Pure Mathematics
Vol.07 No.06(2017), Article ID:22650,10 pages
10.12677/PM.2017.76057

Existence of Solutions for Fractional Impulsive Differential Equations with p-Laplacian Operator

Yuanbin Liu, Xiujuan Wang, Weimin Hu

School of Mathematics and Statistics, Yili Normal University, Yining Xinjiang

Received: Oct. 22nd, 2017; accepted: Nov. 5th, 2017; published: Nov. 13th, 2017

ABSTRACT

In this paper, we discuss the existence of solutions of boundary value problems for a class of fractional impulsive differential equations. Some fixed point theorems are used to obtain sufficient conditions for the existence of solutions of Impulsive Differential Equations.

Keywords:Fractional Difference Equation, Impulsive, Fixed-Point, Boundary Problem

具p-Laplacian算子的分数阶脉冲微分方程 边值问题解的存在性

刘元彬,汪秀娟,胡卫敏

伊犁师范学院,新疆 伊宁

收稿日期:2017年10月22日;录用日期:2017年11月5日;发布日期:2017年11月13日

摘 要

本文讨论了一类分数阶脉冲微分方程的边值问题解的存在性,应用一些不动点定理给出了脉冲微分方程解的存在性的充分条件。

关键词 :分数阶,脉冲:不动点定理,边值问题

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

分数阶微分方程在科技、经济和工程等领域都得到了广泛的应用,引起了广大数学学者的关注和研究,并在分数阶微分系统方面得到了很多的研究成果 [1] - [9] ,含有p-Laplacian算子的微分方程也逐渐热门 [1] [2] [3] ,而对非线性分数阶脉冲微分方程脉冲边值问题的研究相对而言比较少,在文献 [4] - [9] 中也研究了含有脉冲项的分数阶微分方程的边值问题,因此本文主要研究含有p-Laplacian算子的分数阶脉冲微分方程边值问题解的存在性。

在文献 [6] 中,作者运用Banach压缩映射原理和Leray-Schauder不动点定理研究了分数阶差分方程边值问题

{ C D 0 + q u ( t ) = f ( t , u ( t ) ) , 1 < q 2 , t J , Δ ( u ( t k ) ) = I k ( u ( t k ) ) , Δ ( u ( t k ) ) = Q k ( u ( t k ) ) , a u ( 0 ) b u ( 0 ) = x 0 , c u ( 1 ) + d u ( 1 ) = x 1 , (1)

解的存在性,这里是标准的Caputo分数阶导数,其中 f ( C × R , R ) I k , Q k C ( R , R ) ,是连续函数。

文献 [2] 中,作者运用不动点定理研究了如下边值问题

{ C D 0 + β φ p ( C D 0 + β x ( t ) ) = f ( t , x ( t ) ) , 1 < α 2 , t J , x ( 0 ) + x ( 1 ) = 0 , D C 0 + α x ( 0 ) + D C 0 + α x ( 1 ) = 0 , (2)

解的存在性,这里 C D 0 + β 是标准的Caputo分数阶导数。

受上述文献启发,本文应用不动点定理研究含p-Laplacian算子的分数阶脉冲微分方程边值问题

{ φ p ( C D 0 + α u ( t ) ) = f ( t , u ( t ) ) , t J Δ ( u ( t k ) ) = I k ( u ( t k ) ) , Δ ( u ( t k ) ) = Q k ( u ( t k ) ) , a u ( 0 ) b u ( 0 ) = x 0 , c u ( 0 ) + d D C 0 + β u ( 1 ) = x 1 (3)

解的存在性,其中 C D 0 + α 是标准的Caputo分数阶导数,

1 < α 2 α 1 < β 1 a 0 b > 0 c 0 d > 0

( δ = b c + a ( c + d Γ ( 2 β ) ) ) x 0 , x 1 R f C ( J × R , R ) I k , J k R

J = [ 0 , 1 ] 0 = t 0 < t 1 < < t k < < t m < t m + 1 = 1 J = J \ { t 1 , t 2 , , t m }

其脉冲项为

Δ u ( t k ) = u ( t k + ) u ( t k ) Δ u ( t k ) = u ( t k + ) u ( t k )

这里 u ( t k + ) u ( t k ) 分别为 u ( t k ) t = t k 处的右左极限, k = 1 , 2 , , m ,其中 φ p ( s ) = | s | p 2 s 为p-Laplacian算子, p > 1 ,并且 φ p ( s ) 的逆算子 φ q ( s ) 1 p + 1 q = 1

2. 相关定义及引理

在这一节,为了后面的讨论,我们给出一些定义及相关引理。

J = [ 0 , 1 ] 0 = t 0 < t 1 < < t k < < t m < t m + 1 = 1 J 0 = [ 0 , t 1 ] J 1 = ( t 1 , t 2 ] J m = ( t m , 1 ] P C ( J , R ) = { u : J R | u C ( J k ) , k = 0 , 1 , , m , u ( t k + ) } ,其空间上范数为 u = sup t J | u ( t ) | ,有

P C ( J , R ) = { u : J R | u C ( J k ) , k = 0 , 1 , , m , u ( t k + ) , u ( t k + ) } ,与其范数 u P C = max t J { u , u } ,显然 P C P C 为Banach空间。

定理1:设 E 为Banach空间, Ω E 上的非空有界闭凸子集,算子 T : Ω ¯ E 为全连续算子,使得 T u u u Ω ¯ ,则 T Ω ¯ 存在不动点。

定理2:设 E 为Banach空间, T : E E 为全连续算子, V = { u E | u = μ T u , 0 < μ < 1 } ,为有界集,则 T Ω ¯ 存在不动点。

引理1: [1] 令 α > 0 ,则分数阶微分方程 C D 0 + α u ( t ) = 0 有唯一解

u ( t ) = c 0 + c 1 t + + c n 1 t n 1 , c i R , n = [ α ] + 1

引理2: [1] 令 α > 0 ,则有

I 0 + α D C 0 + α u ( t ) = u ( t ) + c 0 + c 1 t + + c n 1 t n 1 , c i R , i = 0 , 1 , , n 1 , n = [ α ] + 1

对于边值问题(3),可通过 φ p ( s ) 的逆算子 φ q ( s ) 将其转化为等价的边值问题

{ C D 0 + α u ( t ) = φ q ( f ( t , u ( t ) ) ) , t J Δ ( u ( t k ) ) = I k ( u ( t k ) ) , Δ ( u ( t k ) ) = Q k ( u ( t k ) ) , a u ( 0 ) b u ( 0 ) = x 0 , c u ( 0 ) + d C D 0 + β u ( 1 ) = x 1 (4)

引理3:对于给定函数 y C [ 0 , 1 ] u ( t ) 为如下边值问题的解

{ C D 0 + α u ( t ) = φ q ( y ( t ) ) , t J Δ ( u ( t k ) ) = I k ( u ( t k ) ) , Δ ( u ( t k ) ) = Q k ( u ( t k ) ) , a u ( 0 ) b u ( 0 ) = x 0 , c u ( 0 ) + d C D 0 + β u ( 1 ) = x 1 (5)

当且仅当

u ( t ) = { 1 Γ ( α ) 0 t ( t s ) α 1 φ q ( y ( s ) ) d t c 1 c 2 t , t J 0 1 Γ ( α ) t k t ( t s ) α 1 φ q ( y ( s ) ) d t + i = 1 k t t k Γ ( α 1 ) t 1 k t k ( t s ) α 2 φ q ( y ( s ) ) d t + i = 1 k 1 t k t i Γ ( α 1 ) t 1 k t k ( t s ) α 2 φ q ( y ( s ) ) d t + i = 1 k I i ( u ( t i ) ) + i = 1 k ( t t k ) Q i ( u ( t i ) ) + i = 1 k 1 ( t k t i ) Q i ( u ( t i ) ) c 1 c 2 t , t J k

其中

c 1 = 1 δ ( b c Γ ( α ) i = 1 m + 1 t i 1 t i ( t i s ) α 1 φ q ( y ( s ) ) d s + b c ( 1 t m ) Γ ( α 1 ) i = 1 m t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + i = 1 m 1 b c ( t m t i ) Γ ( α 1 ) t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + i = 1 m b c I i ( u ( t i ) ) + i = 1 m b c ( 1 t m ) Q i ( u ( t i ) ) + i = 1 m 1 b c ( t m t i ) Q i ( u ( t i ) ) + i = 1 m + 1 b d Γ ( α 1 ) Γ ( 2 β ) t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + b d Γ ( 2 β ) i = 1 m Q i ( u ( t i ) ) b x 1 c x 0 d x 0 Γ ( 2 β ) )

c 2 = 1 δ ( a c Γ ( α ) i = 1 m + 1 t i 1 t i ( t i s ) α 1 φ q ( y ( s ) ) d s + a c ( 1 t m ) Γ ( α 1 ) i = 1 m t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + i = 1 m 1 a c ( t m t i ) Γ ( α 1 ) t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + i = 1 m a c I i ( u ( t i ) ) + i = 1 m a c ( 1 t m ) Q i ( u ( t i ) ) + i = 1 m 1 a c ( t m t i ) Q i ( u ( t i ) ) + i = 1 m + 1 a d Γ ( α 1 ) Γ ( 2 β ) t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + a d Γ ( 2 β ) i = 1 m Q i ( u ( t i ) ) a x 1 c x 0 )

证明:设 u ( t ) 为(5)的解,由(2)可得

u ( t ) = I 0 + α y ( t ) c 1 c 2 t = 1 Γ ( α ) 0 t ( t s ) α 1 φ q ( y ( s ) ) d t c 1 c 2 t , t J 0 , c 1 , c 2 R

则有

u ( t ) = 1 Γ ( α 1 ) 0 t ( t s ) α 1 φ q ( y ( s ) ) d t c 2 (6)

t J 1 ,有

u ( t ) = 1 Γ ( α ) t 1 t ( t s ) α 1 φ q ( y ( s ) ) d s d 1 d 2 ( t t 1 )

u ( t ) = 1 Γ ( α 1 ) t 1 t ( t s ) α 2 φ q ( y ( s ) ) d s d 2

其中 d 1 , d 2 R ,可得

u ( t ) = 1 Γ ( α ) t 1 t ( t s ) α 1 φ q ( y ( s ) ) d s c 1 c 2 t 1 , u ( t + ) = d 1

u ( t ) = 1 Γ ( α 1 ) t 1 t ( t s ) α 2 φ q ( y ( s ) ) d s c 2 , u ( t + ) = d 2

由上述定义 Δ u ( t k ) = u ( t k + ) u ( t k ) Δ u ( t k ) = u ( t k + ) u ( t k ) ,则

d 1 = 1 Γ ( α ) 0 t 1 ( t 1 s ) α 1 φ q ( y ( s ) ) d s c 1 c 2 t 1 + I 1 ( u ( t 1 ) )

d 2 = 1 Γ ( α 1 ) 0 t 1 ( t 1 s ) α 2 φ q ( y ( s ) ) d s c 2 + Q 1 ( u ( t 1 ) )

因此

u ( t ) = 1 Γ ( α ) t k t ( t s ) α 1 φ q ( y ( s ) ) d t + i = 1 k t t k Γ ( α 1 ) t 1 k t k ( t s ) α 2 φ q ( y ( s ) ) d t + i = 1 k 1 t k t i Γ ( α 1 ) t 1 k t k ( t s ) α 2 φ q ( y ( s ) ) d t + i = 1 k I i ( u ( t i ) ) + i = 1 k ( t t k ) Q i ( u ( t i ) ) + i = 1 k 1 ( t k t i ) Q i ( u ( t i ) ) c 1 c 2 t

由边值条件 a u ( 0 ) b u ( 0 ) = x 0 c u ( 0 ) + d D C 0 + β u ( 1 ) = x 1

a c 1 + b c 2 = x 0 c c 1 + ( c + 1 Γ ( 2 β ) ) = c Γ ( α ) i = 1 m + 1 t i 1 t i ( t i s ) α 1 φ q ( y ( s ) ) d s + i = 1 k c ( 1 t i ) Γ ( α 1 ) t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + i = 1 m c I i ( u ( t i ) ) + i = 1 m c ( 1 t i ) Q i ( u ( t i ) ) + i = 1 m 1 b c ( t m t i ) Q i ( u ( t i ) ) + i = 1 m d Γ ( 2 β ) t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + d Γ ( 2 β ) i = 1 m Q i ( u ( t i ) ) x 1

可得

c 1 = 1 δ ( b c Γ ( α ) i = 1 m + 1 t i 1 t i ( t i s ) α 1 φ q ( y ( s ) ) d s + b c ( 1 t m ) Γ ( α 1 ) i = 1 m t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + i = 1 m 1 b c ( t m t i ) Γ ( α 1 ) t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + i = 1 m b c I i ( u ( t i ) ) + i = 1 m b c ( 1 t m ) Q i ( u ( t i ) ) + i = 1 m 1 b c ( t m t i ) Q i ( u ( t i ) ) + i = 1 m + 1 b d Γ ( α 1 ) Γ ( 2 β ) t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + b d Γ ( 2 β ) i = 1 m Q i ( u ( t i ) ) b x 1 c x 0 d x 0 Γ ( 2 β ) )

c 2 = 1 δ ( a c Γ ( α ) i = 1 m + 1 t i 1 t i ( t i s ) α 1 φ q ( y ( s ) ) d s + a c ( 1 t m ) Γ ( α 1 ) i = 1 m t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + i = 1 m 1 a c ( t m t i ) Γ ( α 1 ) t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + i = 1 m a c I i ( u ( t i ) ) + i = 1 m a c ( 1 t m ) Q i ( u ( t i ) ) + i = 1 m 1 a c ( t m t i ) Q i ( u ( t i ) ) + i = 1 m + 1 a d Γ ( α 1 ) Γ ( 2 β ) t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + a d Γ ( 2 β ) i = 1 m Q i ( u ( t i ) ) a x 1 c x 0 )

命题得证。

3. 主要结果

定义算子 T : P C ( J , R ) P C ( J , R ) 如下

T u ( t ) = 1 Γ ( α ) t k t ( t s ) α 1 φ q ( f ( s , u ) ) d t + i = 1 k 1 Γ ( α 1 ) t 1 k t k ( t s ) α 2 φ q ( f ( s , u ) ) d t + i = 1 k 1 t t k Γ ( α 1 ) t 1 k t k ( t s ) α 2 φ q ( f ( s , u ) ) d t + i = 1 k 1 t k t i Γ ( α 1 ) t 1 k t k ( t s ) α 2 φ q ( f ( s , u ) ) d t + i = 1 k I i ( u ( t i ) ) + i = 1 k ( t t k ) Q i ( u ( t i ) ) + i = 1 k 1 ( t k t i ) Q i ( u ( t i ) ) c 1 c 2 t

其中

c 1 = 1 δ ( b c Γ ( α ) i = 1 m + 1 t i 1 t i ( t i s ) α 1 φ q ( f ( s , u ) ) d s + b c ( 1 t m ) Γ ( α 1 ) i = 1 m t i 1 t i ( t i s ) α 2 φ q ( f ( s , u ) ) d s + i = 1 m 1 b c ( t m t i ) Γ ( α 1 ) t i 1 t i ( t i s ) α 2 φ q ( f ( s , u ) ) d s + i = 1 m b c I i ( u ( t i ) ) + i = 1 m b c ( 1 t m ) Q i ( u ( t i ) ) + i = 1 m 1 b c ( t m t i ) Q i ( u ( t i ) ) + i = 1 m + 1 b d Γ ( α 1 ) Γ ( 2 β ) t i 1 t i ( t i s ) α 2 φ q ( y ( s ) ) d s + b d Γ ( 2 β ) i = 1 m Q i ( u ( t i ) ) b x 1 c x 0 d x 0 Γ ( 2 β ) )

c 2 = 1 δ ( a c Γ ( α ) i = 1 m + 1 t i 1 t i ( t i s ) α 1 φ q ( f ( s , u ) ) d s + a c ( 1 t m ) Γ ( α 1 ) i = 1 m t i 1 t i ( t i s ) α 2 φ q ( f ( s , u ) ) d s + i = 1 m 1 a c ( t m t i ) Γ ( α 1 ) t i 1 t i ( t i s ) α 2 φ q ( f ( s , u ) ) d s + i = 1 m a c I i ( u ( t i ) ) + i = 1 m a c ( 1 t m ) Q i ( u ( t i ) ) + i = 1 m 1 a c ( t m t i ) Q i ( u ( t i ) ) + i = 1 m + 1 a d Γ ( α 1 ) Γ ( 2 β ) t i 1 t i ( t i s ) α 2 φ q ( f ( s , u ) ) d s + a d Γ ( 2 β ) i = 1 m Q i ( u ( t i ) ) a x 1 c x 0 )

由引理3,令 y ( t ) = f ( t , u ( t ) ) 则边值问题(3)有解等价存在不动点,即 u = T u ,于是(3)有解当且仅当 u = T u

定理3:令 lim u 0 φ q ( f ( t , u ) ) u = 0 lim u 0 I k ( u ) u = 0 lim u 0 Q k ( u ) u = 0 ,并且有

Λ = 1 δ δ 1 Γ ( α + 1 ) ( m + 1 ) ( c ( a + b ) + δ ) + 1 δ δ 1 Γ ( α + 1 ) ( ( 2 m 1 ) ( c ( a + b ) + δ ) + ( m + 1 ) ( a + b ) d Γ ( 2 β ) ) + m ( c ( a + b ) + δ ) δ δ 2 + 1 δ ( ( 2 m 1 ) ( c ( a + b ) + δ ) + m d ( a + b ) Γ ( 2 β ) ) δ 3 + 1 δ ( ( a + b ) | x 1 | + 2 c + d Γ ( 2 β ) | x 0 | ) 1

证明:首先,证明 T : P C ( J , R ) P C ( J , R ) 是全连续算子, T 作用于 f , I k , Q k 均连续,

Ω T : P C ( J , R ) P C ( J , R ) 的有界子集,则存在常数 L i > 0 ( i = 1 , 2 , 3 , 4 ) 使得 | f ( t , u ) | L 1 | I k ( u ) | L 2 | Q k ( u ) | L 3 | φ q ( f ( t , u ) ) | L 4 ,又

| c 1 | 1 δ ( b c Γ ( α ) i = 1 m + 1 t i 1 t i ( t i s ) α 1 | φ q ( f ( s , u ) ) | d s + b c ( 1 t m ) Γ ( α 1 ) i = 1 m t i 1 t i ( t i s ) α 2 | φ q ( f ( s , u ) ) | d s + i = 1 m 1 b c ( t m t i ) Γ ( α 1 ) t i 1 t i ( t i s ) α 2 | φ q ( f ( s , u ) ) | d s + i = 1 m b c | I i ( u ( t i ) ) | + i = 1 m b c ( 1 t m ) | Q i ( u ( t i ) ) | + i = 1 m 1 b c ( t m t i ) | Q i ( u ( t i ) ) | + i = 1 m + 1 b d Γ ( α 1 ) Γ ( 2 β ) t i 1 t i ( t i s ) α 2 | φ q ( f ( s , u ) ) | d s + b d Γ ( 2 β ) i = 1 m | Q i ( u ( t i ) ) | + b | x 1 | + c | x 0 | + d | x 0 | Γ ( 2 β ) )

1 δ ( b c L 4 Γ ( α ) i = 1 m + 1 t i 1 t i ( t i s ) α 1 d s + b c L 4 Γ ( α 1 ) i = 1 m t i 1 t i ( t i s ) α 2 d s + i = 1 m 1 b c L 4 Γ ( α 1 ) t i 1 t i ( t i s ) α 2 d s + i = 1 m b c L 2 + i = 1 m b c ( 1 t m ) L 3 + i = 1 m 1 b c ( t m t i ) L 3 + i = 1 m + 1 b d L 4 Γ ( α 1 ) Γ ( 2 β ) t i 1 t i ( t i s ) α 2 d s + b d Γ ( 2 β ) i = 1 m L 3 + b | x 1 | + c | x 0 | + d | x 0 | Γ ( 2 β ) ) 1 δ b c ( m + 1 ) L 4 Γ ( α + 1 ) + 1 δ b c m L 4 Γ ( α ) + 1 δ i = 1 m 1 b c m L 4 Γ ( α ) + b c m L 2 δ + b c m L 3 δ + b c ( m 1 ) L 3 δ + 1 δ b d ( m + 1 ) L 4 Γ ( α ) Γ ( 2 β ) + 1 δ b d m L 3 Γ ( 2 β ) + 1 δ b | x 1 | + 1 δ c | x 0 | + 1 δ d | x 0 | Γ ( 2 β )

| c 2 | 1 δ ( a c Γ ( α ) i = 1 m + 1 t i 1 t i ( t i s ) α 1 | φ q ( f ( s , u ) ) | d s + a c ( 1 t m ) Γ ( α 1 ) i = 1 m t i 1 t i ( t i s ) α 2 | φ q ( f ( s , u ) ) | d s + i = 1 m 1 a c ( t m t i ) Γ ( α 1 ) t i 1 t i ( t i s ) α 2 | φ q ( f ( s , u ) ) | d s + i = 1 m a c | I i ( u ( t i ) ) | + i = 1 m a c ( 1 t m ) | Q i ( u ( t i ) ) | + i = 1 m 1 a c ( t m t i ) | Q i ( u ( t i ) ) | + i = 1 m + 1 a d Γ ( α 1 ) Γ ( 2 β ) t i 1 t i ( t i s ) α 2 | φ q ( f ( s , u ) ) | d s + a d Γ ( 2 β ) i = 1 m | Q i ( u ( t i ) ) | a | x 1 | c | x 0 | )

1 δ ( a c L 4 Γ ( α ) i = 1 m + 1 t i 1 t i ( t i s ) α 1 d s + a c L 4 Γ ( α 1 ) i = 1 m t i 1 t i ( t i s ) α 2 d s + i = 1 m 1 a c L 4 Γ ( α 1 ) t i 1 t i ( t i s ) α 2 d s + i = 1 m a c L 2 + i = 1 m a c ( 1 t m ) L 3 + i = 1 m 1 a c ( t m t i ) L 3 + i = 1 m + 1 a d L 4 Γ ( α 1 ) Γ ( 2 β ) t i 1 t i ( t i s ) α 2 d s + a d Γ ( 2 β ) i = 1 m L 3 a | x 1 | c | x 0 | ) 1 δ a c ( m + 1 ) L 4 Γ ( α + 1 ) + 1 δ a c m L 4 Γ ( α ) + 1 δ a c ( m 1 ) L 4 Γ ( α ) + a c m L 2 δ + a c m L 3 δ + a c ( m 1 ) L 3 δ + 1 δ a d ( m + 1 ) L 4 Γ ( α ) Γ ( 2 β ) + 1 δ a d m L 3 Γ ( 2 β ) + 1 δ a | x 1 | + 1 δ c | x 0 |

| T u ( t ) | 1 δ L 4 Γ ( α + 1 ) ( m + 1 ) ( c ( a + b ) + δ ) + 1 δ L 4 Γ ( α + 1 ) ( ( 2 m 1 ) ( c ( a + b ) + δ ) + ( m + 1 ) ( a + b ) d Γ ( 2 β ) ) + m ( c ( a + b ) + δ ) δ L 2 + m δ ( ( 2 p 1 ) ( δ + c ( a + b ) ) + m d ( a + b ) Γ ( 2 β ) ) L 3 + 1 δ ( ( a + b ) | x 1 | + 2 c + d Γ ( 2 β ) | x 0 | ) : = L

因此 T u L

另一方面

| T u ( t ) | 1 δ a c ( m + 1 ) L 4 Γ ( α + 1 ) + a c m L 2 δ + L 3 δ ( ( m + 1 ) ( δ + a d Γ ( 2 β ) ) + a c ( 2 m 1 ) ) + ( a | x 1 | + c | x 0 | ) δ : = L ¯

因此对于 t 1 , t 2 J k , t 1 t 2 , 0 k m

| T u ( t 2 ) T u ( t 1 ) | t 1 t 2 ( T u ) ( s ) d s L ¯ ( t 2 t 1 )

t 在每一个子空间等度连续,由Arzela-Ascoli定理, T 为全连续算子,由条件 lim u 0 φ q ( f ( t , u ) ) u = 0 lim u 0 I k ( u ) u = 0 lim u 0 Q k ( u ) u = 0 ,存在常数 r > 0 , δ i > 0 ( i = 1 , 2 , 3 ) | φ q ( f ( t , u ) ) | δ 1 | u | | I i ( u ) | δ 2 | u | | Q i ( u ) | δ 3 | u | ,由

Λ = 1 δ δ 1 Γ ( α + 1 ) ( m + 1 ) ( c ( a + b ) + δ ) + 1 δ δ 1 Γ ( α + 1 ) ( ( 2 m 1 ) ( c ( a + b ) + δ ) + ( m + 1 ) ( a + b ) d Γ ( 2 β ) ) + m ( c ( a + b ) + δ ) δ δ 2 + 1 δ ( ( 2 m 1 ) ( c ( a + b ) + δ ) + m d ( a + b ) Γ ( 2 β ) ) δ 3 + 1 δ ( ( a + b ) | x 1 | + 2 c + d Γ ( 2 β ) | x 0 | ) 1

对于 u P C ( J , R ) ,定义 Ω = { u P C ( J , R ) | u < r } u Ω 时, u = r ,有

| T u ( t ) | { 1 δ δ 1 Γ ( α + 1 ) ( m + 1 ) ( c ( a + b ) + δ ) + 1 δ δ 1 Γ ( α + 1 ) ( ( 2 m 1 ) ( c ( a + b ) + δ ) + ( m + 1 ) ( a + b ) d Γ ( 2 β ) ) + m ( c ( a + b ) + δ ) δ δ 2 + 1 δ ( ( 2 m 1 ) ( c ( a + b ) + δ ) + m d ( a + b ) Γ ( 2 β ) ) δ 3 + 1 δ ( ( a + b ) | x 1 | + 2 c + d Γ ( 2 β ) | x 0 | ) } u P C

T u P C u P C ,由定理1算子 T 至少存在一个不动点,则(3)至少存在一个解。

定理4:假设存在正常数 L i 0 ( i = 1 , 2 , 3 , 4 ) 使得 | f ( t , u ) | L 1 | I k ( u ) | L 2 | Q k ( u ) | L 3 | φ q ( f ( t , u ) ) | L 4 ,则(3)至少存在一个解。

证明:由定理3,算子 T 为全连续算子,此时假设 V = { u E | u = μ T u , 0 < μ < u } 为有界集,令 u V ,我们有

u ( t ) = μ Γ ( α ) t k t ( t s ) α 1 φ q ( f ( s , u ) ) d t + μ Γ ( α ) i = 1 k t k t ( t s ) α 1 φ q ( f ( s , u ) ) d t + i = 1 k μ ( t t k ) Γ ( α 1 ) t 1 k t k ( t s ) α 2 φ q ( f ( s , u ) ) d t + i = 1 k 1 μ ( t k t i ) Γ ( α 1 ) t 1 k t k ( t s ) α 2 φ q ( f ( s , u ) ) d t + i = 1 k μ I i ( u ( t i ) ) + i = 1 k μ ( t t k ) Q i ( u ( t i ) ) + i = 1 k 1 μ ( t k t i ) Q i ( u ( t i ) ) μ c 1 μ c 2 t

由条件,有

| u ( t ) | = μ | T u ( t ) | 1 δ δ 1 Γ ( α + 1 ) ( m + 1 ) ( c ( a + b ) + δ ) + 1 δ δ 1 Γ ( α + 1 ) ( ( 2 m 1 ) ( c ( a + b ) + δ ) + ( m + 1 ) ( a + b ) d Γ ( 2 β ) ) + m ( c ( a + b ) + δ ) δ δ 2 + 1 δ ( ( 2 m 1 ) ( c ( a + b ) + δ ) + m d ( a + b ) Γ ( 2 β ) ) δ 3 + 1 δ ( ( a + b ) | x 1 | + 2 c + d Γ ( 2 β ) | x 0 | )

则对 t J

u ( t ) P C 1 δ δ 1 Γ ( α + 1 ) ( m + 1 ) ( c ( a + b ) + δ ) + 1 δ δ 1 Γ ( α + 1 ) ( ( 2 m 1 ) ( c ( a + b ) + δ ) + ( m + 1 ) ( a + b ) d Γ ( 2 β ) ) + m ( c ( a + b ) + δ ) δ δ 2 + 1 δ ( ( 2 m 1 ) ( c ( a + b ) + δ ) + m d ( a + b ) Γ ( 2 β ) ) δ 3 + 1 δ ( ( a + b ) | x 1 | + 2 c + d Γ ( 2 β ) | x 0 | )

又由 V 为有界集,故由定理2算子 T 至少存在一个不动点,则(3)至少存在一个解。

4. 例子

对于如下具p-Laplacian算子的非线性分数阶脉冲微分方程边值问题

{ φ 5 / 3 ( C D 0 + 5 4 u ( t ) ) = cos t ( t + 5 2 ) 2 u ( t ) 1 + u ( t ) , Δ ( u ( 1 2 ) ) = | u ( 1 2 ) | 20 + | u ( 1 2 ) | , Δ ( u ( 1 2 ) ) = Q k ( | u ( 1 2 ) | 20 + | u ( 1 2 ) | ) , u ( 0 ) u ( 0 ) = 0 , u ( 0 ) + D C 0 + 1 2 u ( 1 ) = 0

这里 p = 5 3 , α = 5 4 , a = b = c = d = m = 1 , β = 1 2 , x 0 = x 1 = 0 ,取 L 1 = 1 50 , L 2 = 1 20 , L 3 = 1 40 Λ 1 满足条件,由定理3和定理4,边值问题(3)至少存在一个解。

基金项目

新疆维吾尔自治区研究生科研创新项目(XJGRI2016136),新疆高校科研计划重点项目(XJEDU2014I040)。

文章引用

刘元彬,汪秀娟,胡卫敏. 具p-Laplacian算子的分数阶脉冲微分方程边值问题解的存在性
Existence of Solutions for Fractional Impulsive Differential Equations with p-Laplacian Operator[J]. 理论数学, 2017, 07(06): 437-446. http://dx.doi.org/10.12677/PM.2017.76057

参考文献 (References)

  1. 1. 侯传霞, 李勇. 含有p-Laplacian算子的脉冲边值问题解的存在性[J]. 科学技术与工程, 2005, 9(3): 4114-4116.

  2. 2. Chen, T.Y. (2012) An Anti-Periodic Boundary Value Problem for the Fractional Differential Equation with a p-Laplacian Operator. Applied Mathematics Letters, 25, 1671-1675. https://doi.org /10.1016/j.aml.2012.01.035

  3. 3. 宋利梅. 具p-Laplacian算子的分数阶微分方程边值问题的正解[J]. 高校应用数学学报, 2014, 29(4): 443-452.

  4. 4. Wang, G.T. (2011) Some Existence Results for Impulsive Nonlinear Fractional Differential Equations with Mixed Boundary Conditions. Computer and Mathematics with Application, 62, 1389-1397. https://doi.org /10.1016/j.camwa.2011.04.004

  5. 5. Tian, Y.S. (2010) Existence Results for the Three-Point Impulsive Boundary Value Problem Involving Fractional Equation. Computer and Mathematics with Application, 59, 2601-2609. https://doi.org /10.1016/j.camwa.2010.01.028

  6. 6. Wang, X.H. (2011) Impulsive Boundary Value Problem for Nonlinear Differential Equations of Fractional Order. Computer and Mathematics with Application, 62, 2383-2391. https://doi.org /10.1016/j.camwa.2011.07.026

  7. 7. 张爱华, 胡卫敏. 非线性分数阶脉冲微分方程边值问题的解[J]. 数学的实践与认识, 2014, 44(6): 233- 240.

  8. 8. 智二涛, 刘锡平, 李凡凡. 分数阶脉冲微分方程边值问题正解的存在性[J]. 吉林大学学报(理学版), 2014, 52(3): 482-488.

  9. 9. Zhao, K.H. (2014) Positive Solutions for Impulsive Fractional Differential Equations with Generalized Periodic Boundary Value Conditions. Advances in Difference Equations, 1, 255. https://doi.org /10.1186/1687-1847-2014-255

期刊菜单