﻿ 形成最小单位电荷的一种可能的物理机制 Report on a Possible Physical Mechanism of Minimum Unit Charge Forming

Modern Physics
Vol.07 No.05(2017), Article ID:22042,7 pages
10.12677/MP.2017.75021

Report on a Possible Physical Mechanism of Minimum Unit Charge Forming

Tongsheng Xia

Beihang University, Beijing

Received: Aug. 26th, 2017; accepted: Sep. 9th, 2017; published: Sep. 14th, 2017

ABSTRACT

Study on the perturbation of the gravitational field of black holes is quite an interesting and active research field. This paper deals with the minimum Kerr black hole in the Planck scale. Surprisingly, we find that the perturbation gives a quasi normal mode corresponding to a charge unit of e/3. Works are done to make things self-consistent too.

Keywords:Kerr Black Hole, Quasi Normal Mode, Perturbation, Charge Unit

Email: xiatongsheng@buaa.edu.cn

1. 简介

(1)

2. 理论与数值计算方法

(2)

Detweiler率先给出了Kerr准模的数值计算结果 [22] [23] 。在Kerr黑洞情况下，由于非球对称，微扰问题不能象Schwarzchild黑洞那样归为径向的一个普通的微分方程。它将会成为两个耦合在一起的微分方程，其中一个是径向的微扰方程，另一个是关于角向部分的微扰方程。因此，我们不得不同时解两个微分方程。这样做相对比较困难。不过通过领域内研究人员的大量工作，求解方程可以通过下面的方式来进行 [24] [25] [26] [27] 。假设：

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

3. 数值计算结果

Figure 1. The horizontal axis is for the angular momentum to mass ratio, and the vertical axis is for the real part of the quasi normal mode frequency multiplied by mass versus. The cross point has the minimum surface area and J = 2. Here we chose m = −2, rather than m = −1, as compared with that in reference [24] and [25]

[26] [27] 中的数值计算结果符合的很好，只是我们在图中选择了m = −2，而不是m = −1 [28] [29] 。

(11)

(12)

(13)

(14)

4. 结论

Report on a Possible Physical Mechanism of Minimum Unit Charge Forming[J]. 现代物理, 2017, 07(05): 183-189. http://dx.doi.org/10.12677/MP.2017.75021

1. 1. Gralla, S., Porfyriadis, A. and Warburton, N. (2015) Particle on the Innermost Stable Circular Orbit of a Rapidly Spinning Black Hole. Physical Review D, 92, 064029-064043. https://doi.org/10.1103/PhysRevD.92.064029

2. 2. Harms, E., Lukes Gerakopoulos, G., Bernuzzi, S. and Nagar, A. (2016) Asymptotic Gravitational Wave Fluxes from a Spinning Particle in Circular Equatorial Orbits around a Rotating Black Hole. Physical Review D, 93, 044015-044036. https://doi.org/10.1103/PhysRevD.93.044015

3. 3. Casals, M. and Ottewill, A. (2015) High-Order Tail in Schwarzschild Spacetime. Physical Review D, 92, 124055-124091. https://doi.org/10.1103/PhysRevD.92.124055

4. 4. Regge, T. and Wheeler, J. (1957) Stability of a Schwarzschild Singularity. Physical Review, 108, 1063-1069. https://doi.org/10.1103/PhysRev.108.1063

5. 5. Zerilli, F. (1970) Effective Potential for Even-Parity Regge-Wheeler Gravitational Perturbation Equations. Physical Review Letters, 24, 737-738. https://doi.org/10.1103/PhysRevLett.24.737

6. 6. Sasaki, M. and Nakamura, T. (1981) The Regge-Wheeler Equation with Sources for both Even and Odd Parity Perturbations of the Schwarzschild Geometry. Physics Letters A, 87, 85-88. https://doi.org/10.1016/0375-9601(81)90568-5

7. 7. York, J. (1983) Dynamical Origin of Black-Hole Radiance. Physical Review D, 28, 2929-2945. https://doi.org/10.1103/PhysRevD.28.2929

8. 8. Hod, S. (1998) Bohr’s Correspondence Principle and the Area Spectrum of Quantum Black Holes. Physical Review Letters, 81, 4293-4296. https://doi.org/10.1103/PhysRevLett.81.4293

9. 9. Bekenstein, J. (1974) The Quantum Mass Spectrum of the Kerr Black Hole. Lettere al Nuovo Cimento, 11, 467-470. https://doi.org/10.1007/BF02762768

10. 10. Nollert, H. (1993) Quasinormal Modes of Schwarzschild Black Holes: The Determination of Quasinormal Frequencies with Very Large Imaginary Parts. Physical Review D, 47, 5253-5258. https://doi.org/10.1103/PhysRevD.47.5253

11. 11. Andersson, N. (1993) On the Asymptotic Distribution of Quasinormal-Mode Frequencies for Schwarzschild Black Holes. Classical and Quantum Gravity, 10, L61-L67. https://doi.org/10.1088/0264-9381/10/6/001

12. 12. Hawking, S. (1975) Particle Creation by Black Holes. Communications in Mathematical Physics, 43, 199-220. https://doi.org/10.1007/BF02345020

13. 13. Dreyer, O. (2003) Quasinormal Modes, the Area Spectrum, and Black Hole Entropy. Physical Review Letters, 90, 081301-081304. https://doi.org/10.1103/PhysRevLett.90.081301

14. 14. Teukolsky, S. (1973) Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations. The Astrophysical Journal, 185, 635-648. https://doi.org/10.1086/152444

15. 15. Leaver, E. (1986) Solutions to a Generalized Spheroidal Wave Equation: Teukolsky’s Equations in General Relativity, and the Two-Center Problem in Molecular Quantum Mechanics. Journal of Mathematical Physics, 27, 1238-1265. https://doi.org/10.1063/1.527130

16. 16. Hartle, J. and Wilkins, D. (1974) Analytic Properties of the Teukolsky Equation. Communications in Mathematical Physics, 38, 47-63. https://doi.org/10.1007/BF01651548

17. 17. Newman, E. and Penrose, R. (1962) An Approach to Gravitational Radiation by a Method of Spin Coefficients. Journal of Mathematical Physics, 3, 566-578. https://doi.org/10.1063/1.1724257

18. 18. Yang, H., Zimmerman, A., Zenginoglu, A., Zhang, F., Berti, E. and Chen, Y. (2013) Quasinormal Modes of Nearly Extremal Kerr Spacetimes: Spectrum Bifurcation and Power-Law Ringdown. Physical Review D, 88, 044047-044069. https://doi.org/10.1103/PhysRevD.88.044047

19. 19. Berti, E., Cardoso, V., Kokkotas, K. and Onozawa, H. (2003) Highly Damped Quasinormal Modes of Kerr Black Holes. Physical Review D, 68, 124018-124032. https://doi.org/10.1103/PhysRevD.68.124018

20. 20. Oguchi, T. (1970) Eigenvalues of Spheroidal Wave Functions and Their Branch Points for Complex Values of Propagation Constants. Radio Science, 5, 1207-1214. https://doi.org/10.1029/RS005i008p01207

21. 21. Pani, P., Berti, E. and Gualtieri, L. (2013) Scalar, Electromagnetic, and Gravitational Perturbations of Kerr-Newman Black Holes in the Slow-Rotation Limit. Physical Review D, 88, 064048-064062. https://doi.org/10.1103/PhysRevD.88.064048

22. 22. Detweiler, S. (1978) Black Holes and Gravitational Waves. I-Circular Orbits about a Rotating Hole. The Astrophysical Journal, 225, 687-693. https://doi.org/10.1086/156529

23. 23. Detweiler, S. and Ipser, J. (1973) The Stability of Scalar Perturbations of a Kerr-Metric Black Hole. The Astrophysical Journal, 185, 675-684. https://doi.org/10.1086/152446

24. 24. Keshet, U. and Hod, S. (2007) Analytic Study of Rotating Black-Hole Quasinormal Modes. Physical Review D, 76, 061501-061505(R). https://doi.org/10.1103/PhysRevD.76.061501

25. 25. Kao, H. and Tomino, D. (2008) Quasinormal Modes of Kerr Black Holes in Four and Higher Dimensions. Physical Review D, 77, 127503-127506. https://doi.org/10.1103/PhysRevD.77.127503

26. 26. Berti, E., Cardoso, V. and Yoshida, S. (2004) Highly Damped Quasinormal Modes of Kerr Black Holes: A Complete Numerical Investigation. Physical Review D, 69, 124018-124022. https://doi.org/10.1103/PhysRevD.69.124018

27. 27. Fiziev, P.P. (2010) Classes of Exact Solutions to the Teukolsky Master Equation. Classical and Quantum Gravity, 27, 135001-135030. https://doi.org/10.1088/0264-9381/27/13/135001

28. 28. Motl, L. (2003) An Analytical Computation of Asymptotic Schwarzschild Quasinormal Frequencies. Advances in Theoretical and Mathematical Physics, 6, 1135-1162. https://doi.org/10.4310/ATMP.2002.v6.n6.a3

29. 29. Motl, L. and Neitzke, A. (2003) Asymptotic Black Hole Quasinormal Frequencies. Advances in Theoretical and Mathematical Physics, 7, 307-330. https://doi.org/10.4310/ATMP.2003.v7.n2.a4

30. 30. Hawking, S. (1971) Gravitationally Collapsed Objects of Very Low Mass. MNRAS, 152, 75-78. https://doi.org/10.1093/mnras/152.1.75

31. 31. Bondi, H. (1957) Negative Mass in General Relativity. Reviews of Modern Physics, 29, 423-428. https://doi.org/10.1103/RevModPhys.29.423

32. 32. Khamehchi, M.A., Hossain, K., Mossman, M.E., Zhang, Y., Busch, Th., Forbes, M. and Engels, P. (2017) Negative-Mass Hydrodynamics in a Spin-Orbit-Coupled Bose-Einstein Condensate. Physical Review Letters, 118, 155301-155306. https://doi.org/10.1103/PhysRevLett.118.155301