﻿ 基于状态观测器的软测量动态补偿方法 Dynamic Compensation Method for Soft Sensing Based on State Observer

Modeling and Simulation
Vol.05 No.03(2016), Article ID:18310,9 pages
10.12677/MOS.2016.53012

Dynamic Compensation Method for Soft Sensing Based on State Observer

Xiancong Wu1, Liang Tian2, Wenxia Du1

1College of Career Technology, Hebei Normal University, Shijiazhuang Hebei

2School of Control and Computer Engineering, North China Electric Power University, Baoding Hebei

Received: Jul. 26th, 2016; accepted: Aug. 14th, 2016; published: Aug. 17th, 2016

ABSTRACT

The coal calorific value calculated by using the method of mechanism analysis has slow response speed and big dynamic error under variable load conditions. In order to solve this problem, a dynamic compensation method based on state observer is proposed. Based on the load-pressure model of unit, the total heat input into the boiler is constructed by the drum pressure and the turbine primary pressure. The dynamic relationship between the boiler fuel flow and the total heat is described by a high order inertia link. By designing a state observer for the high order inertia link, the intermediate state signal with smaller inertia is obtained, which is divided by the fuel flow to gain the signal of the coal calorific value. The signal of coal calorific value has small dynamic error under variable load conditions, Experiments show that: the signal of coal calorific value has better behaviors on disturbance restraint and dynamic response.

Keywords:Coal Calorific Value, Soft-Sensing, State Observer, Dynamic Compensation

1河北师范大学职业技术学院，河北 石家庄

2华北电力大学计算机与控制工程学院，河北 保定

1. 引言

2. 煤发热量软测量

(1)

(2)

3. 状态观测器设计

3.1. 思路验证

(3)

(4)

Figure 1. Dynamic compensation model for gain soft-sensing

Figure 2. Simulation curves of gain soft-sensing based on state bserver

3.2. 滤波设计

4. 动态补偿方法的应用

4.1. 对象模型分析

(5)

(6)

(7)

Figure 3. Simplified nonlinear dynamic model of unit load-pressure

4.2. 基于状态观测器的动态补偿

(8)

5. 实验分析

5.1. 仿真实验

Figure 4. Dynamic compensation model for coal calorific value soft-sensing based on state observer

5.2. 现场实验

Figure 5. Simulation curves of coal calorific value soft-sensing based on state observer and dynamic compensation

Figure 6. Coal calorific value under variable load conditions

Figure 7. Coal calorific value under variable coal quality conditions

Figure 8. Coal calorific value under conditions of the start-up and shutdown of mill

6. 结论

1) 利用机组负荷–压力简化模型，由汽包压力和一级压力构造锅炉热量信号，并将制粉及炉内燃烧动态过程简化为一个单入单出高阶惯性环节，便于状态观测器设计的同时也更加符合实际情况。

2) 在设计状态观测器时引入了PID结构，实现了对象增益变化后，重构状态仍可以快速、无静差的逼近真实状态。利用观测到的小惯性状态对软测量值进行动态补偿，有效提高了软测量的速度，减小了动态误差。

3) 实验表明，机组负荷变化频繁时，不加动态补偿得到的软测量结果远不能满足机组要求。采用本文动态补偿方法得到的煤发热量结果具有很好的抗负荷扰动和抗燃烧扰动能力，在煤质变化时能够快速、准确的计算出新的煤发热量值，及时反映煤质变化。

Dynamic Compensation Method for Soft Sensing Based on State Observer[J]. 建模与仿真, 2016, 05(03): 89-97. http://dx.doi.org/10.12677/MOS.2016.53012

1. 1. 陈起, 周晓东, 丁建学, 等. 火电机组排烟氧量在线软测量方法应用分析[J]. 内蒙古电力技术, 2014, 32(6): 65- 68.

2. 2. 闫姝, 曾德良, 刘吉臻, 等. 基于简化热平衡方程的再热蒸汽流量实时软测量[J]. 中国电机工程学报, 2011, 31(5): 114-119.

3. 3. 郭喜燕, 杨勇平, 王修彦, 等. 锅炉蓄热过程对机组煤耗的影响分析[J]. 中国电机工程学报, 2007, 27(26): 30-34.

4. 4. 刘鑫屏, 田亮, 曾德良, 等. 基于机组负荷–压力动态模型的燃煤发热量实时计算方法[J]. 动力工程, 2008, 28(1): 50-53.

5. 5. 陈陆曦, 张瑞成. 基于扩张状态观测器的直线倒立摆状态反馈控制研究[J]. 数字技术与应用, 2014(11): 20-22.

6. 6. 钟斌. 桥门式起重机吊重摆角软测量及仿真研究[J]. 系统仿真学报, 2011, 23(9): 1985-1989.

7. 7. 王琪, 刘吉臻, 刘鑫屏, 等. 2种煤发热量软测量方法对比分析及改进方案[J]. 中国电力, 2012, 45(3): 43-46.

8. 8. Wojechowsky, B. (1978) Analysis and Synthesis of Propor-tional-Integral Observers for Single-Input Single-Output Time-Invariant Continuous Systems. Gliwice.

9. 9. 田亮, 邓拓宇, 刘吉臻. 基于风量氧量热量信号导前微分协调控制系统[J]. 动力工程, 2011, 31(10): 739-744.

10. 10. 田亮, 刘鑫屏, 赵征, 等. 一种新的热量信号构造方法及实验研究[J]. 动力工程, 2006, 26(4): 499-502.