设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投搞
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2021,11(1),94-102
PublishedOnlineJanuary2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.111014
k
'
(
α
,
m
)-
é
ê
à
¼
ê
Hermite-Hadamard
.
È
©
Ø
ª
‘‘‘
§§§
¸¸¸
§§§
ààà
···
§§§
•••
§§§
©©©
∗
§§§
ŸŸŸ
jjj
ÜÜÜ
Ü
•
“
‰
Æ
ê
Æ
†
Ú
O
Æ
,
S
Ü
•
Â
v
F
Ï
µ
2020
c
12
14
F
¶
¹
^
F
Ï
µ
2021
c
1
15
F
¶
u
Ù
F
Ï
µ
2021
c
1
25
F
Á
‡
©
Ì
‡
ï
á
˜
#
9
(
α
,
m
)
é
ê
à
¼
ê
Hermite-Hadamard
.
È
©
Ø
ª
"
'
…
c
Hermite-Hadamard
.
Ø
ª
§
(
α
,
m
)-
é
ê
à
¼
ê
§
Ø
ª
IntegralInequalitiesofHermite-Hadamard
Stylefor(
α
,
m
)-Logarithmically
ConvexFunctions
YingHuang,PanpanHan,JingQi,FangWang,WenWang
∗
,MaosenWei
SchoolofMathematicsandStatistics,HefeiNormalUniversity,HefeiAnhui
Received:Dec.14
th
,2020;accepted:Jan.15
th
,2021;published:Jan.25
th
,2021
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
‘
,
¸
,
à
·
,
•
,
©
,
Ÿ
j
Ü
.
k
'
(
α
,
m
)-
é
ê
à
¼
ê
Hermite-Hadamard
.
È
©
Ø
ª
[J].
n
Ø
ê
Æ
,2021,11(1):94-102.DOI:10.12677/pm.2021.111014
‘
Abstract
Theaimofthispap eristoestablishseveralnewHermite-Hadamardstyleinequalities
for(
α
,
m
)-logarithmicallyconvexfunction.
Keywords
Hermite-Hadamard’sInequality,(
α
,
m
)-LogarithmicallyConvexFunction,Inequality
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
©
¥
R
= (
−∞
,
∞
),
R
+
= [0
,
∞
),
R
++
= (0
,
∞
).
Ä
k
,
·
‚
£
Á˜
-
‡
V
g
:
½
Â
1.1
[1][2]
e
¼
ê
f
:
I
⊂
R
→
R
÷
v
f
(
tx
+(1
−
t
)
y
)
≤
tf
(
x
)+(1
−
t
)
f
(
y
)
,
∀
x,y
∈
I,t
∈
[0
,
1]
,
(1
.
1)
K
¡
¼
ê
f
´
I
þ
à
¼
ê
.
d
,
X
J
−
f
´
à
¼
ê
,
Ò
¡
f
´
]
¼
ê
.
½
Â
1.2
[3]
e
¢
¼
ê
f
:
I
⊂
R
+
→
R
++
÷
v
f
(
tx
+(1
−
t
)
y
)
≤
[
f
(
x
)]
t
m
[
f
(
y
)]
m
(1
−
t
)
m
,
∀
x,y
∈
I,m
∈
(0
,
1]
,t
∈
[0
,
1]
,
(1
.
2)
Ò
¡
¼
ê
f
´
m
-
é
ê
à
¼
ê
.
C
Ï
,
©
z
[4]
ò
þ
¡
½
Â
?
˜
í
2
(
α,m
)-
é
ê
à
¼
ê
,
X
e
:
½
Â
1.3
[4]
e
¢
¼
ê
f
:
I
⊂
R
+
→
R
++
f
(
tx
+
m
(1
−
t
)
y
)
≤
[
f
(
x
)]
t
α
[
f
(
y
)]
m
(1
−
t
α
)
,
(1
.
3)
holdsforall
x,y
∈
I,
(
α,m
)
∈
(0
,
1]
×
(0
,
1]
,t
∈
[0
,
1].
Ò
¡
f
´
(
α,m
)-
é
ê
à
¼
ê
.
DOI:10.12677/pm.2021.11101495
n
Ø
ê
Æ
‘
¢
¼
ê
f
:
I
⊂
R
→
R
´
à
¼
ê
,
K
Í
¶
Hermite-Hadamard
È
©
Ø
ª
•
f
a
+
b
2
≤
1
b
−
a
b
a
f
(
x
)
dx
≤
f
(
a
)+
f
(
b
)
2
,a,b
∈
I,a<b.
(1
.
4)
d
,
¯
õ
Æ
ö
í
2
à
¼
ê
V
g
,
k
'
A
Û
à
¼
ê
!
N
Ú
à
¼
ê
!
m
-
à
¼
ê
±
9
(
α,m
)-
à
¼
ê
Hermite-Hadamard
.
È
©
Ø
ª
,
•[
Œ
Ö
ƒ
'
©
z
[5–10].
Bai-Qi-Xi
3
©
z
[4]
¥
¼
(
α,m
)-
é
ê
à
¼¼
ê
Hermite-Hadamard
.
Ø
ª
,
X
e
:
½
n
A[4]
I
⊂
R
+
´
m
«
m
,
…
¼
ê
f
:
I
→
R
+
´
I
þ
Œ
‡
¼
ê
,
…
f
0
∈
L
([
a,b
])(
0
≤
a<b<
R
+
).
q
∈
[1
,
+
∞
),(
α,m
)
∈
(0
,
1]
×
(0
,
1],
e
|
f
0
(
x
)
|
q
´
[0
,
b
m
]
þ
(
α,m
)-
é
ê
à
¼
ê
,
K
k
f
(
a
)+
f
(
b
)
2
−
b
a
f
(
x
)
dx
≤
a
+
b
2
f
0
b
m
1
2
1
−
1
/q
[
E
1
(
α,mq
)]
1
/q
,
E
(
α,m,q
) =
1
2
,µ
= 1
,
F
(
µ,αq
)
,
0
<µ<
1
,
µ
(1
−
α
)
q
F
(
µ,
q
α
)
,µ>
1
,
µ
=
|
f
0
(
a
)
|
|
f
0
(
b
m
)
|
m
,
F
(
u,v
) =
1
v
2
(ln
u
)
2
v
(
u
v
−
1)ln
u
−
2(
u
v/
2
−
1)
2
,u,v>
0
,u
6
= 1)
©
Ì
‡
ï
á
˜
#
9
(
α
,
m
)-
é
ê
à
¼
ê
Hermite-Hadamard
.
È
©
Ø
ª
.
2.
Ì
‡
(
J
©
Ì
‡
(
J
X
e
µ
½
n
2.1
f
:
I
⊂
R
+
→
R
++
´
(
α,m
)-
é
ê
à
¼
ê
,
…
J
1
=
af
(
a
)
(
b
−
a
)
2
b
a
(
b
−
x
)
f
(
x
)
dx,
J
2
=
bf
(
b
)
(
b
−
a
)
2
b
a
(
x
−
a
)
f
(
x
)
dx.
e
(
α,m
)
∈
(0
,
1],
K
k
J
1
+
J
2
≤
[
f
(
a
m
)]
m
[
af
(
a
)
h
(
δ
α
)+
bf
(
b
)
g
(
δ
α
)]
,
δ
≤
1;
[
f
(
a
m
)]
m
af
(
a
)
h δ
1
α
+
bf
(
b
)
gδ
1
α
,
δ
≥
1
.
(2.1)
DOI:10.12677/pm.2021.11101496
n
Ø
ê
Æ
‘
Ù
¥
a,b
∈
I
…
a<b
,
δ
=
f
(
b
)
[
f
(
a
m
)]
m
,
h
(
β
) =
1
0
(1
−
t
)
β
t
dt
=
1
2
,
β
= 1;
β
−
1
−
ln
β
(ln
β
)
2
,
β
6
= 1
.
(2.2)
g
(
β
) =
1
0
tβ
t
dt
=
1
2
,
β
= 1;
β
ln
β
−
ln
β
+1
(ln
β
)
2
,
β
6
= 1
.
(2.3)
.
y
²
:
x
= (1
−
t
)
a
+
tb
=
m
(1
−
t
)
a
m
+
tb
(
t
∈
[0
,
1]
,m
∈
(0
,
1]),
Ø
J
J
1
=
af
(
a
)
(
b
−
a
)
2
b
a
(
b
−
x
)
f
(
x
)
dx
=
af
(
a
)
1
0
(1
−
t
)
f
(
m
(1
−
t
)
a
m
+
tb
)
dt,
(2.4)
J
2
=
bf
(
b
)
(
b
−
a
)
2
b
a
(
x
−
a
)
f
(
x
)
dx
=
bf
(
b
)
1
0
tf
(
m
(1
−
t
)
a
m
+
tb
)
dt.
(2.5)
Ï
•
f
(
x
)
´
(
α,m
)-
é
ê
à
¼
ê
,
d
(2.2)
Œ
J
1
=
af
(
a
)
1
0
(1
−
t
)
f
(
m
(1
−
t
)
a
m
+
tb
)
dt
≤
af
(
a
)
1
0
(1
−
t
)[
f
(
a
m
)]
m
(1
−
t
α
)
[
f
(
b
)]
t
α
dt
=
af
(
a
)[
f
(
a
m
)]
m
1
0
(1
−
t
)
[
f
(
b
)]
[
f
(
a
m
)]
m
t
α
dt.
(2.6)
±
9
J
2
=
bf
(
b
)
1
0
tf
(
m
(1
−
t
)
a
m
+
tb
)
dt
≤
bf
(
b
)
1
0
t
[
f
(
a
m
)]
m
(1
−
t
α
)
[
f
(
b
)]
t
α
dt
=
bf
(
b
)[
f
(
a
m
)]
m
1
0
t
[
f
(
b
)]
[
f
(
a
m
)]
m
t
α
dt.
(2.7)
e
0
<u
≤
1
≤
v
,0
<α,s
≤
1,
K
u
α
s
≤
u
αs
,v
α
s
≤
v
α
s
.
(2.8)
DOI:10.12677/pm.2021.11101497
n
Ø
ê
Æ
‘
(1)
e
[
f
(
b
)]
[
f
(
a
m
)]
m
≤
1,
d
(2.6-2.8)
Œ
J
1
≤
af
(
a
)[
f
(
a
m
)]
m
1
0
(1
−
t
)
[
f
(
b
)]
[
f
(
a
m
)]
m
tα
dt
=
af
(
a
)[
f
(
a
m
)]
m
h
f
(
b
)
[
f
(
a
m
)]
m
α
(2.9)
J
2
≤
bf
(
b
)[
f
(
a
m
)]
m
1
0
t
[
f
(
b
)]
[
f
(
a
m
)]
m
tα
dt
=
bf
(
b
)[
f
(
a
m
)]
m
g
f
(
b
)
[
f
(
a
m
)]
m
α
.
(2.10)
(2)
e
[
f
(
b
)]
[
f
(
a
)]
m
≥
1,
d
(2.6-2.8)
Œ
J
1
≤
af
(
a
)[
f
(
a
m
)]
m
1
0
(1
−
t
)
[
f
(
b
)]
[
f
(
a
m
)]
m
t
α
dt
=
af
(
a
)[
f
(
a
m
)]
m
h
f
(
b
)
[
f
(
a
m
)]
m
1
α
(2.11)
J
2
≤
bf
(
b
)[
f
(
a
m
)]
m
1
0
t
[
f
(
b
)]
[
f
(
a
m
)]
m
t
α
dt
=
bf
(
b
)[
f
(
a
m
)]
m
g
f
(
b
)
[
f
(
a
m
)]
m
1
α
.
(2.12)
d
(2.9)
Ú
(2.12)
Œ
(2.1).
½
n
2.2
¢
¼
ê
f
:
I
⊂
R
+
→
R
++
.
e
[
f
(
x
)]
q
(
q
≥
1)
´
I
þ
(
α
;
m
)-
é
ê
à
¼
ê
,
K
k
J
1
+
J
2
≤
1
p
+1
1
p
[
f
(
a
m
)]
m
af
(
a
)[
h
(
δ
qα
)]
1
q
+
bf
(
b
)[
g
(
δ
qα
)]
1
q
,
δ
≤
1;
1
p
+1
1
p
[
f
(
a
m
)]
m
af
(
a
)
h δ
q
α
1
q
+
bf
(
b
)
gδ
q
α
1
q
,
δ
≥
1
.
(2.13)
Ù
¥
a,b
∈
I
…
a<b
,(
α,m
)
∈
(0
,
1],
p
≥
1
…
1
p
+
1
q
= 1.
y
²
:
Ï
•
[
f
(
x
)]
q
´
(
α
;
m
)
é
ê
à
¼
ê
,
¿
(
Ü
(2.2),(2.3),
±
9
H¨older
Ø
ª
§
Œ
J
1
=
af
(
a
)
1
0
(1
−
t
)
f
(
m
(1
−
t
)
a
m
+
tb
)
dt
≤
af
(
a
)
1
0
(1
−
t
)
p
dt
1
p
1
0
[
f
(
m
(1
−
t
)
a
m
+
tb
)]
q
dt
1
q
≤
af
(
a
)
1
0
(1
−
t
)
p
dt
1
p
1
0
[
f
(
a
m
)]
qm
(1
−
t
α
)
[
f
(
b
)]
qt
α
dt
1
q
=
1
p
+1
1
p
af
(
a
)[
f
(
a
m
)]
m
1
0
[
f
(
b
)]
[
f
(
a
m
)]
m
qt
α
dt
1
q
.
(2.14)
DOI:10.12677/pm.2021.11101498
n
Ø
ê
Æ
‘
Ú
J
2
=
bf
(
b
)
1
0
tf
(
m
(1
−
t
)
a
m
+
tb
)
dt
≤
bf
(
b
)
1
0
t
p
dt
1
p
1
0
[
f
(
m
(1
−
t
)
a
m
+
tb
)]
q
dt
1
q
≤
bf
(
b
)
1
0
t
p
dt
1
p
1
0
[
f
(
a
m
)]
qm
(1
−
t
α
)
[
f
(
b
)]
qt
α
dt
1
q
=
1
p
+1
1
p
bf
(
b
)[
f
(
a
m
)]
m
1
0
[
f
(
b
)]
[
f
(
a
m
)]
m
qt
α
dt
1
q
.
(2.15)
(1)
e
[
f
(
b
)]
[
f
(
a
m
)]
m
≤
1,
|
^
(2.8),(2.14)
Ú
(2.15)
Œ
J
1
≤
1
p
+1
1
p
af
(
a
)[
f
(
a
m
)]
m
1
0
[
f
(
b
)]
[
f
(
a
m
)]
m
qtα
dt
1
q
=
1
p
+1
1
p
af
(
a
)[
f
(
a
m
)]
m
h
f
(
b
)
[
f
(
a
)]
m
qα
1
q
(2.16)
J
2
≤
1
p
+1
1
p
bf
(
b
)[
f
(
a
m
)]
m
1
0
[
f
(
b
)]
[
f
(
a
m
)]
m
qtα
dt
1
q
=
1
p
+1
1
p
bf
(
b
)[
f
(
a
m
)]
m
g
f
(
b
)
[
f
(
a
m
)]
m
qα
1
q
.
(2.17)
(2)
e
[
f
(
b
)]
[
f
(
a
m
)]
m
≥
1,
2
d
(2.8),(2.14)
Ú
(2.15)
Œ
J
1
≤
1
p
+1
1
p
af
(
a
)[
f
(
a
m
)]
m
1
0
[
f
(
b
)]
[
f
(
a
m
)]
m
qt
α
dt
1
q
=
1
p
+1
1
p
af
(
a
)[
f
(
a
m
)]
m
h
f
(
b
)
[
f
(
a
)]
m
q
α
1
q
(2.18)
J
2
≤
1
p
+1
1
p
bf
(
b
)[
f
(
a
m
)]
m
1
0
[
f
(
b
)]
[
f
(
a
m
)]
m
qt
α
dt
1
q
=
1
p
+1
1
p
bf
(
b
)[
f
(
a
m
)]
m
g
f
(
b
)
[
f
(
a
m
)]
m
q
α
1
q
.
(2.19)
d
(2.16)
Ú
(2.19)
Œ
(2.13).
DOI:10.12677/pm.2021.11101499
n
Ø
ê
Æ
‘
½
n
2.3
¼
ê
f
:
I
⊂
R
+
→
R
++
´
(
α,m
)
é
ê
à
¼
ê
.
e
a,b
∈
I
…
a<b
,
K
k
1
b
−
a
b
a
f
(
x
)
f
(
a
+
b
−
x
)
dx
≤
1
2
[
f
(
a
m
)]
2
m
p
(
u
2
α
)+[
f
(
b
m
)]
2
m
p
(
v
2
α
)
,
u
≤
1
,v
≥
1;
1
2
[
f
(
a
m
)]
2
m
p
(
u
2
α
)+[
f
(
b
m
)]
2
m
p
(
v
2
α
)
,
u
≤
1
,v
≤
1;
1
2
[
f
(
a
m
)]
2
m
p
(
u
2
α
)+[
f
(
b
m
)]
2
m
p
(
v
2
α
)
,
u
≥
1
,v
≤
1;
1
2
[
f
(
a
m
)]
2
m
p
(
u
2
α
)+[
f
(
b
m
)]
2
m
p
(
v
2
α
)
,
u
≥
1
,v
≥
1
.
,
(2.20)
Ù
¥
u
=
f
(
b
)
f
(
a
m
)
,
v
=
f
(
a
)
f
(
b
m
)
,
p
(
β
) =
1
0
β
t
dt
=
1
,
β
= 1;
β
−
1
ln
β
,
β
6
= 1
.
y
²
:
Ï
•
f
´
(
α,m
)
é
ê
à
¼
ê
,
K
é
?
¿
a,b
∈
I
,
t
∈
[0
,
1],(
α,m
)
∈
(0
,
1]
×
(0
,
1],
k
f
(
m
(1
−
t
)
a
+
tb
)
≤
[
f
(
a
)]
m
(1
−
t
α
)
[
f
(
b
)]
t
α
,
(2.21)
f
((
ta
+
m
(1
−
t
)
b
)
≤
[
f
(
a
)]
t
α
[
f
(
b
)]
m
(1
−
t
α
)
,
(2.22)
x
=(1
−
t
)
a
+
tb
=
m
(1
−
t
)
a
m
+
tb
(
t
∈
[0
,
1]
,m
∈
(0
,
1]),
¿
A^
Ä
Ø
ª
√
uv
≤
u
2
+
v
2
2
(
u,v>
0),
Œ
1
b
−
a
b
a
f
(
x
)
f
(
a
+
b
−
x
)
dx
=
1
b
−
a
1
0
f
((1
−
t
)
a
+
tb
)
f
((
ta
+(1
−
t
)
b
)(
b
−
a
)
dt
≤
1
2
1
0
{
[
f
((1
−
t
)
a
+
tb
)]
2
+[
f
((
ta
+(1
−
t
)
b
)]
2
}
dt.
(2.23)
ò
(2.21)
Ú
(2.22)
“
\
(2.23),
Œ
1
b
−
a
b
a
f
(
x
)
f
(
a
+
b
−
x
)
dx
≤
1
2
1
0
{
[
f
(
a
m
)]
m
(1
−
t
α
)
[
f
(
b
)]
t
α
}
2
dt
+
1
0
{
[
f
(
a
)]
t
α
[
f
(
b
m
)]
m
(1
−
t
α
)
}
2
dt
=
1
2
[
f
(
a
m
)]
2
m
1
0
f
(
b
)
f
(
a
m
)
2
t
α
dt
+[
f
(
b
m
)]
2
m
1
0
f
(
a
)
f
(
b
m
)
2
t
α
dt.
(2.24)
DOI:10.12677/pm.2021.111014100
n
Ø
ê
Æ
‘
(1)
e
f
(
b
)
f
(
a
m
)
≤
1,
f
(
a
)
f
(
b
m
)
≥
1,
d
(2.8)
Ú
(2.24)
Œ
1
b
−
a
b
a
f
(
x
)
f
(
a
+
b
−
x
)
dx
≤
1
2
[
f
(
a
m
)]
2
m
1
0
f
(
b
)
f
(
a
m
)
2
tα
dt
+[
f
(
b
m
)]
2
m
1
0
f
(
a
)
f
(
b
m
)
2
t
α
dt
=
1
2
[
f
(
a
m
)]
2
m
p
f
(
b
)
f
(
a
m
)
2
α
+[
f
(
b
m
)]
2
m
p
f
(
a
)
f
(
b
m
)
2
α
.
(2.25)
(2)
e
f
(
b
)
f
(
a
m
)
≤
1,
f
(
a
)
f
(
b
m
)
≤
1,
K
1
b
−
a
b
a
f
(
x
)
f
(
a
+
b
−
x
)
dx
≤
1
2
[
f
(
a
m
)]
2
m
1
0
f
(
b
)
f
(
a
m
)
2
tα
dt
+[
f
(
b
m
)]
2
m
1
0
f
(
a
)
f
(
b
m
)
2
tα
dt
=
1
2
[
f
(
a
m
)]
2
m
p
f
(
b
)
f
(
a
m
)
2
α
+[
f
(
b
m
)]
2
m
p
f
(
a
)
f
(
b
m
)
2
α
.
(2.26)
(3)
e
f
(
b
)
f
(
a
m
)
≥
1,
f
(
a
)
f
(
b
m
)
≤
1,
K
1
b
−
a
b
a
f
(
x
)
f
(
a
+
b
−
x
)
dx
≤
1
2
[
f
(
a
m
)]
2
m
1
0
f
(
b
)
f
(
a
m
)
2
t
α
dt
+[
f
(
b
m
)]
2
m
1
0
f
(
a
)
f
(
b
m
)
2
tα
dt
=
1
2
[
f
(
a
m
)]
2
m
p
f
(
b
)
f
(
a
m
)
2
α
+[
f
(
b
m
)]
2
m
p
f
(
a
)
f
(
b
m
)
2
α
.
(2.27)
(4)
e
f
(
b
)
f
(
a
m
)
≥
1,
f
(
a
)
f
(
b
m
)
≥
1,
K
1
b
−
a
b
a
f
(
x
)
f
(
a
+
b
−
x
)
dx
≤
1
2
[
f
(
a
m
)]
2
m
1
0
f
(
b
)
f
(
a
m
)
2
t
α
dt
+[
f
(
b
m
)]
2
m
1
0
f
(
a
)
f
(
b
m
)
2
t
α
dt
=
1
2
[
f
(
a
m
)]
2
m
p
f
(
b
)
f
(
a
m
)
2
α
+[
f
(
b
m
)]
2
m
p
f
(
a
)
f
(
b
m
)
2
α
.
(2.28)
d
(2.25)
Ú
(2.28)
=
Œ
(2.20)
¤
á
.
DOI:10.12677/pm.2021.111014101
n
Ø
ê
Æ
‘
Ä
7
‘
8
S
Ž
2019
c
Œ
Æ
)
M
#
M
’
Ô
ö
O
y
Ž
?
‘
8
(20191498079)
§
2020
c
Œ
Æ
)
M
#
M
’
Ô
ö
O
y
I
[?
‘
8
(202014098036)
"
ë
•
©
z
[1]Mitrinovi´c,D.S.,Peˇcari´c,J.E.andFink,A.M.(1993)ClassicalandNewInequalitiesinAnal-
ysis.KluwerAcademicPublishers,Dordrecht.https://doi.org/10.1007/978-94-017-1043-5
[2]Peˇcari´c,J.E.,Proschan,F.andTong,Y.L.(1991)ConvexFunctions,PartialOrderingsand
StatisticalApplications.AcademicPress,Cambridge,MA.
[3]Dragomir,S.S.andToader,G.(1993)SomeInequalitiesform-ConvexFunctions.
StudiaUni-
versitatisBabes-BolyaiMathematica
,
38
,21-28.
[4]Bai,R.F.,Qi,F.andXi,B.Y.(2013)Hermite-HadamardTypeInequalitiesforthem-and
(
α
;m)-LogarithmicallyConvexFunctions.
Filomat
,
27
,1-7.http://www.pmf.ni.ac.rs/filomat
https://doi.org/10.2298/FIL1301001B
[5]Bakula, M.K.,
¨
Ozdemir, M.E. and Peˇcri´c,J. (2008) Hadamard Type Inequalities for m-Convex
and(
α
;m)-ConvexFunctions.
JournalofInequalitiesinPureandAppliedMathematics
,
9
,
ArticleNo.96.
[6]Xi,B.Y.,Bai,R.F.andQi,F.(2012)Hermite-HadamardTypeInequalitiesforthem-and
(
α
;m)-GeometricallyConvexFunctions.
AequationesMathematicae
,
84
,261-269.
https://doi.org/10.1007/s00010-011-0114-x
[7]Kirmac,U.S.and
¨
Ozdemir,M.E.(2004)SomeInequalitiesforMappingsWhoseDerivatives
AreBoundedandApplicationstoSpecialsMeansofRealNumbers.
AppliedMathematics
Letters
,
17
,641-645.https://doi.org/10.1016/S0893-9659(04)90098-5
[8]Dragomir,S.S.(1992)TwoFunctionsinConnectiontoHadamard’sInequalities.
Journalof
MathematicalAnalysisandApplications
,
167
,49-56.
https://doi.org/10.1016/0022-247X(92)90233-4
[9]Zhang, T.Y., Ji,A.P. andQi, F.(2012) OnIntegralInequalitiesofHermite-HadamardTypefor
s-GeometricallyConvexFunctions.
AbstractandAppliedAnalysis
,
2012
,ArticleID:560586.
https://doi.org/10.1155/2012/560586
[10]Wang,W.andQi,J.B.(2017)SomeNewEstimatesofHermite-HadmardInequalitiesfor
HarmonicallyConvexFunctions withApplications.
InternationalJournalofAnalysisandAp-
plications
,
13
,15-21.
DOI:10.12677/pm.2021.111014102
n
Ø
ê
Æ