
1
∈
Hom
A
(
M
1
,N
1
),
f
2
∈
Hom
B
(
M
2
,N
2
),
…
÷
v
X
e
†
ã
:
U
⊗
A
M
1
ϕ
M
1
⊗
f
1
/
/
U
⊗
A
N
1
ϕ
N
M
2
f
2
/
/
N
2
½
Â
g
ϕ
M
´
M
1
Hom
B
(
U,M
2
)
A
-
,
g
ϕ
M
(
x
)(
u
) =
ϕ
M
(
u
⊗
x
),
Ù
¥
u
∈
U,x
∈
M
1
.
a
q
/
,
m
T
-
‰
Æ
Mod-
T
d
u
‰
Æ
Γ.
‰
Æ
Γ
é
–
´
n
|
W
=(
W
1
,W
2
)
ϕ
W
,
Ù
¥
W
1
∈
Mod-
A
,
W
2
∈
Mod-
B
,
ϕ
W
:
W
2
⊗
B
U
−→
W
1
´
A
-
.
l
W
= (
W
1
,W
2
)
ϕ
W
(
X
1
,X
2
)
ϕ
X
´
(
g
1
,g
2
),
Ù
¥
g
1
∈
Hom
A
(
W
1
,X
1
),
g
2
∈
Hom
B
(
W
2
,X
2
),
…
÷
v
X
e
†
ã
:
W
2
⊗
B
U
ϕ
W
g
2
⊗
1
/
/
X
2
⊗
B
U
ϕ
X
W
1
g
1
/
/
X
1
½
Â
g
ϕ
W
´
W
2
Hom
A
(
U,W
1
)
B
-
,
g
ϕ
W
(
y
)(
u
) =
ϕ
W
(
y
⊗
u
),
Ù
¥
u
∈
U
,
y
∈
W
2
.
†
T
-
S
0
→
M
1
0
M
2
0
!
ϕ
M
0
→
M
1
M
2
!
ϕ
M
→
M
1
00
M
2
00
!
ϕ
M
00
→
0
Ü
…
=
S
0
→
M
1
0
→
M
1
→
M
1
00
→
0
Ú
0
→
M
2
0
→
M
2
→
M
2
00
→
0
Ñ
´
Ü
.
M
=
M
1
M
2
!
ϕ
M
´
†
T
-
,
W
= (
W
1
,W
2
)
ϕ
W
´
m
T
-
.
d
[9][
·
K
3.6.1]
•
,
k
Ó
ª
W
⊗
T
M
∼
=
(
W
1
⊗
A
M
1
⊕
W
2
⊗
B
M
2
)
/H,
ù
p
H
=
h
(
ϕ
W
(
w
2
⊗
u
))
⊗
x
1
−
w
2
⊗
ϕ
M
(
u
⊗
x
1
)
|
x
1
∈
M
1
,w
2
∈
W
2
,u
∈
U
i
.
½
Â
1.1
¡
†
R
-
M
´
PGF
[10][p.15],
X
J
•
3
˜
‡
Ý
†
R
-
Ü
···→
P
−
2
→
P
−
1
→
P
0
→
P
1
→···
,
¦
M
∼
=
Ker(
P
0
→
P
1
),
¿
…
é
?
¿
S
m
R
-
I
,
I
⊗−
±
Ù
Ü
.
DOI:10.12677/pm.2020.10111301090
n
Ø
ê
Æ
Å
Ô
j
§
f
2.
/
ª
n
Ý
‚
þ
PGF
Ú
n
2.1
-
M
=
M
1
M
2
!
ϕ
M
´
†
T
-
,
W
= (
W
1
,W
2
)
ϕ
W
´
m
T
-
.
(1)([11]
§
½
n
3.1)
M
´
Ý
†
T
-
…
=
M
1
´
Ý
†
A
-
,
M
2
/Im
(
ϕ
M
)
´
Ý
†
B
-
,
ϕ
M
´
ü
.
(2)([12]
§
·
K
1.14)
M
´
²
"
†
T
-
…
=
M
1
´
²
"
†
A
-
,
M
2
/Im
(
ϕ
M
)
´
²
"
†
B
-
,
ϕ
M
´
ü
.
(3)([13]
§
·
K
5.1)
W
´
S
m
T
-
…
=
W
1
´
S
m
A
-
,
Ker
(
g
ϕ
W
)
´
S
m
B
-
,
g
ϕ
W
:
W
2
→
Hom
A
(
U,W
1
)
´
÷
.
Ú
n
2.2
X
´
†
R
-
.
±
e
d
:
(1)
X
´
PGF
.
(2)
•
3
˜
‡
Ý
†
R
-
Ü
···→
P
−
2
→
P
−
1
→
P
0
→
P
1
→···
,
¦
X
∼
=
Ker(
P
0
→
P
1
),
¿
…
é
?
¿
S
‘
ê
k
•
m
R
-
G
,
G
⊗−
±
Ù
Ü
.
y
²
(1)
⇒
(2)
•
3
Ý
†
R
-
Ü
Λ :
···
/
/
P
−
2
/
/
P
−
1
/
/
P
0
/
/
P
1
/
/
···
¦
X
∼
=
Ker(
P
0
→
P
1
),
¿
…
é
?
¿
S
m
R
-
I
,
I
⊗
R
−
±
Ù
Ü
.
b
id
(
G
) =
n<
∞
.
K
•
3
Ü
0
/
/
G
/
/
I
0
/
/
···
/
/
I
n
−
1
/
/
I
n
/
/
0
Ù
¥
z
‡
I
i
Ñ
´
S
.
@
o
Œ
E
/
Ü
0
/
/
G
⊗
R
Λ
/
/
I
0
⊗
R
Λ
/
/
···
/
/
I
n
−
1
⊗
R
Λ
/
/
I
n
⊗
R
Λ
/
/
0
Ï
•
I
0
⊗
R
Λ
,
···
,I
n
⊗
R
Λ
´
Ü
,
¤
±
d
([14]
§
½
n
6.3)
G
⊗
R
Λ
´
Ü
.
½
Â
2.3
¡
X
´
Ý
Œ
)
a
,
X
J
P
(
R
)
⊆
X
,
¿
…
e
0
→
X
0
→
X
→
X
00
→
0
´
á
Ü
,
Ù
¥
X
00
∈
X
,
K
k
X
0
∈
X
…
=
X
∈
X
.
Ú
n
2.4
PGF
a
'
u
†
Ú
µ
4
,PGF
a
´
Ý
Œ
)
a
.
y
²
Ï
•
Ü
þ
È
±
†
Ú
,
¤
±´
PGF
a
'
u
†
Ú
µ
4
.
d
([9]
§
½
n
3.8)
•
(
PGF
,
PGF
⊥
)
´
¢
D
{
L
é
,
=
PGF
a
´
Ý
Œ
)
a
.
½
n
2.5
-
B
U
²
"
‘
ê
k
•
,
U
A
²
"
‘
ê
½
S
‘
ê
k
•
,
M
=
M
1
M
2
!
ϕ
M
´
†
T
-
.
K
±
e
d
:
(1)
M
´
PGF
†
T
-
.
DOI:10.12677/pm.2020.10111301091
n
Ø
ê
Æ
Å
Ô
j
§
f
(2)
M
1
´
PGF
†
A
-
,
M
2
/Im
(
ϕ
M
)
´
PGF
†
B
-
,
¿
…
ϕ
M
´
ü
.
A
O
/
,
e
M
´
PGF
†
T
-
,
K
U
⊗
A
M
1
´
PGF
†
B
-
…
=
M
2
´
PGF
†
B
-
.
y
²
(1)
⇒
(2)
•
3
Ý
†
T
-
Ü
S
∆ :
···→
P
−
1
1
P
−
1
2
!
ϕ
−
1
∂
−
1
1
∂
−
1
2
−→
P
0
1
P
0
2
!
ϕ
0
∂
0
1
∂
0
2
−→
P
1
1
P
1
2
!
ϕ
1
∂
1
1
∂
1
2
−→
P
1
1
P
1
2
!
ϕ
1
→···
¦
M
∼
=
Ker
∂
0
1
∂
0
2
!
,
¿
…
é
?
¿
S
m
T
-
I
,
I
⊗
T
−
±
Ù
Ü
.
u
´
Œ
Ý
†
A
-
Ü
Λ
1
:
···
/
/
P
−
1
1
∂
−
1
1
/
/
P
0
1
∂
0
1
/
/
P
1
1
∂
1
1
/
/
P
2
1
/
/
···
Ù
¥
M
1
∼
=
Ker(
∂
0
1
).
E
´
S
m
A
-
,
K
•
3
m
T
-
Ü
S
0
/
/
(
E,
0)
/
/
(
E,Hom
A
(
U,E
))
/
/
(0
,Hom
A
(
U,E
))
/
/
0
d
d
E
/
Ü
0
/
/
(
E,
0)
⊗
T
∆
/
/
(
E,Hom
A
(
U,E
))
⊗
T
∆
/
/
(0
,Hom
A
(
U,E
))
⊗
T
∆
/
/
0
d
Ú
n
([13]
§
·
K
5.1)
Ú
([15],p.956)
,(
E,Hom
A
(
U,E
))
´
S
m
T
-
,
Ï
d
E
/
(
E,Hom
A
(
U,E
))
⊗
T
∆
´
Ü
.
Ï
•
fd
(
B
U
)
<
∞
,
d
( [16]
§
½
n
6.3)
•
id
(
Hom
A
(
U,E
))
<
∞
,
?
id
(0
,Hom
A
(
U,E
))
<
∞
.
d
Ú
n
2.1
•
E
/
(0
,Hom
A
(
U,E
))
⊗
T
∆
´
Ü
.
Ï
d
d
([14]
§
½
n
6.3)
•
,
E
⊗
A
Λ
1
∼
=
(
E,
0)
⊗
T
∆
´
Ü
,
=
M
1
´
PGF
†
A
-
.
λ
1
:
M
1
→
P
0
1
,
λ
2
:
M
2
→
P
0
2
´
i
\
N
.
•
Ä
3
B
−
Mod
‰
Æ
¥
†
ã
U
⊗
A
M
1
ϕ
M
1
⊗
λ
1
/
/
U
⊗
A
P
0
1
ϕ
0
M
2
λ
2
/
/
P
0
2
Ï
•
U
A
²
"
‘
ê
½
S
‘
ê
k
•
,
d
( [17]
§
Ú
n
2.3)
Ú
Ú
n
2.2
U
⊗
A
Λ
1
´
Ü
.
¤
±
1
⊗
λ
1
´
ü
.
du
ϕ
0
´
ü
.
Ï
d
d
†
ã
ϕ
M
´
ü
.
é
u
?
¿
i
∈
Z
,
•
3
∂
i
2
:
P
i
2
/Im
(
ϕ
i
)
→
P
i
+1
2
/Im
(
ϕ
i
+1
)
¦
±
e
ã
´
1
Ü
†
ã
.
DOI:10.12677/pm.2020.10111301092
n
Ø
ê
Æ
Å
Ô
j
§
f
.
.
.
.
.
.
.
.
.
0
/
/
U
⊗
A
P
−
1
1
1
⊗
∂
−
1
1
ϕ
−
1
/
/
P
−
1
2
/
/
∂
−
1
2
P
−
1
2
/Im
(
ϕ
−
1
)
/
/
∂
−
1
2
0
0
/
/
U
⊗
A
P
0
1
1
⊗
∂
0
1
ϕ
0
/
/
P
0
2
/
/
∂
0
2
P
−
1
2
/Im
(
ϕ
0
)
/
/
∂
0
2
0
0
/
/
U
⊗
A
P
1
1
1
⊗
∂
1
1
ϕ
1
/
/
P
1
2
/
/
∂
1
2
P
1
2
/Im
(
ϕ
1
)
/
/
∂
1
2
0
0
/
/
U
⊗
A
P
2
1
ϕ
2
/
/
P
2
2
/
/
P
2
2
/Im
(
ϕ
2
)
/
/
0
.
.
.
.
.
.
.
.
.
Ï
•
1
˜
Ú
1
Ü
,
´
•
1
n
Ü
,
=
k
Ý
†
B
-
Ü
Ξ :
···
/
/
P
−
1
2
/Im
(
ϕ
−
1
)
∂
−
1
2
/
/
P
0
2
/Im
(
ϕ
0
)
∂
0
2
/
/
P
1
2
/Im
(
ϕ
1
)
∂
1
2
/
/
/
/
P
2
2
/Im
(
ϕ
2
)
/
/
···
d
[14][
½
n
6.3]
•
M
2
/Im
(
ϕ
M
)
∼
=
Ker
(
∂
0
2
).
G
´
S
m
B
-
.
K
d
†
B
−
Ü
0
/
/
U
⊗
A
P
i
1
ϕ
i
/
/
P
i
2
/
/
P
i
2
/Im
(
ϕ
i
)
/
/
0
.
Œ
Ü
G
⊗
B
U
⊗
A
P
i
1
1
⊗
ϕ
i
/
/
G
⊗
B
P
i
2
/
/
G
⊗
B
(
P
i
2
/Im
(
ϕ
i
))
/
/
0
.
¤
±
k
G
⊗
B
(
P
i
2
/Im
(
ϕ
i
))
∼
=
(
G
⊗
B
P
i
2
)
/Im
(1
⊗
ϕ
i
)
∼
=
(0
,G
)
⊗
T
P
i
1
P
i
2
!
ϕ
i
Ï
•
(0,G)
´
S
m
T
-
,
¤
±
G
⊗
B
Ξ
∼
=
(0
,G
)
⊗
T
∆
´
Ü
,
=
y
M
2
/Im
(
ϕ
M
)
´
PGF
†
B
-
.
(2)
⇒
(1)
Ï
•
ϕ
M
´
ü
,
¤
±
•
3
T
-Mod
‰
Æ
¥
Ü
S
0
→
M
1
U
⊗
A
M
1
!
−→
M
1
M
2
!
ϕ
M
−→
0
M
2
/Im
(
ϕ
M
)
!
−→
0
.
k
y
M
1
U
⊗
A
M
1
!
´
PGF
.
d
^
‡
•
•
3
Ý
†
A
-
Ü
Λ :
···
/
/
P
−
1
1
∂
−
1
1
/
/
P
0
1
∂
0
1
/
/
P
1
1
∂
1
1
/
/
P
2
1
/
/
···
DOI:10.12677/pm.2020.10111301093
n
Ø
ê
Æ
Å
Ô
j
§
f
¦
M
1
∼
=
Ker(
∂
0
1
),
¿
…
é
?
¿
S
m
A
-
E
,
E
⊗
A
−
±
Ù
Ü
.
Ï
•
U
A
²
"
‘
ê
½
S
‘
ê
k
•
,
d
([17]
§
Ú
n
2.3)
Ú
Ú
n
2.2
U
⊗
A
Λ
´
Ü
.
¤
±
k
Ý
†
T
-
Ü
Υ :
···→
P
−
1
U
⊗
A
P
−
1
!
ϕ
−
1
∂
−
1
1
⊗
∂
−
1
−→
P
0
U
⊗
A
P
0
!
ϕ
0
∂
0
1
⊗
∂
0
−→
P
1
1
U
⊗
A
P
1
2
!
ϕ
1
→···
¦
M
1
U
⊗
A
M
1
!
∼
=
Ker
∂
0
1
⊗
∂
0
!
.
é
u
?
¿
S
m
T
-
(
E
1
,E
2
),
•
3
Mod-
T
‰
Æ
¥
Ü
0
/
/
(
E
1
,
0)
/
/
(
E
1
,E
2
)
/
/
(0
,E
2
)
/
/
0
.
Ï
•
P
i
U
⊗
A
P
i
!
´
Ý
†
T
-
,
¤
±
k
Ü
0
→
(
E
1
,
0)
⊗
T
P
i
U
⊗
A
P
i
!
→
(
E
1
,E
2
)
⊗
T
P
i
U
⊗
A
P
i
!
→
(0
,E
2
)
⊗
T
P
i
U
⊗
A
P
i
!
)
→
0
.
®
•
(0
,E
2
)
⊗
T
P
i
U
⊗
A
P
i
!
∼
=
(
E
2
⊗
B
U
⊗
A
P
i
)
/
(
E
2
⊗
B
U
⊗
A
P
i
) = 0.
¤
±
(
E
1
,E
2
)
⊗
T
P
i
U
⊗
A
P
i
!
∼
=
(
E
1
,
0)
⊗
T
P
i
U
⊗
A
P
i
!
.
q
Ï
•
E
1
´
S
m
A
-
,
¤
±
(
E
1
,E
2
)
⊗
T
Υ
∼
=
(
E
1
,
0)
⊗
T
Υ
∼
=
E
1
⊗
A
Λ
´
Ü
,
=
y
M
1
U
⊗
A
M
1
!
´
PGF
†
T
-
.
e
5
y
²
0
M
2
/Im
(
ϕ
M
)
!
´
PGF
†
T
-
.
d
^
‡
•
,
•
3
Ý
†
B
-
Ü
Θ :
···
/
/
Q
−
1
f
−
1
/
/
Q
0
f
0
/
/
Q
1
f
1
/
/
Q
2
f
2
/
/
···
¦
M
2
/Im
(
ϕ
M
)
∼
=
Ker
(
f
0
),
¿
…
é
?
¿
S
m
B
-
G
,
G
⊗
B
−
±
Ù
Ü
.
K
Ý
†
T
-
Ü
S
0
Θ
!
:
···→
0
Q
−
1
!
0
f
−
1
−→
0
Q
0
!
0
f
0
−→
0
Q
1
!
0
f
1
−→
0
Q
2
!
→···
¦
0
M
2
/im
(
ϕ
M
)
!
∼
=
Ker
0
f
0
!
.
DOI:10.12677/pm.2020.10111301094
n
Ø
ê
Æ
Å
Ô
j
§
f
é
u
?
¿
S
m
T
-
(
E
1
,E
2
)
ϕ
E
,
•
3
Ü
0
/
/
Ker
(
f
ϕ
E
)
/
/
E
2
f
ϕ
E
/
/
Hom
A
(
U,E
1
)
/
/
0
,
Ù
¥
E
1
,Ker
(
f
ϕ
E
)
´
S
.
Ï
•
fd
(
B
U
)
<
∞
,
d
([16]
§
Ú
n
2.2)
•
id
(
Hom
A
(
U,E
1
))
<
∞
,
¤
±
id
(
E
2
)
<
∞
.
d
Ú
n
2.2
•
,(
E
1
,E
2
)
⊗
T
0
Θ
!
∼
=
E
2
⊗
B
Θ
´
Ü
,
=
y
0
M
2
/Im
(
ϕ
M
)
!
´
PGF
†
T
-
.
d
Ú
n
2.4
•
,
M
=
M
1
M
2
!
ϕ
M
´
PGF
†
T
-
.
•
,
e
M
=
M
1
M
2
!
ϕ
M
´
PGF
†
T
-
,
K
•
3
Ü
0
/
/
U
⊗
A
M
1
ϕ
M
/
/
M
2
/
/
M
2
/Im
(
ϕ
M
)
/
/
0
.
Ù
¥
M
2
/Im
(
ϕ
M
)
´
PGF
†
B
-
,
d
Ú
n
2.4
•
U
⊗
A
M
1
´
PGF
†
B
-
…
=
M
2
´
PGF
†
B
-
.
í
Ø
2.6
R
´
‚
,
T
(
R
) =
R
0
RR
!
•
e
n
Ý
‚
,
M
=
M
1
M
2
!
ϕ
M
´
†
T
(
R
)-
.
K
±
e
d
µ
(1)
M
´
PGF
†
T
(
R
)-
;
(2)
M
1
Ú
M
2
/Im
(
ϕ
M
)
´
PGF
†
R
-
…
ϕ
M
´
ü
;
(3)
M
2
Ú
M
2
/Im
(
ϕ
M
)
´
PGF
†
R
-
…
ϕ
M
´
ü
.
y
²
d
½
n
2.5
.
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
]
Ï
‘
8
(11561039
¶
11761045);
=
²
Ï
Œ
Æ
/
z
¶
“
c
`
D
<
â
O
y
0
Ä
7
]
Ï
‘
8
¶
[
‹
Ž
g
,
‰
Æ
Ä
7
]
Ï
‘
8
(17JR5RA091
¶
18JR3RA113)
"
ë
•
©
z
[1]Auslander,M.andBridge,M.(1969)StableModuleTheory.In:
MemoirsoftheAmericanMathe-
maticalSociety
,Vol.94,AmericanMathematicalSociety,Providence,RI.
[2]Enochs,E.E.andJenda,O.M.G.(2000)RelativeHomologicalAlgebra.DeGruyter,Amsterdam.
https://doi.org/10.1515/9783110803662
[3]Ding,N.Q.,Li,Y.L.andMao,L.X.(2009)StronglyGorensteinFlatModules.
JournaloftheAus-
tralianMathematicalSociety
,
86
,323-338.https://doi.org/10.1017/S1446788708000761
DOI:10.12677/pm.2020.10111301095
n
Ø
ê
Æ
Å
Ô
j
§
f
[4]Mao,L.X.andDing,N.Q.(2008)GorensteinFP-InjectiveandGorensteinFlatModules.
Journalof
AlgebraandItsApplications
,
7
,491-506.https://doi.org/10.1142/S0219498808002953
[5]Gillespie,J.(2010)ModelStructuresonModulesoverDing-ChenRings.
Homology,Homotopyand
Applications
,
12
,61-73.https://doi.org/10.4310/HHA.2010.v12.n1.a6
[6]Yang,G.,Liu,Z.K.andLiang,L.(2013)DingProjectiveandDingInjectiveModules.
Algebra
Colloquium
,
20
,601-612.https://doi.org/10.1142/S1005386713000576
[7]Mao,L.X.(2019)DingModulesandDimensionsoverFormalTriangularMatrixRings.Preprint
arxiv.org/abs/1912.06968
[8]Green,E.L.(1982)OntheRepresentation Theory ofRingsin Matrix Form.
PacificJournalofMath-
ematics
,
100
,123-138.https://doi.org/10.2140/pjm.1982.100.123
[9]Krylov,P.andTuganbaev,A.(2017)FormalMatrices.Springer,Cham.
[10]
ˇ
Saroch, J.and
ˇ
St’ovˇc´ıek,J.(2020)SingularCompactnessandDefinabilityforΣ-CotorsionandGoren-
steinModules.
SelectaMathematica
,
26
,ArticleNo.23.https://doi.org/10.1007/s00029-020-0543-2
[11]Haghany,A.andVaradarajan,K.(2000)StudyofModulesoverFormalTriangularMatrixRings.
JournalofPureandAppliedAlgebra
,
147
,41-58.https://doi.org/10.1016/S0022-4049(98)00129-7
[12]Fossum,R.M., Griffith,P.andReiten, I.(2006)TrivialExtensions ofAbelianCategories:Homological
AlgebraofTrivialExtensionsofAbelianCatergorieswithApplicationstoRingTheory.Springer,
Berlin.
[13]Haghany,A.andVaradarajan, K.(1999)StudyofFormalTriangular MatrixRings.
Communications
inAlgebra
,
27
,5507-5525.https://doi.org/10.1080/00927879908826770
[14]Rotman,J.J.(2008)AnIntroductiontoHomologicalAlgebra.SpringerScience&BusinessMedia,
NewYork.
[15]Asadollahi,J.and Salarian,S.(2006) OntheVanishingofExt over FormalTriangularMatrixRings.
ForumMathematicum
,
18
,951-966.https://doi.org/10.1515/FORUM.2006.048
[16]Mao,L.X.(2020)GorensteinFlatModulesandDimensionsoverFormalTriangularMatrixRings.
JournalofPureandAppliedAlgebra
,
224
,ArticleID:106207.
https://doi.org/10.1016/j.jpaa.2019.106207
[17]Enochs,E.E.,Cort´es-Izurdiaga,M.C.andTorrecillas,B.(2014)Gorenstein Conditions overTriangu-
larMatrixRings.
JournalofPureandAppliedAlgebra
,
218
,1544-1554.
https://doi.org/10.1016/j.jpaa.2013.12.006
DOI:10.12677/pm.2020.10111301096
n
Ø
ê
Æ