Hans Journal of Nanotechnology
Vol. 13  No. 01 ( 2023 ), Article ID: 61881 , 16 pages
10.12677/NAT.2023.131004

极端润湿性表面固体材料的制备 与多功能化应用

王梦可,胡怡,黄卫春*

南通大学化学化工学院,江苏 南通

收稿日期:2022年9月12日;录用日期:2023年2月18日;发布日期:2023年2月27日

摘要

液体接触角小于10˚和大于150˚的固体表面为极端润湿性固体表面。由于具有特殊的表/界面性能,这类固体表面在多个工业领域都表现出极高的应用前景,因此,研究和优化极端润湿性表/界面材料的制备方法,在实际生活中具有重要的意义。本文综述了几种典型的极端润湿性固体表面,包括超疏水表面、超双疏表面、超疏油/超亲水表面、超亲水/水下超疏油表面、超亲油/油下超疏水表面、超滑表面和润湿性可控的智能响应性表面,并探讨了极端润湿性表面在工业领域的多功能化应用,包括自清洁与防污涂层、透明与减反射涂层、油水分离与乳液分离、微流控、防结冰、防指纹、防雾、抗菌和防腐等方面。最后,本文从制备方法和实际应用的角度出发,对目前极端润湿性固体表面的发展做出了总结和展望。

关键词

润湿性,固体表面,多功能化,超疏水,超疏油

Preparation and Multifunctional Applications of Solid Surfaces with Extreme Surface Wettability

Mengke Wang, Yi Hu, Weichun Huang*

School of Chemistry and Chemical Engineering, Nantong University, Nantong Jiangsu

Received: Sep. 12th, 2022; accepted: Feb. 18th, 2023; published: Feb. 27th, 2023

ABSTRACT

Due to their special surface/interface properties, the solids with extreme surface wettability, which possess a liquid contact angle below 10˚ or above 150˚, play vital roles in the fields of diverse industries. Therefore, the investigation and optimization of the fabrication of the solid surfaces with extreme surface wettability can largely promote the social development. In this paper, the typical solid surfaces with extreme surface wettability have been comprehensively summarized, including superhydrophobic surfaces, superamphiphobic surfaces, superoleophobic/superhydrophilic surfaces, superhydrophilic/underwater superoleophobic surfaces, superoleophilic/ underoil superhydrophobic surfaces, slippery surfaces, and intelligent responsive surfaces with tunable wettability. Moreover, the multifunctional applications of the solid surfaces with extreme surface wettability have been also investigated, including the self-cleaning and anti-fouling coatings, transparent and anti-reflective coatings, oil/water mixture separation and emulsion separation, microfluid devices, anti-icing, anti-fingerprint, anti-fogging, anti-bacteria, and anti-corrosion. At last, the developments and outlooks of the solid surfaces with extreme surface wettability were concluded from the points of the fabrication method and the practical applications.

Keywords:Wettability, Solid Surface, Multifunctional, Superhydrophobicity, Superoleophobicity

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

近几十年来,极端润湿性材料由于具有独特的表/界面性能,在诸多工业领域均表现出较高的应用价值,因此,极端润湿性固体表面的制备技术及其功能化应用成为目前表/界面功能材料研究方向的一个热门领域。本论文主要围绕几种极端润湿性表面,包括超疏水表面、超双疏表面、超疏油/超亲水表面、超亲水/水下超疏油表面、超亲油/油下超疏水表面、超滑表面和润湿性可控的智能响应性表面,做了系统的综述,并探索了上述几种极端润湿性材料的多功能化应用,包括自清洁与防污涂层、透明与减反射涂层、油水分离与乳液分离、微流控、防结冰、防指纹、防雾、抗菌和防腐等方面。最后,本文从制备方法和实际应用的角度出发,对目前极端润湿性固体表面的发展做出了总结和展望。

2. 极端润湿性表面的制备

2.1. 超疏水表面

超疏水表面是指水滴的表观接触角大于150˚的固体表面。根据接触状态的不同,超疏水表面又可分为粘附性超疏水表面(Wenzel态)和滚动性超疏水表面(Cassie-Baxter态) [1] [2] 。对应于上述两种状态,自然界中存在两个典型的例子:玫瑰花瓣和荷叶,如图1所示。水滴在玫瑰花瓣表面的接触呈Wenzel态,由于液体完全渗入到固体表面的粗糙结构中,即使玫瑰花瓣倒置,水滴依然不会从表面滚落;相反地,由于荷叶表面结构中空气的存在,通过轻微地倾斜荷叶表面,便可使水滴从荷叶表面滚落,对应于低粘附性的Cassie-Baxter态(滚动角小于10˚)。

超疏水表面的制备方法一般包括微–纳结构的构筑和低表面能物质的改性两步,按途径可分为自上而下法(Top-down)和自下而上法(Bottom-up) [1] ,自上而下法包括光刻法、化学刻蚀和阳极氧化法等 [3] [4] ,自下而上法包括水热法、静电纺织、电沉积、自组装法、模板法和溶胶–凝胶法等 [5] [6] 。两类制备方法各有优缺点,自上而下法可实现固体表面结构的精确可控,但适用面较窄,设备昂贵;自下而上法操作灵活,适用面较广,但结构的生成较为随机,不可精确控制。图2为采用不同的方法制备得到的超疏水表面的SEM图片。

Figure 1. Examples of superhydrophobic plants [1]

图1. 自然界中常见具有超疏水结构的植物表面

Figure 2. SEM images of superhydrophobic surfaces fabricated by (a) Laser lithography [7] , (b) Reactive ion etching and metal-assisted chemical etching [8] , (c) Electrospinning [9] , (d) Electrodeposition [10] , (e) Layer-by-layer assembly [11] and (f) Sol-gel method [12]

图2. 不同方法制备得到的超疏水表面的SEM图片:(a) 光刻法 [7] ,(b) 活性离子和化学刻蚀两步法 [8] ,(c) 静电纺织 [9] ,(d) 电沉积 [10] ,(e) 自组装 [11] 和(f) 溶胶–凝胶法 [12]

2.2. 超双疏表面

超双疏表面是指水和低表面能油类的表观接触角均大于150˚的固体表面。由于油类液滴的表面张力低于水,一般来说,超双疏表面的制备需要更为复杂的微–纳结构和更低的固体表面能(通常需要长链氟化物的修饰) [13] [14] 。因此,相比于超疏水材料,超双疏材料的制备从技术上和原理上都更难实现。2007年,Anish Tuteja等人系统地梳理了超双疏材料的设计思路,并提出了满足超双疏性所需要的可插入式结构(re-entrantstructure),如图3所示 [15] 。

2014年,Liu等人设计了一种特殊的双重可插入式结构(doubly reentrant structure),如图4所示,这种结构不需要低表面能物质修饰,仅靠结构便能使原本亲水性的物质达到超双疏性 [16] 。经实验证明,具备这种双重可插入式结构的二氧化硅材料,对表面张力极低的全氟己烷同样具有优异的超疏液性能,并在1000℃高温下仍能保持其超双疏性能。

Figure 3. Cartoons of re-entrant structure: (a) Fibers and (b) Micro-hoodoos. SEM micrographs for two micro-hoodoo surfaces having (c) Square and (d) Circular flat caps [15]

图3. 可插入式结构示意图:(a) 纤维状和(b) 微岩柱状。两种可插入式结构的SEM图片:(c) 方形帽和(d) 圆形帽 [15]

Figure 4. Design and fabricated results of SiO2 surface [16]

图4. SiO2表面的设计和制备 [16]

2.3. 超疏油/超亲水表面

上一节超双疏表面中已经提到,由于油类的表面能较水低,因此能够疏油的表面一般也具有疏水性。然而,也存在一类固体表面,能同时具备超疏油和超亲水两种极端润湿性。2012年,我们团队首次制备出了超亲水/超疏油表面,图5为相应的化学反应式和润湿性图片 [17] 。作者采用二烯丙基二甲基氯化铵和全氟辛酸钠进行反应,在固体表面同时引入了亲水性基团和低表面能的氟化碳链,制备出了超疏油/超亲水的固体表面。需要指出的是,极性水分子与亲水性基团的接触需要一定的时间,因此这类固体表面的超亲水性往往在与水接触一定时间后才得以显现(图5(b))。

2018年,潘昀路教授团队从理论上系统分析了超疏油/超亲水表面的本质,并设计实验制备出了超亲水/超疏油表面,将其应用于油水分离领域 [18] 。图6为作者提出的超亲水/超疏油表面与超双疏表面的不同之处示意图。从图中可以看出,与超双疏表面不同,当水接触到超亲水/超疏油表面时,由于水分子体积较小,可穿过氟化碳链与下层亲水性基团接触,固体表面呈现超亲水性;与此同时,低表面能的非极性油类则由于氟化碳链的阻碍不能进入材料内部,固体表面宏观上表现出超疏油性。

Figure 5. (a) Chemical reaction and wettability of the first reported superoleophobic and superhydrophilicsurface [17]

图5. 首例报导超疏油/超亲水表面的(a) 反应式和(b) 润湿性图片 [17]

Figure 6. (a) Superamphiphobic surface prepared by perfluorooctanoic acid and (b) superoleophobic/superhydrophilic surface prepared by sodium perfluorooctanoate [18]

图6. (a)全氟辛酸制备得到的超双疏表面和(b)全氟辛酸钠制备得到的超疏油/超亲水表面 [18]

2.4. 超亲水/水下超疏油和超亲油/油下超疏水表面

超亲水/水下超疏油性和超亲油/油下超疏水性往往同时出现,具有这两种性质的固体表面往往含有大量的亲水基团或极性基团,并伴有粗糙的微纳结构 [19] 。当这类固体表面先接触到水时,由于超亲水性,水分子会完全浸润固体表面,并且在固体表面的微纳结构中存留一定体积的水,形成水阻隔层,进而达到水下超疏油性;另一方面,当这类固体表面先接触到油类时,由于超亲油性,油类完全浸润固体表面,并且在固体表面的微纳结构中存留一定体积的油类,形成油阻隔层,进而达到油下超疏水性 [20] 。图7为超亲水/水下超疏油表面的示意图,固体表面微纳结构的存在为液体的存储提供了结构支持 [21] 。

2.5. 超滑表面

在极端润湿性领域内,固体表面的超滑行为是指将固体表面倾斜较小的角度(小于10˚),液滴从固体表面滑落的现象。与Cassie-Baxter态超疏水性不同的是,超滑固体表面液滴的去除是以滑动方式进行的,而非滚动方式。目前超滑表面的实现方式主要有两种,一种是Joanna Aizenberg等人提出的油注入型超滑固体表面(SLIPSs, slippery liquidinfusedporoussurfaces),另一种是Atsushi Hozumi等人提出的共价接枝烷基链型的类液超滑固体表面,两种超滑表面疏液原理示意图如图8所示。

Figure 7. Schematic illustration of oil wetting on membrane with a micro/nano-hierarchical structure in water [21]

图7. 水下环境中,油滴在微纳多级结构固体表面的润湿行为示意图 [21]

Figure 8. (a) SLIPSs [22] and (b) Covalently attached liquid-like surfaces [23]

图8. (a) 油注入型 [22] 和(b) 烷基链接枝型超滑固体表面 [23]

2011年,Joanna Aizenberg等人通过将全氟聚醚或硅油类低表面能液体注入表面具有微纳粗糙结构的基底中,制备得到了油注入型超滑表面 [22] 。这类表面的典型特征有二:其一是基底需要具有较好的多孔结构,用以容纳和吸附注入的油类物质;其二是注入的油类需具备难挥发性和较低的表面能 [24] [25] 。图8(a)为油注入型超滑固体表面的制备和液滴滑动方式示意图。

另一类超滑表面是表面接枝烷基链的类液固体表面,示意图如图8(b)所示。Atsushi Hozumi及其团队在这类表面的制备方面做了大量的工作 [23] [26] [27] 。这类表面的典型特征是,作为基底的固体表面较为平滑,粗糙度极低,另一方面,含烷基链的分子与基底表面活性基团共价接枝,形成类液层,厚度多为10 nm以内。2016年,McCarthy团队提出了一种快速制备此类表面的方法,制备时长控制在几分钟内,所得超滑表面的接触角滞后非常低,倾斜表面2˚左右便可使液滴从固体表面滑落 [28] 。

2.6. 润湿性可控的智能响应性表面

近年来,随着智能化概念的提出和发展,有关润湿性可控的固体表面方面的研究开始受到越来越多的关注。所谓润湿性可控的响应性表面,是指固体表面的润湿性在受到外界环境刺激下发生转变,并且转变过程具有可逆性。目前有关润湿性可控表面的研究报道中,涉及到的外界刺激源主要包括pH值 [29] 、温度 [30] 、电场 [31] 、UV光 [32] 、CO2气体 [33] 和NH3气体 [34] 等。图9为上述外界刺激下,固体表面润湿性可逆转变的原理示意图。

Figure 9. Switchable wettability under different stimulations: (a) UV-light [32] , (b) Temperature [30] , (c) pH [29] , (d) Electric field [31] and (e) CO2 [33]

图9. 刺激响应下的润湿性转变:(a) UV光 [32] ,(b) 温度 [30] ,(c) pH值 [29] ,(d) 电场 [31] 和(e) CO2气体 [33]

3. 具有极端润湿性表/界面材料的功能化应用

3.1. 自清洁与防污

Cassie-Baxter型超疏水表面与水接触时,具有特殊的固–液–气三相复合式接触的界面性能,水滴和Cassie-Baxter型超疏水表面之间的粘附力较低,极易从固体表面滚落。当该类型材料表面沾有灰尘、泥土等污染物时,水流经过超疏水表面时会带走材料表面粘附的污染物,因此,具有Cassie-Baxter型超疏水表面的固体材料往往兼具自清洁和防污功能 [35] 。图10为超疏水涂层的自清洁和防污过程示意图 [36] 。

3.2. 透明超疏涂层与减反射涂层

将固体材料外表面施加一层透明涂层,可在不改变基底特性的基础上调控其表/界面性能,因此,研究和优化透明涂层的制备对固体材料在特殊领域的应用起到重要的作用。透明超疏水涂层和透明超双疏涂层由于具有自清洁、防污等特性,在光伏产业、玻璃工业等领域逐渐受到重视。然而,由于超疏水和超双疏表面粗糙微纳结构的存在,超疏水/超双疏涂层的制备过程中往往会造成材料透明度的下降。另一方面,由于在材料表面构筑了多级微纳结构,超疏水和超双疏涂层的机械稳定性和耐久性会存在一定程度的降低。因此,如何同步提高超疏水涂层和超双疏涂层的透明度与稳定性,目前仍需要进一步的研究。图11为部分研究工作中制备得到的透明超疏涂层 [37] [38] [39] 。

Figure 10. (a) Schematic illustration; (b) Optical photographs of self-cleaning test on superhydrophobic surface; (c) Anti-fouling processes on superhydrophobic surfaces [36]

图10. (a)示意图;(b)超疏水表面自清洁过程的光学图片;(c)超疏水表面的防污过程 [36]

Figure 11. (a)~(d) Partly reported transparent superlyophobic coatings [37] [38] [39]

图11. (a)~(d)部分文献中报道的透明超疏涂层 [37] [38] [39]

由于建筑外窗用玻璃反射现象较为严重,现代城市中光污染普遍存在,给人们生活上造成了困扰,因此,具有减反射功能的超疏涂层在玻璃工业存在非常大的应用价值,可有效减少光污染,同时降低清洁成本。减反射材料的原理,是通过特殊的结构设计,将材料表面涂层的折射率从定值变为层层递进的变值,理想的减反射涂层,其折射率需要在空气和基底的折射率之间实现逐渐变化。由于涉及到的结构设计过于精细,减反射超疏涂层的制备目前还存在一定的难度。图12为部分目前报道的减反射涂层 [40] [41] [42] [43] 。

Figure 12. (a)~(d) Partly reported antireflective coatings [40] [41] [42] [43]

图12. (a)~(d)部分文献中报道的减反射涂层 [40] [41] [42] [43]

3.3. 油水分离与乳液分离

极端润湿性材料对水和油类分别具有不同的亲和性,因此相比于传统分离材料,极端润湿性材料在高效、快捷的油水分离和乳液分离领域占有举足轻重的地位。目前关于极端润湿性材料在油水分离领域的应用研究较为热门,主要围绕超亲水/水下超疏油材料、超亲油/油下超疏水材料和超疏水/超亲油材料这几种类型。上述几种不同类型的极端润湿性材料,对水和油类的亲和程度各异,因此具有各自的油水分离机制,图13为几种类型的极端润湿性材料不同的油水分离与乳液分离机制 [44] [45] [46] [47] [48] 。

Figure 13. Schematic diagram of oil/water mixtures and emulsions separation processes with (a) Superhydrophobic/superoleophilic materials [44] [45] , (b) Superhydrophilic/underwater superoleophobic and superoleophilic/under oil superhydrophobic materials [46] [47] [48]

图13. 油水分离和乳液分离机制:(a) 超疏水/超亲油材料 [44] [45] ,(b) 超亲水/水下超疏油和超亲油/油下超疏水材料 [46] [47] [48]

超亲水/水下超疏油材料往往兼具超亲油/油下超疏水性,这类材料适用范围较广,可用于水/重油混合物、水/轻油混合物、油包水乳液和水包油乳液的分离。相对来说,超疏水/超亲油材料多用于分离水/重油混合物和油包水乳液,而且由于其超亲油性,该类材料在分离过程中容易被油类堵塞,加大了循环利用的难度。综上所述,超亲水/水下超疏油和超亲油/油下超疏水材料在油水分离和乳液分离方面的性能更为优异,可选择范围更为广泛。

3.4. 液滴的定向流动与无损转移

通过表面处理,可赋予固体表面润湿程度各向异性,进而实现该类固体表面在微流体器件方向上的应用,如固体表面的图案化、液体的定向传输和无损转移等。图14为利用极端润湿性表面制备的多功能微流体器件。Liu等 [49] 利用一种无需掩膜的微等离子体枪技术,在超疏水铝片上构筑了高粘附亲水性的图案,在超疏水表面上实现了水流体的图案化(图14(a))。Tuteja团队 [50] 在纸张上正反两面分别构筑了多个微流体通道,经过特殊处理后,各个流体通道对不同表面张力的液体具有不同的亲和性,在同一固体表面实现了不同表面张力液体的同步输送(图14(b))。Jang等 [51] 在不同聚合物表面构筑了特殊的多级结构,利用聚合物基底的本征润湿性,实现了液滴的定向传输(图14(c))。

Figure 14. Patterning [49] , microfluidic channels [50] , directional droplet movement [51] [52] and no-loss droplet transfer [53] on the surface of superwetting solids

图14. 极端润湿性固体表面的图案化 [49] ,微流体通道 [50] ,液滴定向运输 [51] [52] 和无损转移 [53]

江雷院士及其团队 [52] 设计了一种可用于水下油类收集的器件,以油滴自由能的自释放作为驱动力,利用超疏油网实现了水下油滴的自发收集,如图14(d)所示。吉林大学刘燕教授 [53] 利用不同固体表面与水滴之间粘附性的差异,实现了水滴从低粘附性超疏水固体表面(Cassie-Baxter型超疏水)到高粘附性超疏水固体表面(Wenzel型超疏水)之间的无损转移,转移过程如图14(e)所示。

3.5. 防结冰涂层

应用于防结冰领域的极端润湿性固体表面主要有两种:超疏水涂层和油注入型超滑涂层,两种类型的极端润湿性涂层存在不同的防结冰机制。超疏水涂层在水滴结冰前,由于表面的超疏水性会引起水滴的滚落,因此能有效防止固体表面水的聚集,抑制水结冰成核。另外,超疏水表面水滴结冰后,由于与涂层之间的粘附力较低,通过外力可轻易将冰去除,但会对涂层造成一定的破坏,致使其性能下降。超滑涂层的除冰机制与超疏水涂层不同,主要作用在冰形成之后,涂层表面微结构中注入的低表面能润滑油,可在冰形成之后依然保持液态,从而使其表面的冰可轻易地去除 [54] 。

中科院化学所的王健君研究员近年来深入研究了冰晶成核的机理,为防结冰材料的发展做出了重要的贡献 [55] [56] [57] 。2014年,其团队总结了目前防结冰涂层的研究现状,为防结冰材料的设计和领域的发展提供了重要的理论依据,图15为其总结的几种防结冰机制 [54] 。

Figure 15. Three main categories of recently developed bioinspired anti-icing strategies [54]

图15. 近期报导的受生物启发的三类主要的防结冰策略 [54]

3.6. 防指纹与防雾

超滑表面存在一层流动性或类液性的低表面能润滑油,因此具有一定的防指纹功能,可用在手机屏幕、电脑显示器等光学器件上 [58] 。防雾功能主要伴随超亲水涂层出现,在起雾环境中,超亲水涂层能在固体表面凝聚成一层“水膜”,减少光的散射,从而达到防雾的效果 [59] [60] 。图16(a)和图16(b)分别为防雾和防指纹涂层效果的光学图片 [61] 。

Figure 16. Anti-fingerprint coating [58] and anti-fogging coating [61]

图16. 防指纹涂层 [58] 和防雾涂层 [61]

3.7. 抗菌与防腐

Cassie-Baxter型超疏水表面与水滴之间具有极低的粘附力,因此也能有效抑制水溶液中细菌的依附,进而抑制固体材料表面细菌的繁殖与生长 [62] [63] 。另外,由于水分子难以进入到超疏水材料内部,具有超疏水表面的材料在含有腐蚀性离子的水溶液中,其耐腐蚀性显著提高,使用寿命得以延长 [64] [65] 。

4. 总结与展望

近几十年来,有关极端润湿性表面的研究热度逐年增高,另外,具备极端润湿性表面的固体材料在各工业领域的功能化应用研究也逐渐开始受到关注。例如,超疏水涂层在自清洁、防结冰、抗菌、防腐蚀和油水分离方面的应用;超双疏涂层在防油污和抗油冲击方面的应用;超滑涂层在防指纹、防腐蚀和防油污方面的应用;超亲水涂层的防雾功能化应用;超浸润材料在油水分离和乳液分离领域的应用等。

目前关于极端润湿表面的功能化研究取得了一定的进展,但该领域仍然存在一些问题亟待解决:其一,除透明超疏水涂层外,彩色超疏水涂层的制备对绘画、涂料、建筑等相关领域的发展同样起到促进作用,但目前关于颜色可控的彩色超疏水涂层的研究较为缺乏;其二,相比于具有单一功能的极端润湿性材料,材料的多功能化能显著拓宽其应用领域,满足不同工业领域的应用需求,目前的研究进展中,关于极端润湿性材料的多功能化应用还需进一步探索;其三,超润湿材料在油水分离领域具有巨大的应用价值,可替代传统分离材料,实现油水分离的高效化、便捷化,然而目前能同时满足不同场景下的多通道油水分离材料报道相对较少,另外,乳液分离的困难性仍需进一步克服。

基金项目

国家自然科学青年基金(No. 52103316)、南通大学大型仪器设备开放基金(Nos. KFJN2216, KFJN2218)、江苏省研究生科研与实践创新计划(No. SJCX21_1450)。

文章引用

王梦可,胡 怡,黄卫春. 极端润湿性表面固体材料的制备与多功能化应用
Preparation and Multifunctional Applications of Solid Surfaces with Extreme Surface Wettability[J]. 纳米技术, 2023, 13(01): 35-50. https://doi.org/10.12677/NAT.2023.131004

参考文献

  1. 1. Bellanger, H., Darmanin, T., Taffin de Givenchy, E., et al. (2014) Chemical and Physical Pathways for the Preparation of Superoleophobic Surfaces and Related Wetting Theories. Chemical Reviews, 114, 2694-2716. https://doi.org/10.1021/cr400169m

  2. 2. Zhan, S., Pan, Y., Gao, Z.F., et al. (2018) Biological and Chemical Sens-ing Applications Based on Special Wettable Surfaces. TrAC Trends in Analytical Chemistry, 108, 183-194. https://doi.org/10.1016/j.trac.2018.09.001

  3. 3. Nguyen-Tri, P., Altiparmak, F., Nguyen, N., et al. (2019) Robust Superhydrophobic Cotton Fibers Prepared by Simple Dip-Coating Approach Using Chemical and Plasma-Etching Pre-treatments. ACS Omega, 4, 7829-7837. https://doi.org/10.1021/acsomega.9b00688

  4. 4. Cheng, Y., Zhu, T., Li, S., et al. (2019) A Novel Strategy for Fab-ricating Robust Superhydrophobic Fabrics by Environmentally-Friendly Enzyme Etching. Chemical Engineering Jour-nal, 355, 290-298. https://doi.org/10.1016/j.cej.2018.08.113

  5. 5. Wang, H., Chi, G., Jia, Y., et al. (2020) A Novel Combination of Electrical Discharge Machining and Electrodeposition for Superamphiphobic Metallic Surface Fabrication. Applied Sur-face Science, 504, Article ID: 144285. https://doi.org/10.1016/j.apsusc.2019.144285

  6. 6. Lin, D., Zeng, X., Li, H., et al. (2019) One-Pot Fabrication of Superhydrophobic and Flame-Retardant Coatings on Cotton Fabrics via Sol-Gel Reaction. Journal of Colloid and Inter-face Science, 533, 198-206. https://doi.org/10.1016/j.jcis.2018.08.060

  7. 7. Wu, H., Jiao, Y., Zhang, C., et al. (2019) Large Area Metal Mi-cro-/Nano-Groove Arrays with both Structural Color and Anisotropic Wetting Fabricated by One-Step Focused Laser Interference Lithography. Nanoscale, 11, 4803-4810. https://doi.org/10.1039/C8NR09747J

  8. 8. Gu, Z., Kothary, P., Sun, C.H., et al. (2019) Evaporation-Induced Hier-archical Assembly of Rigid Silicon Nanopillars Fabricated by a Scalable Two-Level Colloidal Lithography Approach. ACS Applied Materials & Interfaces, 11, 40461-40469. https://doi.org/10.1021/acsami.9b12388

  9. 9. Zhang, C., Liu, Z., Liu, H., et al. (2019) Preparation of Reversible Photoresponsive Poly(SPA-co-MMA) Films by Electrospinning: A Possible Route to Smart Materials for Regulating Wettability and Humidity. Advanced Materials Technologies, 4, Ar-ticle ID: 1900039. https://doi.org/10.1002/admt.201900039

  10. 10. Wang, Z., Kong, W., Si, L., et al. (2019) Robust and Thermally Stable Butterfly-Like Co(OH)2/Hexadecyltrimethoxysilane Superhydrophobic Mesh Filters Prepared by Electrodeposition for Highly Efficient Oil/Water Separation. Industrial & Engineering Chemistry Research, 58, 9576-9584. https://doi.org/10.1021/acs.iecr.9b01010

  11. 11. Lin, D., Zeng, X., Li, H., et al. (2018) Facile Fabrication of Superhy-drophobic and Flame-retardant Coatings on Cotton Fabrics via Layer-by-Layer Assembly. Cellulose, 25, 3135-3149. https://doi.org/10.1007/s10570-018-1748-9

  12. 12. Li, Y., Zhang, Z., Wang, M., et al. (2017) One-Pot Fabrication of Nanoporous Polymer Decorated Materials: From Oil-Collecting Devices to High-Efficiency Emulsion Separation. Jour-nal of Materials Chemistry A, 5, 5077-5087. https://doi.org/10.1039/C7TA00297A

  13. 13. Wang, F., Wang, D. and Guo, Z. (2020) Highly Fluorinated F-APP-TiO2 Particle with Hierarchical Core-Shell Structure and Its Application in Multifunctional Superamphiphobic Surface: Mechanical Robustness, Self-Recovery and Flame Retardancy. Journal of Colloid and Interface Science, 560, 777-786. https://doi.org/10.1016/j.jcis.2019.11.014

  14. 14. Luo, G., Wen, L., Yang, K., et al. (2020) Robust and Du-rable Fluorinated 8-MAPOSS-Based Superamphiphobic Fabrics with Buoyancy Boost and Drag Reduction. Chemical Engineering Journal, 383, Article ID: 123125. https://doi.org/10.1016/j.cej.2019.123125

  15. 15. Tuteja, A., Choi, W., Ma, M., et al. (2007) Designing Superoleo-phobic Surfaces. Science, 318, 1618-1622. https://doi.org/10.1126/science.1148326

  16. 16. Liu, T.L. and Kim, C.J.C. (2014) Turning a Surface Superrepellent Even to Completely Wetting Liquids. Science, 346, 1096-1100. https://doi.org/10.1126/science.1254787

  17. 17. Yang, J., Zhang, Z., Xu, X., et al. (2012) Superhydrophilic-Superoleophobic Coatings. Journal of Materials Chemistry, 22, 2834-2837. https://doi.org/10.1039/c2jm15987b

  18. 18. Pan, Y., Huang, S., Li, F., et al. (2018) Coexistence of Su-perhydrophilicity and Superoleophobicity: Theory, Experiments and Applications in Oil/Water Separation. Journal of Materials Chemistry A, 6, 15057-15063. https://doi.org/10.1039/C8TA04725A

  19. 19. Jeung, Y. and Yong, K. (2020) Underwater Superoleophobicity of a Superhydrophilic Surface with Unexpected Drag Reduction Driven by Electrochemical Water Splitting. Chemical Engi-neering Journal, 381, Article ID: 122734. https://doi.org/10.1016/j.cej.2019.122734

  20. 20. Huang, X., Li, B., Wang, L., et al. (2019) Superhydrophilic, Un-derwater Superoleophobic, and Highly Stretchable Humidity and Chemical Vapor Sensors for Human Breath Detection. ACS Applied Materials & Interfaces, 11, 24533-24543. https://doi.org/10.1021/acsami.9b04304

  21. 21. Zhang, F., Zhang, W.B., Shi, Z., et al. (2013) Nanowire-Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for High-Efficiency Oil/Water Separation. Advanced Materials, 25, 4192-4198. https://doi.org/10.1002/adma.201301480

  22. 22. Wong, T.S., Kang, S., Tang, S.K.Y., et al. (2011) Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity. Nature Letter, 477, 443-447. https://doi.org/10.1038/nature10447

  23. 23. Singh, N., Kakiuchida, H., Sato, T., et al. (2018) Omniphobic Metal Sur-faces with Low Contact Angle Hysteresis and Tilt Angles. Langmuir, 34, 11405-11413. https://doi.org/10.1021/acs.langmuir.8b02430

  24. 24. Kim, P., Kreder, M.J., Alvareng, J., et al. (2013) Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness on Omniphobicity of Lubricant-Infused Sub-strates. Nano Letters, 13, 1793-1799. https://doi.org/10.1021/nl4003969

  25. 25. Yao, X., Hu, Y., Grinthal, A., et al. (2013) Adaptive Fluid-Infused Porous Films with Tunable Transparency and Wettability. Nature Materials, 12, 529-534. https://doi.org/10.1038/nmat3598

  26. 26. Masheder, B., Urata, C. and Hozumi, A. (2013) Transparent and Hard Zir-conia-Based Hybrid Coatings with Excellent Dynamic/Thermoresponsive Oleophobicity, Thermal Durability, and Hy-drolytic Stability. ACS Applied Materials & Interfaces, 5, 7899-7905. https://doi.org/10.1021/am401992h

  27. 27. Urata, C., Masheder, B., Cheng, D.F., et al. (2014) Why Can Organic Liquids Move Easily on Smooth Alkyl-Terminated Surfaces. Langmuir, 30, 4049-4055. https://doi.org/10.1021/la500548v

  28. 28. Wang, L. and McCarthy, T.J. (2016) Covalently Attached Liquids: Instant Omniphobic Surfaces with Unprecedented Repellency. Angewandte Chemie International Edition, 55, 244-248. https://doi.org/10.1002/anie.201509385

  29. 29. Zeng, X., Yang, K., Huang, C., et al. (2019) Novel pH-Responsive Smart Fabric: From Switchable Wettability to Controllable On-Demand Oil/Water Separation. ACS Sustainable Chemis-try & Engineering, 7, 368-376. https://doi.org/10.1021/acssuschemeng.8b03675

  30. 30. Zhang, W., Liu, N., Zhang, Q., et al. (2018) Thermo-Driven Controllable Emulsion Separation by a Polymer-Decorated Membrane with Switchable Wettability. Angewandte Chemie International Edition, 57, 5740-5745. https://doi.org/10.1002/anie.201801736

  31. 31. Zheng, X., Guo, Z., Tian, D., et al. (2016) Electric Field Induced Switchable Wettability to Water on the Polyaniline Membrane and Oil/Water Separation. Advanced Materials Interfaces, 3, Article ID: 1600461. https://doi.org/10.1002/admi.201600461

  32. 32. Jiao, Y., Li, C., Wu, S., et al. (2018) Switchable Underwater Bubble Wettability on Laser-Induced Titanium Multiscale Micro-/Nanostructures by Vertically Crossed Scanning. ACS Applied Materials & Interfaces, 10, 16867-16873. https://doi.org/10.1021/acsami.8b02812

  33. 33. Lei, L., Zhang, Q., Shi, S., et al. (2017) Highly Porous Poly(High In-ternal Phase Emulsion) Membranes with “Open-Cell” Structure and CO2-Switchable Wettability Used for Controlled Oil/Water Separation. Langmuir, 33, 11936-11944. https://doi.org/10.1021/acs.langmuir.7b02539

  34. 34. Xu, Z., Zhao, Y., Wang, H., et al. (2015) A Superamphiphobic Coating with an Ammonia-Triggered Transition to Superhydro-philic and Superoleophobic for Oil-Water Separation. Angewandte Chemie International Edition, 54, 4527-4530. https://doi.org/10.1002/anie.201411283

  35. 35. Liu, S., Zhang, X. and Seeger, S. (2019) Solvent-Free Fabrication of Flexible and Robust Superhydrophobic Composite Films with Hierarchical Micro/Nanostructures and Durable Self-Cleaning Functionality. ACS Applied Materials & Interfaces, 11, 44691-44699. https://doi.org/10.1021/acsami.9b15318

  36. 36. Cao, W.T., Feng, W., Jiang, Y.Y., et al. (2019) Two-Dimensional MXene-Reinforced Robust Surface Superhydrophobicity with Self-Cleaning and Photothermal-Actuating Binary Effects. Materials Horizons, 6, 1057-1065. https://doi.org/10.1039/C8MH01566J

  37. 37. Wang, Y., Zhu, Y., Zhang, C., et al. (2017) Transparent, Superhydro-phobic Surface with Varied Surface Tension Responsiveness in Wettability Based on Tunable Porous Silica Structure for Gauging Liquid Surface Tension. ACS Applied Materials & Interfaces, 9, 4142-4150. https://doi.org/10.1021/acsami.6b12779

  38. 38. Sahoo, B.N., Woo, J., Algadi, H., et al. (2019) Superhydrophobic, Transparent, and Stretchable 3D Hierarchical Wrinkled Film-Based Sensors for Wearable Applications. Advanced Mate-rials Technologies, 4, Article ID: 1900230. https://doi.org/10.1002/admt.201900230

  39. 39. Lin, Y., Han, J., Cai, M., et al. (2018) Durable and Robust Trans-parent Superhydrophobic Glass Surfaces Fabricated by a Femtosecond Laser with Exceptional Water Repellency and Thermostability. Journal of Materials Chemistry A, 6, 9049-9056. https://doi.org/10.1039/C8TA01965G

  40. 40. Rahman, A., Ashraf, A., Xin, H., et al. (2015) Sub-50-nm Self-Assembled Nanotextures for Enhanced Broadband Antireflection in Silicon Solar Cells. Nature Communications, 6, 5963. https://doi.org/10.1038/ncomms6963

  41. 41. Yi, D., Lunet, E.L., Wui, S.T., et al. (2010) Hollow Silica Nano-particles in UV-Visible Antireflection Coatings for Poly(methyl methacrylate) Substrates. ACS Nano, 4, 4308-4316. https://doi.org/10.1021/nn101033y

  42. 42. Jung, C.L., Park, S.C. and Lim, H. (2019) Synthesis of Sur-face-Reinforced Biodegradable Chitosan Nanoparticles and Their Application in Nanostructured Antireflective and Self-Cleaning Surfaces. ACS Applied Materials & Interfaces, 11, 40835-40841. https://doi.org/10.1021/acsami.9b14009

  43. 43. Park, K.C., Choi, H.J., Chang, C., et al. (2012) Nanotextured Silica Surfaces with Robust Superhydrophobicity and Omnidirectional Broadband Supertransmissivity. ACS Nano, 6, 3789-3799. https://doi.org/10.1021/nn301112t

  44. 44. Yang, Y., Guo, Z., Huang, W., et al. (2020) Fabrication of Multifunctional Textiles with Durable Antibacterial Property and Efficient Oil-Water Separation via in Situ Growth of Ze-olitic Imidazolate Framework-8 (ZIF-8) on Cotton Fabric. Applied Surface Science, 503, Article ID: 144079. https://doi.org/10.1016/j.apsusc.2019.144079

  45. 45. Lin, J., Lin, F., Liu, R., et al. (2020) Scalable Fabrication of Robust Superhydrophobic Membranes by One-Step Spray-Coating for Gravitational Water-in-Oil Emulsion Separation. Separation and Purification Technology, 231, Article ID: 115898. https://doi.org/10.1016/j.seppur.2019.115898

  46. 46. Shami, Z., Gharloghi, A. and Amininasab, S.M. (2019) Multi-functional pH-Switched Superwetting Copolymer Nanotextile: Surface Engineered toward On-Demand Light Oil-Water Separation on Superhydrophilic-Underwater Low-Adhesive Superoleophobic Nonwoven Mesh. ACS Sustainable Chemistry & Engineering, 7, 8917-8930. https://doi.org/10.1021/acssuschemeng.9b00931

  47. 47. Li, J., Xu, C., Guo, C., et al. (2018) Underoil Superhydro-philic Desert Sand Layer for Efficient Gravity-Directed Water-in-Oil Emulsions Separation with High Flux. Journal of Materials Chemistry A, 6, 223-230. https://doi.org/10.1039/C7TA08076J

  48. 48. Li, F., Bhushan, B., Pan, Y., et al. (2019) Bioinspired Superoleopho-bic/Superhydrophilic Functionalized Cotton for Efficient Separation of Immiscible Oil-Water Mixtures and Oil-Water Emulsions. Journal of Colloid and Interface Science, 548, 123-130. https://doi.org/10.1016/j.jcis.2019.04.031

  49. 49. Liu, J., Song, J., Wang, G., et al. (2018) Maskless Hydrophilic Pat-terning of the Superhydrophobic Aluminum Surface by an Atmospheric Pressure Microplasma Jet for Water Adhesion Controlling. ACS Applied Materials & Interfaces, 10, 7497-7503. https://doi.org/10.1021/acsami.7b19431

  50. 50. Li, C., Boban, M., Snyder, S.A., et al. (2016) Paper-Based Surfaces with Extreme Wettabilities for Novel, Open-Channel Microfluidic Devices. Advanced Functional Materials, 26, 6121-6131. https://doi.org/10.1002/adfm.201601821

  51. 51. Jang, H., Lee, H.S., Lee, K.S., et al. (2017) Facile Fabrication of Su-peromniphobic Polymer Hierarchical Structures for Directional Droplet Movement. ACS Applied Materials & Interfaces, 9, 9213-9220. https://doi.org/10.1021/acsami.6b16015

  52. 52. Zhang, Y., Cao, M., Peng, Y., et al. (2018) Bioinspired Continuous and Spontaneous Antigravity Oil Collection and Transportation. Advanced Functional Materials, 28, Article ID: 1704220. https://doi.org/10.1002/adfm.201704220

  53. 53. Gao, H., Liu, Y., Li, S., et al. (2018) A Biomimetic Sur-face with Switchable Contact Angle and Adhesion for Transfer and Storage of Microdroplets. Nanoscale, 10, 15393-15401. https://doi.org/10.1039/C8NR04998J

  54. 54. Lv, J., Song, Y., Jiang, L., et al. (2014) Bio-Inspired Strategies for Anti-Icing. ACS Nano, 8, 3152-3169. https://doi.org/10.1021/nn406522n

  55. 55. Jin, S.L., Liu, J., Lv, J.Y., et al. (2018) Interfacial Materials for Anti-Icing: Beyond Superhydrophobic Surfaces. Chemistry—An Asian Journal, 13, 1406-1414. https://doi.org/10.1002/asia.201800241

  56. 56. Zhu, C., Gao, Y., Zhu, W., et al. (2019) Direct Observation of 2-Dimensional Ices on Different Surfaces near Room Temperature without Confinement. Proceedings of the National Academy of Sciences, 116, 16723-16728. https://doi.org/10.1073/pnas.1905917116

  57. 57. He, Z., Liu, K. and Wang, J. (2018) Bioinspired Materials for Con-trolling Ice Nucleation, Growth, and Recrystallization. Accounts of Chemical Research, 51, 1082-1091. https://doi.org/10.1021/acs.accounts.7b00528

  58. 58. Wu, X., Liu, M., Zhong, X., et al. (2017) Smooth Water-Based Antismudge Coatings for Various Substrates. ACS Sustainable Chemistry & Engineering, 5, 2605-2613. https://doi.org/10.1021/acssuschemeng.6b02957

  59. 59. Lee, H., Alcaraz, M.L., Rubner, M.F., et al. (2013) Zwit-ter-Wettability and Antifogging Coatings with Frost-Resisting Capabilities. ACS Nano, 7, 2172-2185. https://doi.org/10.1021/nn3057966

  60. 60. Han, Z., Feng, X., Guo, Z., et al. (2018) Flourishing Bioinspired Antifog-ging Materials with Superwettability: Progresses and Challenges. Advanced Materials, 30, Article ID: 1704652. https://doi.org/10.1002/adma.201704652

  61. 61. Bai, S., Li, X., Zhang, R., et al. (2019) Enhancing Antifog-ging/Frost-Resisting Performances of Amphiphilic Coatings via Cationic, Zwitterionic or Anionic Polyelectrolytes. Chemical Engineering Journal, 357, 667-677. https://doi.org/10.1016/j.cej.2018.09.177

  62. 62. Wen, C., Guo, H., Bai, H., et al. (2019) Beetle-Inspired Hierarchical Antibacterial Interface for Reliable Fog Harvesting. ACS Applied Materials & Interfaces, 11, 34330-34337. https://doi.org/10.1021/acsami.9b11862

  63. 63. Li, M., Schlaich, C., Willem, K.M., et al. (2019) Mussel-Inspired Coatings with Tunable Wettability, for Enhanced Antibacterial Efficiency and Reduced Bacterial Adhesion. Journal of Materials Chemistry B, 7, 3438-3445. https://doi.org/10.1039/C9TB00534J

  64. 64. Yang, H., Gao, Y., Frankel, G.S., et al. (2020) Robust Superhydropho-bic Surface with Reinforce Skeletons for Corrosion Protection. Applied Surface Science, 499, Article ID: 143916. https://doi.org/10.1016/j.apsusc.2019.143916

  65. 65. Ye, Y., Zhang, D., Li, J., et al. (2019) One-Step Synthesis of Superhydrophobic Polyhedral Oligomeric Silsesquioxane-Graphene Oxide and Its Application in Anti-Corrosion and Anti-Wear Fields. Corrosion Science, 147, 9-21. https://doi.org/10.1016/j.corsci.2018.10.034

  66. NOTES

    *通讯作者。

期刊菜单