﻿ 不同岩性条件下孔壁爆炸载荷及透射波比能量计算 The Calculation of Explosion Load and Transmission Wave Specific Energy on the Different Lithology

Mine Engineering
Vol.03 No.04(2015), Article ID:16272,12 pages
10.12677/ME.2015.34027

The Calculation of Explosion Load and Transmission Wave Specific Energy on the Different Lithology

Mingshou Zhong*, Yuan Long, Tao Guo, Xingbo Xie, Ge Song

PLA University of Science and Technology, Nanjing Jiangsu

Received: Oct. 11th, 2015; accepted: Oct. 27th, 2015; published: Oct. 30th, 2015

ABSTRACT

To study the impact of explosion load and transmission wave specific energy under the different excitation lithology, based on the classical shock wave theory, the calculation model of initial explosive loading parameters of blasting hole was established, when blasting in columnar charge. The detonation waves were simplified to discontinuous surfaces which contain chemical reactions in the calculation model. It made up the weakness of the elastic wave theory which thought stress wave was produced directly in the wall of blast hole. The basic relationship of the detonation wave parameters was explained successfully. Based on the elastic wave theory, the calculation methods of the velocity and press of blasting hole particle when columnar charge blasting was established for different excitation lithology. The functional relationships and the analytical solutions of the transmitted wave specific energy were got by program.

1. 引言

2. 初始冲击载荷计算及分析

2.1. 初始冲击载荷计算模型

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Figure 1. Transmission and reflected shock wave propagation

(10)

(11)

(12)

2.2. 计算结果及分析

3. 爆炸载荷随时间变化的计算及分析

3.1. 计算模型

(13)

(14)

Figure 2. The graph of P~D

Figure 3. The graph of v~D

(a) P随波阻抗变化(b) v随和波阻抗变化

Figure 4. The initial parameters of hole wall with wave impedance change

Table 1. The parameters of typical explosive

Table 2. The parameters of typical rock

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

3.2. 计算方法及结果分析

(28)

(29)

Figure 5. The graph of v~t

Figure 6. The graph of P~t

4. 孔壁透射波比能量计算

4.1. 计算模型

(30)

4.2. 计算方法

4.3. 计算结果分析

Table 3. Regression prediction model

(a) 预测结果一(b) 预测结果二

Figure 7. The predictions of typical models

(a) 砂岩(b) 花岗岩 (c) 灰岩(d) 白云岩

Figure 8. Regression results of particle velocity

Figure 9. The graph of the transmitted wave specific energy

5. 结论

(1) 运用经典的冲击波理论，建立岩石介质中柱状装药爆炸时孔壁质点初始参数的计算模型，该计算模型将爆轰波简化为含化学反应的强间断面，弥补了弹性波理论认为孔壁周围岩石内直接产生应力波的不足，成功解释了爆轰波参数的基本关系式。

(2) 研究得到：初始阶段波阻抗较小的岩石激发透射比能量大，但是后期波阻抗较大的岩石激发透射比能增长速度快，一定时间后，其值超过波阻抗较小的岩石，且岩石密度越大，透射波比能量越大。

(3) 该理论计算模型同样可以预测不同药性和药量时爆炸地震波能量在岩体中的传播规律，是实验方法的有益补充，对于改进灰岩中震源激发方式，提高激发能量提供了重要的理论参考。

The Calculation of Explosion Load and Transmission Wave Specific Energy on the Different Lithology[J]. 矿山工程, 2015, 03(04): 195-206. http://dx.doi.org/10.12677/ME.2015.34027

1. 1. 李仲远 (2009) 南方碳酸盐岩地区地震采集技术方法探讨. 天然气工业, 6, 33-36.

2. 2. 王光祖, 张运生 (2005) 冲击波和爆轰波的共异性. 超硬材料工程, 2, 14-17.

3. 3. 叶序双 (2003) 爆炸力学基础(上). 解放军理工大学工程兵工程学院, 南京.

4. 4. 孙锦山, 朱建士 (1995) 理论爆轰物理. 国防工业出版社, 北京.

5. 5. 吕春绪, 等 (2003) 工业炸药理论. 兵器工业出版社, 北京.

6. 6. 钮强 (1990) 岩石爆破机理. 东北工学院出版社, 沈阳.

7. 7. 赵颜军, 傅菊根 (2004) 不同装药结构条件下爆炸能量的理论计算. 安徽理工大学学报, 3, 37-39.

8. 8. 韩红强 (2006) 柱状装药结构下水垫层厚度与爆破作用时间的数理分析和模拟试验. 硕士论文, 太原理工大学, 太原, 36-37.

9. 9. 高金石, 张奇, 编著 (1993) 爆破理论与爆破优化. 西安地图出版社, 西安

10. 10. 同济大学计算数学教研室编 (2009) 现代数值计算. 人民邮电出版社, 北京.

11. 11. 吴汪友, 孙秋高 (2011) 曲线拟合度分析法在公路货运回归预测中的应用. 海南大学学报, 1, 49-52.