﻿ 具有挡板的管流中Karman涡街的并行格子Boltzmann模拟 Parallel Lattice Boltzmann Simulation of Karman Vortex in Pipe Flow with Baffle

International Journal of Fluid Dynamics
Vol.05 No.02(2017), Article ID:20925,7 pages
10.12677/IJFD.2017.52008

Parallel Lattice Boltzmann Simulation of Karman Vortex in Pipe Flow with Baffle

Jianying Zhang1, Guangwu Yan2

1School of Basic Sciences, Changchun University of Technology, Changchun Jilin

2College of Mathematics, Jilin University, Changchun Jilin

Received: May 23rd, 2017; accepted: Jun. 9th, 2017; published: Jun. 12th, 2017

ABSTRACT

In this paper, the lattice Boltzmann method is used to simulate the Karman vortex in the two-di- mensional pipe with baffle. The parallel scheme is used to obtain the vorticity contours in the case of different Reynolds numbers at different time steps. The calculated results reproduce the existing numerical results rather well.

Keywords:Lattice Boltzmann Method, Parallel Computing, Two-Dimensional Baffle Flow, Karman Vortex Street

1长春工业大学基础科学学院，吉林 长春

2吉林大学数学学院，吉林 长春

1. 引言

2. 格子Boltzmann算法

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

3. 具有挡板管道的并行格子Boltzmann模拟

，密度，时间步长为，驰豫时间由给定雷诺数Re与粘性和驰豫时间的关

Figure 1. Sub-block division of the calculation area of two-dimensional straight pipe

(a) (b)(c) (d)

Figure 2. Vorticity contours at Re = 256

(a) (b)(c) (d)

Figure 3. Vorticity contours at Re = 512

(a) (b)(c) (d)

Figure 4. Vorticity contours at Re = 1024

(a) (b)(c) (d)

Figure 5. Vorticity contours at Re = 256 with 2 baffles

(a) (b) (c) (d)

Figure 6. Vorticity contours at Re = 512 with 2 baffles

(a) (b)(c) (d)

Figure 7. Vorticity contours at Re = 1024 with 2 baffles

t = 8000, (d) t = 10,000涡线图。可以看出当Re数比较大时将在挡板之间出现Karman涡街。这个结果再现了文献 [21] 中的数值结果。我们发现随着Re数的增大，在流动区域内将出现更多的涡旋，使得涡旋变得拥挤，究其原因是因为流动发生在管内所致。

4. 结论

Parallel Lattice Boltzmann Simulation of Karman Vortex in Pipe Flow with Baffle[J]. 流体动力学, 2017, 05(02): 69-75. http://dx.doi.org/10.12677/IJFD.2017.52008

1. 1. Chen, S.Y. and Doolen, G.D. (1998) Lattice Boltzmann Method for Fluid Flows. Annual Review of Fluid Mechanics, 30, 329-364. https://doi.org/10.1146/annurev.fluid.30.1.329

2. 2. Qian, Y.H., d’Humieres, D. and Lallemand, P. (1992) Lattice BGK Model for Navier-Stokes Equations. Europhysics Letters, 17, 479-484. https://doi.org/10.1209/0295-5075/17/6/001

3. 3. Chen, H.D., Chen, S.Y. and Matthaeus, M.H. (1992) Recovery of the Navier-Stokes Equations Using a Lattice Boltz- mann Gas Method. Physical Review A, 45, 5339-5342. https://doi.org/10.1103/PhysRevA.45.R5339

4. 4. Benzi, R., Succi, S. and Vergassola, M. (1992) The Lattice Boltzmann Equations: Theory and Applications. Physics Reports, 222, 147-197. https://doi.org/10.1016/0370-1573(92)90090-M

5. 5. Shim, J.W. (2017) Parametric Lattice Boltzmann Method. Journal of Computational Physics, 338, 240-251. https://doi.org/10.1016/j.jcp.2017.02.057

6. 6. Shan, X.W. and Chen, H.D. (1994) Simulation of Non-Ideal Gases Liquid Gas Phase Transitions by the Lattice Boltz- mann Equation. Physical Review E, 49, 2941. https://doi.org/10.1103/PhysRevE.49.2941

7. 7. Filippova, O. and Hanel, D. (1997) Lattice Boltzmann Simulation of Gas Particle Flow in Filters. Computer & Fluids, 26, 697-712. https://doi.org/10.1016/S0045-7930(97)00009-1

8. 8. Succi, S., Foti, E. and Higuera, F.J. (1989) 3-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method. Europhysics Letters, 10, 433. https://doi.org/10.1209/0295-5075/10/5/008

9. 9. Ladd, A. (1994) Numerical Simulations of Particle Suspensions via a Discretized Boltzmann Equation. Part 2. Numerical Results. Journal of Fluid Mechanics, 271, 311. https://doi.org/10.1017/S0022112094001783

10. 10. Zhang, J.Y. and Yan, G.W. (2008) Lattice Boltzmann Methods for One and Two-Dimensional Burger’s Equation. Physica A: Statistical Mechanics and Its Applications, 387, 4771-4786. https://doi.org/10.1016/j.physa.2008.04.002

11. 11. Yan, G.W. and Zhang, J.Y. (2009) A Higher-Order Moment Method of the Lattice Boltzmann Model for the Korteweg-Devries Equation. Mathematics and Computers in Simulation, 79, 1554-1565. https://doi.org/10.1016/j.matcom.2008.07.006

12. 12. Palpacelli, S. and Succi, S. (2007) Numerical Validation of the Quantum Lattice Boltzmann Scheme in Two and Three Dimension. Physical Review E, 75, Article ID: 066704. https://doi.org/10.1103/physreve.75.066704

13. 13. Zhang, J.Y. and Yan, G.W. (2015) Spatiotemporal Lattice Boltzmann Model for the Three-Dimensional Cubic-Quintic Complex Ginzburg-Landau Equation. Physica A, 440, 19-26. https://doi.org/10.1016/j.physa.2015.08.004

14. 14. An, B. and Bergadà, J.M. (2017) A 8-Neighbor Model Lattice Boltzmann Method Applied to Mathematical-Physical Equations. Applied Mathematical Modelling, 42, 363-381. https://doi.org/10.1016/j.apm.2016.10.016

15. 15. Hu, W.Q., Gao, Y.T., Lan, Z.Z., et al. (2017) Lattice Boltzmann Model for a Generalized Gardner Equation with Time-Dependent Variable Coefficients. Applied Mathematical Modelling, 46, 126-140. https://doi.org/10.1016/j.apm.2017.01.061

16. 16. Taneda, S. and Honi, H., (1971) Unsteady Flow past a Flat Plate Normal to the Direction of Motion. Journal of the Physical Society of Japan, 30, 262-272. https://doi.org/10.1143/JPSJ.30.262

17. 17. 闫广武. 二维剪切流的格子Boltzmann模拟[J]. 水动力学研究与进展, 2003, 9(5): 521-525.

18. 18. 闫广武. 二维直角弯道粘性流动的格子气体仿真[D]: [硕士学位论文]. 长春: 吉林大学, 1988.

19. 19. 胡守信. 直管道中绕平板平面流动的格子气仿真[J]. 计算物理, 1989, 6(4): 457-464.

20. 20. Lee, J.S., Shin, J.H. and Lee, S.H. (2012) Fluid-Structure Interaction of a Flapping Flexible Plate in Quiescent Fluid. Computers & Fluids, 57, 124-137. https://doi.org/10.1016/j.compfluid.2011.12.015

21. 21. 孙福振. 用格子Boltzmann方法研究平板绕流[D]: [硕士学位论文]. 长春: 吉林大学, 2007.