设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(5),739-751
PublishedOnlineMay2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.115089
n‘k.•þØŒØ Ã^ÑÑMHD•§f
)UþÅð
<<<
uHnóŒÆ,êÆÆ,2À2²
ÂvFϵ2021c47F¶¹^Fϵ2021c511F¶uÙFϵ2021c518F
Á‡
©ïÄn‘k.•þØŒØ Ã^ÑÑMHD•§f)UþÅð¯K.ké•§?1N
1,2ä¼ê,,'uδ,ε,τ4•,lUþª.•UþÅð,éf)
(u,b,P) \^‡:u∈L
p
t
L
q
x
,b∈L
4
t
L
4
x
…∇b∈L
2
t
L
2
x
,P∈L
2
t
L
2
x
.
'…c
ØŒØ MHD•§§Ã^Ñѧk.«•§f)§UþÅð
EnergyConservationfortheWeak
SolutionstotheThree-Dimensional
IncompressibleMagnetohydrodynamic
EquationsofViscousNon-Resistive
FluidsinaBoundedDomain
XiongWang
SchoolofMathematics,SouthChinaUniversityofTechnology,GuangzhouGuangdong
©ÙÚ^:<.n‘k.•þØŒØ Ã^ÑÑMHD•§f)UþÅð[J].nØêÆ,2021,11(5):739-751.
DOI:10.12677/pm.2021.115089
<
Received:Apr.7
th
,2021;accepted:May11
th
,2021;published:May18
th
,2021
Abstract
Inthispaper,wemainlystudytheenergyconservationfortheweaksolutionsto
thethree-dimensionalincompressiblemagnetohydrodynamic equationsofviscousnon-
resistivefluidsinaboundeddomain.Togetenergyconservation,wefirstusetheglobal
mollificationmethodtotheequation,nexttakecut-offfunction,thengetthelimitof
δ,ε,τ.Weproposeaconditionfor (u,b,P):u ∈L
p
t
L
q
x
,b ∈L
4
t
L
4
x
,∇b ∈L
2
t
L
2
x
andP∈
L
2
t
L
2
x
.
Keywords
IncompressibleMagnetohydrodynamicEquations,ViscousNon-ResistiveFluids,
BoundedDomain,WeakSolutions,EnergyConservation
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.ïÄµ9̇(Ø
n‘ØŒØ Ã^ÑÑMHD•§















divu= 0,
u
t
+div(u⊗u)+∇P= (∇×b)×b+µ∆u,
b
t
−∇×(u×b) = 0,
divb= 0,
(1.1)
Ù ¥,u =(u
1
,u
2
,u
3
)(x,t) L«6N„Ý,b =(b
1
,b
2
,b
3
)(x,t) L«^|,P=P(x,t) L«Øå.
©•Ä´þãn‘ØŒØ Ã^ÑÑMHD•§|(1.1)3k .m«•Ω⊂R
3
äkeã>Š^
‡
u|
∂Ω
= 0,
(1.2)
DOI:10.12677/pm.2021.115089740nØêÆ
<
ÚЊ^‡
u(x,0) = u
0
(x),b(x,0) = b
0
(x),x∈Ω.(1.3)
f)UþÅð¯K.
½Â1.1.éu‰½T>0,eЊ÷vu
0
,b
0
∈L
2
(Ω),XJk±eA:¤á
•¯K(1.1)-(1.3) 3˜mD
0
(Ω×[0,T))¥¤á…÷v















u∈L
∞
(0,T;L
2
(Ω)),
u∈L
2
(0,T;H
1
0
(Ω)),
b∈L
∞
(0,T;L
2
(Ω)),
P∈L
∞
(0,T;L
1
loc
(Ω));
(1.4)
•é?¿ϕ∈C
∞
0

Ω×[0,T)

Z
T
0
Z
Ω

u·ϕ
t
+u⊗u: ∇ϕ+Pdivϕ−b⊗b: ∇ϕ+
|b|
2
2
divϕ−µ∇u: ∇ϕ

dxdt
+
Z
Ω
u
0
(x)ϕ(x,0)dx= 0;
•eãUþØªéA¤kt∈[0,T] ¤á
Z
Ω
(
1
2
|u|
2
+
1
2
|b|
2
)dx+
Z
t
0
Z
Ω
µ|∇u|
2
dxds
≤
Z
Ω
(
1
2
|u
0
|
2
+
1
2
|b
0
|
2
)dx;
(1.5)
K¡(u,b,P)´¯K(1.1)-(1.3) 3Ω×[0,T]þ˜‡f).
¯¢þ,XJ)¿©1w,'Xr)½ö²;),¬keãUþª¤á
Z
Ω
(
1
2
|u|
2
+
1
2
|b|
2
)dx+
Z
t
0
Z
Ω
µ|∇u|
2
dxds
=
Z
Ω
(
1
2
|u
0
|
2
+
1
2
|b
0
|
2
)dx.
(1.6)
3¯K(1.1)¥,b=0 ,KT¯K=z¤ØŒØ Navier-Stokes •§3k.•þUþ
Åð¯K,T¯K®3©Ù[1]N¹¥‰Ñ‰Y.É©Ù[1]éu,·‚ïÄØŒØ Ã^Ñ
ÑMHD•§3k.•þUþÅð¯K.
©̇(JXe:
DOI:10.12677/pm.2021.115089741nØêÆ
<
½n1.1.-Ω ´k.m8,>.∂Ω÷vC
1
1w5^‡.b



u(x,0) = u
0
(x),divu
0
= 03˜mD
0
(Ω)¥¤á;
b(x,0) = b
0
(x),divb
0
= 03˜mD
0
(Ω)¥¤á.
(1.7)
P(u,b,P)´•§|÷v½Â1.1. f).XJ
P∈L
2

0,T;L
2
(Ω)

,(1.8)
u∈L
p
(0,T;L
q
(Ω)),p≥4,q≥6,(1.9)
…
b∈L
4

0,T;L
4
(Ω)

,∇b∈L
2

0,T;L
2
(Ω)

,(1.10)
Ké?¿t∈[0,T] , Uþª(1.6) ¤á.
2.PÒ`²9~^Ún
Ún2.1.(Hardy.i\Øª[2])XJf∈W
1,p
0
(Ω),p∈[1,∞),…•3˜‡~êC= C(p,Ω)
†pÚΩk',@o




f(x)
dist(x,∂Ω)




L
p
(Ω)
≤Ckfk
W
1,p
0
(Ω)
.
e¡Ú\†1k'PÒÚ(Ø,ë•Chen-Liang-Wang-Xu©Ù[1]ÚEvansÖ[3].
é?¿(x,t) ∈Ω
0
×(ε,T−ε) ,Ù¥Ω
0
⊂⊂Ω ,½ÂòÈ
u
ε
(x,t) =
Z
T
0
Z
Ω
u(y,s)η
ε
(x−y,t−s)dyds,η
ε
(x,t) =
1
ε
4
η(
x
ε
,
t
ε
),
(2.1)
ùpη(x,t) ´|83ü ¥þIO1Ø.
·K2.1.3˜mL
q
loc

0,T;W
1,p
(Ω
0
)

¥,ε→0žk
u
ε
(x,t) →u(x,t),∀p,q∈[1,+∞).
(2.2)
du∂Ω∈C
1
,é½:x
1
∈∂Ω,•3¢êr
1
>09¼êh:R
2
→RPV
1
=Ω∩
B(x
1
,
r
1
2
)={x∈B(x
1
,r
1
):x
3
>h(x
1
,x
2
)}éu˜‡éêε,0<ε<
r
1
8
.½Â²£:
x
ε
1
:= x−εn(x
1
),∀x∈V
1
, Ù¥n(x
1
)´∂Ω3:x
1
?ü {•þ, KB(x
ε
,ε) ⊂B(x
1
,r
1
)∩Ω.
½Â²£¼ê
˜
u
1
(x,t) = u(x
ε
1
,t),∀x∈V
1
.
DOI:10.12677/pm.2021.115089742nØêÆ
<
é?¿(x,t) ∈V
1
×(ε,T−ε) …V
1
:= B(x
1
,
r
1
2
+2ε)∩Ω,k
˜
u
ε
1
(x,t) =
Z
T
0
Z
V
1
˜
u(y,s)η
ε
(x−y,t−s)dyds
=
Z
T
0
Z
V
1
−ε~n(x
1
)
u(y,s)η
ε
(x
ε
−y,t−s)dyds.
(2.3)
·K2.2.3˜mL
q
loc

0,T;W
1,p
(V
1
)

¥,ε→0žk
˜
u
ε
1
(x,t) →u(x,t),∀p,q∈[1,+∞).
du∂Ω ;5,∂Ω mCXUék•fCX,=Uék•‡:x
i
∈∂Ω ,Œ»r
i
>0 9
éA8ÜV
i
= Ω∩B(x
i
,
r
i
2
),i∈{1,2,...,k},¦∂Ω ⊂
S
k
i=1
V
i
…
˜
u
ε
i
∈C
∞

V
i
).•3V
0
⊂⊂Ω ,
¦Ω ⊂
S
k
i=0
V
i
.
-{ψ
i
}
k
i=0
´láum8x{V
0
,B(x
1
,
r
1
2
),...,B(x
k
,
r
k
2
)}ü ©),=





















0 ≤ψ
i
≤1,i∈{0,1,2,...,k}
ψ
0
∈C
∞

V
0

,suppψ
0
⊂V
0
,
ψ
i
∈C
∞

B(x
i
,
r
i
2
)

,suppψ
i
⊂B(x
i
,
r
i
2
),i∈{1,2,...,k},
k
X
i=0
ψ
i
= 1.
(2.4)
½Â
[u]
ε
(x,t) := ψ
0
(x)u
ε
(x,t)+
k
X
i=1
ψ
i
(x)
˜
u
ε
i
(x,t),∀x∈Ω.
(2.5)
K[u]
ε
(x,t) ∈C
∞

0,T;C
∞
(Ω)

.
·K2.3.3˜mL
q
loc

0,T;W
1,p
(Ω)

¥,ε→0ž
[u]
ε
→u∀p,q∈[1,+∞).
(2.6)
?˜Ú,ε→0žk
3˜mL
q
loc

0,T;W
1,p
(V
0
)

¥,[u]
ε
−u
ε
→0;
3˜mL
q
loc

0,T;W
1,p
(V
i
)

¥,[u]
ε
−
˜
u
ε
i
→0.
(2.7)
Ún2.2.(©z[4]¥Ún2.3)XJf∈W
1,r
1
(Ω×[0,T]), g∈L
r
2
(Ω×[0,T]), Ù¥1 ≤r,r
1
,r
2
≤
∞,
1
r
1
+
1
r
2
=
1
r
,Kéu,‡†ε,f,gÃ'~êC>0 ,keã(ؤá
k∂(fg)
ε
−∂(fg
ε
)k
L
r
loc
(Ω×(0,T))
≤Ckgk
L
r
2
(Ω×[0,T])

k∂
t
fk
L
r
1
(Ω×[0,T])
+k∇fk
L
r
1
(Ω×[0,T])

,
(2.8)
DOI:10.12677/pm.2021.115089743nØêÆ
<
d?∂= ∂
t
½∂= ∂
x
,g
ε
½Â´d(2.1)‰Ñ.•?˜Ú,ε→0ž,k
3˜m L
r
loc

Ω×(0,T)

¥,∂(fg)
ε
−∂(fg
ε
) →0.
d?,r
2
<∞ž,r= r¶r
2
= ∞ž,r<r.
Ún2.3.(©Ù[1]¥íØ2.1 ) XJf∈W
1,r
1
(Ω×[0,T]), g∈L
r
2
(Ω×[0,T])Ù¥1 ≤r,r
1
,r
2
≤
∞,
1
r
1
+
1
r
2
=
1
r
.K
k∂
t
((
˜
f˜g)
ε
i
−f˜g
ε
i
)k
L
r
loc
(0,T;L
r
(V
i
))
≤Ckgk
L
r
2
(Ω×[0,T])

k∂
t
fk
L
r
1
(Ω×[0,T])
+k∇fk
L
r
1
(Ω×[0,T])

…
k∂
x
((
˜
f˜g)
ε
i
−f˜g
ε
i
)k
L
r
loc
(0,T;L
r
(V
i
))
≤Ckgk
L
r
2
(Ω×[0,T])

k∂
t
fk
L
r
1
(Ω×[0,T])
+k∇fk
L
r
1
(Ω×[0,T])

,
d?˜g
ε
i
½Â´d(2.3)‰Ñ.•?˜Ú,ε→0ž,k
3˜mL
r
loc
(0,T;L
r
(V
i
))¥,∂((
˜
f˜g)
ε
i
−f˜g
ε
i
) →0,
d?,r
2
<∞ž,r= r¶r
2
= ∞ž,r<r.
Ún2.4.(Aubin-LionsÚn,©Ù[4])XJX´g‡Banach˜m,Y´Banach˜m,
X→Y,Y
0
Œ©…3X
0
¥È—.b¼êS{f
n
}÷v



f
n
∈L
∞
(0,T;X),∂
t
f
n
∈L
p
(0,T;Y),1 <p≤∞,
kf
n
k
L
∞
(0,T;X)
,k∂
t
f
n
k
L
p
(0,T;Y)
≤C,∀n≥1.
Kf
n
3C
0
([0,T],X
ω
)¥ƒé;.
3.½n1.1y²
•y²½n1.1.UþÅð(Ø,e¡·‚æ^©Ù[1]¥•{ò•§(1.1)
2
1,
∂
t

ψ
0
u
ε
+
k
X
i=1
ψ
i
˜
u
ε
i

+

ψ
0
div(u⊗u)
ε
+
k
X
i=1
ψ
i
div(
˜
u⊗
˜
u)
ε
i

+

ψ
0
∇P
ε
+
k
X
i=1
ψ
i
∇
˜
P
ε
i

−

ψ
0
div(b⊗b)
ε
+
k
X
i=1
ψ
i
div(
˜
b⊗
˜
b)
ε
i

+

ψ
0
∇(
|b|
2
2
)
ε
+
k
X
i=1
ψ
i
∇(
|
˜
b|
2
2
)
ε
i

−µ

ψ
0
∆u
ε
+
k
X
i=1
ψ
i
∆
˜
u
ε
i

= 0.
(3.1)
DOI:10.12677/pm.2021.115089744nØêÆ
<
ä¼êξ
τ
η
δ
[u]
ε
,Ù¥ξ
τ
(t) ∈C
1
0

(τ,T−τ)

,η
δ
(x) ∈C
1
0
(Ω)…







0 ≤η
δ
(x) ≤1,η
δ
(x) = 1x∈Ω…dist(x,∂Ω) ≥δž;
η
δ
→1δ→0ž,…|∇η
δ
|≤
2
dist(x,∂Ω)
.
ò•§(3.1)ü>¦þξ
τ
η
δ
[u]
ε
¿3Ω×(0,T) þÈ©,
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·∂
t

ψ
0
u
ε
+
k
X
i=1
ψ
i
˜
u
ε
i

dxdt
+
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

ψ
0
div(u⊗u)
ε
+
k
X
i=1
ψ
i
div(
˜
u⊗
˜
u)
ε
i

dxdt
+
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

ψ
0
∇P
ε
+
k
X
i=1
ψ
i
∇
˜
P
ε
i

dxdt(3.2)
−
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

ψ
0
div(b⊗b)
ε
+
k
X
i=1
ψ
i
div(
˜
b⊗
˜
b)
ε
i

dxdt
+
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

ψ
0
∇(
|b|
2
2
)
ε
+
k
X
i=1
ψ
i
∇(
|
˜
b|
2
2
)
ε
i

dxdt
−µ
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

ψ
0
∆u
ε
+
k
X
i=1
ψ
i
∆
˜
u
ε
i

dxdt= 0.
e5é(3.2)¥ˆ‘'uδÚε4•.Ù¥1‘,1n‘,18‘©Oë•©Ù[1]¥
ÚnA.1,ÚnA.2,Ún3.3ÚÙ!3.2,
lim
δ→0
lim
ε→0
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

ψ
0
div(u⊗u)
ε
+
k
X
i=1
ψ
i
div(
˜
u⊗
˜
u)
ε
i

dxdt= 0;
(3.3)
lim
δ→0
lim
ε→0
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

ψ
0
∇P
ε
+
k
X
i=1
ψ
i
∇
˜
P
ε
i

dxdt= 0;
(3.4)
lim
δ→0
lim
ε→0
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

ψ
0
∆u
ε
+
k
X
i=1
ψ
i
∆
˜
u
ε
i

dxdt= −
Z
T
0
Z
Ω
ξ
τ
|∇u|
2
dxdt.
(3.5)
(3.2)¥1˜‘,1o‘,1Ê‘'uδÚε4•(JdeˆÚn‰Ñ.
Ún3.1.(3.2)¥1˜‘÷v
lim
δ→0
lim
ε→0
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·∂
t

ψ
0
u
ε
+
k
X
i=1
ψ
i
˜
u
ε
i

dxdt= −
1
2
Z
T
0
Z
Ω
ξ
0
τ
|u|
2
dxdt.
DOI:10.12677/pm.2021.115089745nØêÆ
<
y²d½Âª(2.5)•
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·∂
t

ψ
0
u
ε
+
k
X
i=1
ψ
i
˜
u
ε
i

dxdt
=
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·∂
t
[u]
ε
dxdt
=
1
2
Z
T
0
Z
Ω
ξ
τ
η
δ
∂
t
|[u]
ε
|
2
dxdt
=−
1
2
Z
T
0
Z
Ω
ξ
0
τ
η
δ
|[u]
ε
|
2
dxdt.
éþª‘,¿-ε→0,δ→0,Šâξ
0
τ
,η
δ
k.59·K2.3
lim
δ→0
lim
ε→0
1
2
Z
T
0
Z
Ω
ξ
0
τ
η
δ

|[u]
ε
|
2
−|u|
2

dxdt= 0.
l,
lim
δ→0
lim
ε→0
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·∂
t

ψ
0
u
ε
+
k
X
i=1
ψ
i
˜
u
ε
i

dxdt= −
1
2
Z
T
0
Z
Ω
ξ
0
τ
|u|
2
dxdt.
Ún3.1.y..
Ún3.2.(3.2)¥1o‘÷v
lim
δ→0
lim
ε→0
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

ψ
0
div(b⊗b)
ε
+
k
X
i=1
ψ
i
div(
˜
b⊗
˜
b)
ε
i

dxdt= −
Z
T
0
Z
Ω
ξ
τ
b·div(b⊗u)dxdt.
y²k©ÜÈ©,k
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

ψ
0
div(b⊗b)
ε
+
k
X
i=1
ψ
i
div(
˜
b⊗
˜
b)
ε
i

dxdt
=−
Z
T
0
Z
Ω
ξ
τ
∇η
δ
⊗[u]
ε
:

ψ
0
(b⊗b)
ε
+
k
X
i=1
ψ
i
(
˜
b⊗
˜
b)
ε
i

dxdt
−
Z
T
0
Z
Ω
ξ
τ
η
δ
∇[u]
ε
:

ψ
0
(b⊗b)
ε
+
k
X
i=1
ψ
i
(
˜
b⊗
˜
b)
ε
i

dxdt
−
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε

∇ψ
0
: (b⊗b)
ε
+
k
X
i=1
∇ψ
i
: (
˜
b⊗
˜
b)
ε
i

dxdt
:=I
41
+I
42
+I
43
.
DOI:10.12677/pm.2021.115089746nØêÆ
<
kwI
41
I
41
=−
Z
T
0
Z
Ω
ξ
τ
∇η
δ
⊗[u]
ε
:

ψ
0

(b⊗b)
ε
−(b⊗b)

+
k
X
i=1
ψ
i

(
˜
b⊗
˜
b)
ε
i
−(b⊗b)


dxdt
−
Z
T
0
Z
Ω
ξ
τ
∇η
δ
⊗([u]
ε
−u) : (b⊗b)dxdt
−
Z
T
0
Z
Ω
ξ
τ
∇η
δ
⊗u: (b⊗b)dxdt.
^H¨olderØª9(1.4),(1.9),(1.10),(2.4),Ún2.1 9·K2.1,·K2.2,·K2.3,
lim
δ→0
lim
ε→0
I
41
= 0.
(3.6)
2wI
42
I
42
=−
Z
T
0
Z
Ω
ξ
τ
η
δ
∇[u]
ε
:

ψ
0

(b⊗b)
ε
−(b⊗b)

+
k
X
i=1
ψ
i

(
˜
b⊗
˜
b)
ε
i
−(b⊗b)


dxdt
−
Z
T
0
Z
Ω
ξ
τ
η
δ
(∇[u]
ε
−∇u) : (b⊗b)dxdt−
Z
T
0
Z
Ω
ξ
τ
η
δ
∇u: (b⊗b)dxdt.
dH¨olderØª9(1.4),(1.10),(2.4),·K2.1,·K2.2 Ú·K2.3,
lim
δ→0
lim
ε→0
I
42
= −
Z
T
0
Z
Ω
ξ
τ
∇u: (b⊗b)dxdt= −
Z
T
0
Z
Ω
ξ
τ
b·div(b⊗u)dxdt.
(3.7)
•wI
43
I
43
=−
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε

∇ψ
0
:

(b⊗b)
ε
−b⊗b

+
k
X
i=1
∇ψ
i
:

(
˜
b⊗
˜
b)
ε
i
−b⊗b


dxdt
−
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
k
X
i=0
∇ψ
i
: (b⊗b)dxdt
=−
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε

∇ψ
0
:

(b⊗b)
ε
−b⊗b

+
k
X
i=1
∇ψ
i
:

(
˜
b⊗
˜
b)
ε
i
−b⊗b


dxdt
−
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
∇

k
X
i=0
ψ
i

: (b⊗b)dxdt
dH¨olderØª9(1.4),(1.10),(2.4),·K2.1,·K2.2 Ú·K2.3,
lim
δ→0
lim
ε→0
I
43
= 0.
(3.8)
DOI:10.12677/pm.2021.115089747nØêÆ
<
Šâ(3.6),(3.7),(3.8)k
lim
δ→0
lim
ε→0
(I
41
+I
42
+I
43
) = −
Z
T
0
Z
Ω
ξ
τ
b·div(b⊗u)dxdt.
Ún3.2.y..
Ún3.3.(3.2)¥1Ê‘÷v
lim
δ→0
lim
ε→0
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

ψ
0
∇(
|b|
2
2
)
ε
+
k
X
i=1
ψ
i
∇(
|
˜
b|
2
2
)
ε
i

dxdt= 0.
y²k©ÜÈ©,k
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

ψ
0
∇(
|b|
2
2
)
ε
+
k
X
i=1
ψ
i
∇(
|
˜
b|
2
2
)
ε
i

dxdt
=−
Z
T
0
Z
Ω
ξ
τ
∇η
δ
·[u]
ε

ψ
0
(
|b|
2
2
)
ε
+
k
X
i=1
ψ
i
(
|
˜
b|
2
2
)
ε
i

dxdt
−
Z
T
0
Z
Ω
ξ
τ
η
δ
div[u]
ε

ψ
0
(
|b|
2
2
)
ε
+
k
X
i=1
ψ
i
(
|
˜
b|
2
2
)
ε
i

dxdt
−
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

∇ψ
0
∇(
|b|
2
2
)
ε
+
k
X
i=1
∇ψ
i
∇(
|
˜
b|
2
2
)
ε
i

dxdt
:=I
51
+I
52
+I
53
.
kwI
51
−
Z
T
0
Z
Ω
ξ
τ
∇η
δ
·[u]
ε

ψ
0
(
|b|
2
2
)
ε
+
k
X
i=1
ψ
i
(
|
˜
b|
2
2
)
ε
i

dxdt
=−
Z
T
0
Z
Ω
ξ
τ
∇η
δ
·[u]
ε

ψ
0

(
|b|
2
2
)
ε
−
|b|
2
2

+
k
X
i=1
ψ
i

(
|
˜
b|
2
2
)
ε
i
−
|b|
2
2


dxdt
−
Z
T
0
Z
Ω
ξ
τ
∇η
δ
·([u]
ε
−u)

ψ
0
|b|
2
2
+
k
X
i=1
ψ
i
|b|
2
2

dxdt
−
Z
T
0
Z
Ω
ξ
τ
∇η
δ
·u
|b|
2
2
dxdt.
^H¨olderØª9(1.4),(1.9),(1.10),(2.4),Ún2.1 9·K2.1,·K2.2,·K2.3,
lim
δ→0
lim
ε→0
I
51
= 0.
(3.9)
DOI:10.12677/pm.2021.115089748nØêÆ
<
2wI
52
,
−
Z
T
0
Z
Ω
ξ
τ
η
δ
div[u]
ε

ψ
0
(
|b|
2
2
)
ε
+
k
X
i=1
ψ
i
(
|
˜
b|
2
2
)
ε
i

dxdt
=−
Z
T
0
Z
Ω
ξ
τ
η
δ
div[u]
ε

ψ
0

(
|b|
2
2
)
ε
−
|b|
2
2

+
k
X
i=1
ψ
i

(
|
˜
b|
2
2
)
ε
i
−
|b|
2
2


dxdt
−
Z
T
0
Z
Ω
ξ
τ
η
δ
(div[u]
ε
−divu)(
|b|
2
2
)dxdt−
Z
T
0
Z
Ω
ξ
τ
η
δ
divu(
|b|
2
2
)dxdt.
dH¨olderØª9(1.4),(1.10),(2.4),·K2.1,·K2.2 Ú·K2.3,
lim
δ→0
lim
ε→0
I
52
= −
Z
T
0
Z
Ω
ξ
τ
η
δ
divu(
|b|
2
2
)dxdt= 0.
(3.10)
•wI
53
−
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

∇ψ
0
∇(
|b|
2
2
)
ε
+
k
X
i=1
∇ψ
i
∇(
|
˜
b|
2
2
)
ε
i

dxdt
=−
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

∇ψ
0

∇(
|b|
2
2
)
ε
−
|b|
2
2

+
k
X
i=1
∇ψ
i

∇(
|
˜
b|
2
2
)
ε
i
−
|b|
2
2


dxdt
−
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·
k
X
i=0
∇ψ
i
|b|
2
2
dxdt
=−
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·

∇ψ
0

∇(
|b|
2
2
)
ε
−
|b|
2
2

+
k
X
i=1
∇ψ
i

∇(
|
˜
b|
2
2
)
ε
i
−
|b|
2
2


dxdt
−
Z
T
0
Z
Ω
ξ
τ
η
δ
[u]
ε
·∇(
k
X
i=0
ψ
i
)
|b|
2
2
dxdt.
dH¨olderØª9(1.4),(1.10),(2.4),·K2.1,·K2.2 Ú·K2.3,
lim
δ→0
lim
ε→0
I
53
= 0.
(3.11)
Šâ(3.9),(3.10),(3.11)k
lim
δ→0
lim
ε→0
(I
51
+I
52
+I
53
) = 0.
Ún3.3.y..
d(3.3),(3.4),(3.5),Ún3.1,Ún3.29Ún3.3•,-•§(3.2)¥ε→0,δ→0 
−
1
2
Z
T
0
Z
Ω
ξ
0
τ
|u|
2
dxdt+
Z
T
0
Z
Ω
ξ
τ
b·div(b⊗u)dxdt+µ
Z
T
0
Z
Ω
ξ
τ
|∇u|
2
dxdt= 0.
(3.12)
DOI:10.12677/pm.2021.115089749nØêÆ
<
(Ü•§(1.1)
3
,Ù¥
Z
T
0
Z
Ω
ξ
τ
b·div(b⊗u)dxdt
=
Z
T
0
Z
Ω
ξ
τ
b·div(b⊗u)dxdt−
Z
T
0
Z
Ω
ξ
τ
b·div(u⊗b)dxdt
=
Z
T
0
Z
Ω
ξ
τ
b·

div(b⊗u)−div(u⊗b)

dxdt
=
Z
T
0
Z
Ω
ξ
τ
b·∂
t
bdxdt
=−
1
2
Z
T
0
Z
Ω
ξ
0
τ
|b|
2
dxdt,
l,(3.12)z{¤
−
1
2
Z
T
0
Z
Ω
ξ
0
τ
(|u|
2
+|b|
2
)dxdt+µ
Z
T
0
Z
Ω
ξ
τ
|∇u|
2
dxdt= 0.
(3.13)
duξ
τ
(t) ∈C
1
0
((τ,T−τ)),éu?¿t
0
>0 ,?¿τ,α,¦τ+α<t
0
,
ξ
τ
(t) =





















0,0 ≤t≤τ,
t−τ
α
,τ<t≤τ+α,
1,τ+α<t≤t
0
,
t
0
+α−t
α
,t
0
<t≤t
0
+α,
0,t≥t
0
+α.
(3.14)
ò(3.14)“\(3.13),
−
1
2α
Z
τ+α
τ
Z
Ω
(|b|
2
+|u|
2
)dxdt+
1
2α
Z
t
0
+α
t
0
Z
Ω
(|b|
2
+|u|
2
)dxdt
+µ
Z
τ+α
τ
t−τ
α
Z
Ω
|∇u|
2
dxdt+µ
Z
t
0
τ+α
Z
Ω
|∇u|
2
dxdt
+µ
Z
t
0
+α
t
0
−t+t
0
+α
α
Z
Ω
|∇u|
2
dxdt= 0.(3.15)
dÈ©ýéëY5,
lim
α→0
Z
τ+α
τ
t−τ
α
Z
Ω
|∇u|
2
dxdt= 0;
lim
α→0
Z
t
0
+α
t
0
−t+t
0
+α
α
Z
Ω
|∇u|
2
dxdt= 0.
DOI:10.12677/pm.2021.115089750nØêÆ
<
P
E(t) =
1
2
Z
Ω
(|b|
2
+|u|
2
)dx,
F(t) = µ
Z
t
0
Z
Ω
|∇u|
2
dxds.
äó:
u,b∈C
0

[0,T];L
2
(Ω)

.(3.16)
¯¢þ,d(1.1)
2
,(1.4),(1.8),(1.9),(1.10),•u
t
∈L
2

0,T;H
−1
(Ω)

.3Ún2.4.¥,X=
L
2
(Ω),Y=H
−1
(Ω),lu ∈C
0

[0,T];L
2
w
(Ω)

.Ón,d(1.1)
3
,(1.4),(1.9),(1.10) ÚÚn2.4.,
b∈C
0

[0,T];L
2
w
(Ω)

.(ÜUþØª(1.6)ÚЊ^‡,u,b∈C
0

[0,T];L
2
(Ω)

.
3(3.15)¥,du(3.16)ÚV‚‡©½n,-α→0,
(E+F)(t
0
) = (E+F)(τ).
(3.17)
3(3.17)¥,du(3.16),-τ→0
+
,
(E+F)(t
0
) = (E+F)(0),t
0
∈(0,T),
d=(1.6).dt
0
?¿5,®¤½n1.1.y².
ë•©z
[1]Chen,R.M.,Liang,Z.L.,Wang,D.H.andXu,R.Z.(2020)EnergyEqualityinCompressibleFluidswith
PhysicalBoundaries.SIAMJournalonMathematicalAnalysis,52,1363-1385.
https://doi.org/10.1137/19M1287213
[2]Kufner,A.,John,O.andFuk,S.(1977)FunctionSpaces.Academia,Prague.
[3]Evans,L.C.(1998)PartialDifferentialEquations.AmericanMathematicalSociety,Providence,RI.
[4]Lions, P.L.(1996)Mathematical Topicsin FluidMechanics.Vol.1,Incompressible Models.OxfordUniver-
sityPress,NewYork.
DOI:10.12677/pm.2021.115089751nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.