设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(5),767-775
PublishedOnlineMay2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.115091
Y-GorensteinSSSÚÚÚFrobeniusVVV
~~~
Ü“‰ŒÆêƆÚOÆ,[‹=²
ÂvFϵ2021c410F¶¹^Fϵ2021c511F¶uÙFϵ2021c518F
Á‡
©Ì‡ïÄY-GorensteinSÚFrobeniusVƒm'X.‚RÚSÑ´kü 
(Ü‚,
S
M
R
´FrobeniusV…M
R
´)¤f.y²(1)R
op
-X´Y-GorensteinS
…=Hom
R
op
(M,X)´Y-GorensteinSS
op
-;(2)R-Y´Y-GorensteinS…
=M⊗
R
Y´Y-GorensteinSS-"
'…c
Y-GorensteinS§FrobeniusV§)¤f
Y-GorensteinInjectiveModuleandFrobeniusBimodules
XiaomeiWang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Apr.10
th
,2021;accepted:May11
th
,2021;published:May18
th
,2021
Abstract
Inthispaper,wemainlystudytherelationshipbetweenY-Gorensteininjectivemodule
andFrobeniusbimodules.LetRandSbeassociativeringswithanidentity,
S
M
R
be
©ÙÚ^:~.Y-GorensteinSÚFrobeniusV[J].nØêÆ,2021,11(5):767-775.
DOI:10.12677/pm.2021.115091
~
FrobeniusbimodulewithM
R
agenerator.Weprovedthat(1)R
op
-moduleXisY-
GorensteininjectivemoduleifandonlyifHom
R
op
(M,X)isY-GorensteininjectiveS
op
-module;(2)R-moduleYisY-GorensteininjectivemoduleifandonlyifM⊗
R
Yis
Y-GorensteininjectiveS-module.
Keywords
Y-GorensteinInjectiveModule,FrobeniusBimodules,Generator
Copyright
c
2021byauthor(s)andHansPublishersInc.
ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
Š•k•)¤Ýí2,Auslander<3©z[1]¥ïÄV>Noether‚þG-‘ê•"
k•)¤.1995c,Enochs<3©z[2]¥Ú\GorensteinSÚÝVg.2008c,
Mao<3©z[3]¥½ÂGorensteinFP-S¿ïÄÙÓN5Ÿ.2009c,Ding<3[4]
¥½ÂrGorenstein²".2010c,Gillespie3[5]¥òrGorenstein² "¡•Ding-Ý
,òGorensteinFP-S¡•Ding-S.Óc,Bennis<3[6]¥Ú\X-GorensteinÝ
.2011c,Meng<3[7]¥Ú\Y-GorensteinS¿ïÄÙÓN5Ÿ.
1954c,Kasch<3[8]¥±Frobenius“ê•Ä:,Ú\Frobenius*ÜVg.3[9,10]
¥,Nakayama,TsuzukuÚMoritaŠ?˜ÚïÄ.1999c,Kadison3[11]¥•g/ï
ÄFrobenius*Ü,¿…JÑFrobeniusVVg.2018-2019c,Ren3[12–14]¥ïÄ
Frobenius*ÜþGorensteinÝ(S,²")9Ù‘ê.2020c,Hu<3[15]¥ïÄ
Frobenius¼fÚGorenstein²"5Ÿƒm'X.
S
M
R
´FrobeniusV…M
R
´)¤f.y
²R-X´Gorenstein²"…=M⊗
R
X´Gorenstein²"S-.
ɱþóŠéu,©Ì‡ïÄFrobeniusV†Y-GorensteinS,X-GorensteinÝ
ƒm'X.
2.ý•£
3©¥,‚RÚSÑ´kü (Ü‚,þ•j.¤k†R-(½ö†S-)L«•
R-(S-),¤kmR-(½ömS-)L«•R
op
-(S
op
-),é?¿‚R,
R
ML«¤kR-‰
Æ…M
R
L«¤kR
op
-‰Æ,
S
M
R
L«M´(S,R)-V.·‚^P(R)ÚI(R)©OL«Ý
R-aÚSR-a.
DOI:10.12677/pm.2021.115091768nØêÆ
~
!‰Ñ˜^ÎÒÚÄVg.
½Â1.1[11,½Â2.1]¡(S,R)-VM´FrobeniusV,XJ÷v±e^‡:
(1)
S
MÚM
R
Ñ´k•)¤Ý;
(2)•3(R,S)-VÓ:
∗
M:=
R
Hom
S
(M,S)
S
w
R
Hom
R
op
(M,R)
S
=:M
∗
.
Šâ©z[9],¡S⊆R´Frobenius*Ü,XJ
S
R´k•)¤ÝS-,…
R
R
S
wHom
S
(
S
R,
S
S).
d½ÂduR
S
´k•)¤ÝS
op
-,…
S
R
R
wHom
S
op
(R
S
,S
S
).3ù«œ¹e,
S
R
R
Ú
R
R
S
þ´FrobeniusV.
½Â1.2[7,½Â2.1]Y´R
op
-a…•¹¤kS.¡R
op
-M´Y-GorensteinS
,XJ•3SR
op
-Ü
E=···→E
−2
→E
−1
→E
0
→E
1
→···
¦M
∼
=
Ker(E
0
→E
1
),…é?¿H∈Y,Hom
R
(H,E)Ü.
·‚^Y−GI(R)L«Y-GorensteinSa.
½Â1.3(1)d½Â•,Y-GorensteinS´GorensteinS.
(2)XJY´SR
op
-,@oY-GorensteinSR
op
-Ò´GorensteinSR
op
-.
(3)XJY´FP-SR
op
-,@oY-GorensteinSR
op
-Ò´GorensteinFP-SR
op
-.
(4)XJY´GorensteinSR
op
-,@oY-GorensteinSR
op
-Ò´S.
½Â1.4[6,½Â2.1]X´R-a…•¹¤kÝ.¡R-M´X-GorensteinÝ,
XJ•3ÝR-Ü
P=···→P
−2
→P
−1
→P
0
→P
1
→···
¦M
∼
=
Ker(P
0
→P
1
),…é?¿F∈X,Hom
R
(P,F)Ü.
·‚^X−GP(R)L«X-GorensteinÝa.
5P1.5(1)d½Â•,X-GorensteinÝ´GorensteinÝ.
(2)XJX´ÝR-,@oX-GorensteinÝR-Ò´GorensteinÝR-.
(3)XJX´²"R-,@oX-GorensteinÝR-Ò´DingÝR-.
(4)XJX´GorensteinÝR-,@oX-GorensteinÝR-Ò´Ý.
3.Y-GorensteinSÚFrobenius V
!̇ïÄFrobeniusVÚY-GorensteinS5Ÿƒm'X.
Ún2.1[11,12Ù][16,12.1!]RÚS´‚,
S
M
R
´FrobeniusV ,-N:=
∗
M.K
±eQã¤á:
(1)
R
N
S
´FrobeniusV.
DOI:10.12677/pm.2021.115091769nØêÆ
~
(2)M⊗
R
−
∼
=
Hom
R
(N,−):
R
M→
S
M,N⊗
S
−
∼
=
Hom
S
(M,−):
S
M→
R
M.
(3)Hom
R
op
(M,−)
∼
=
−⊗
R
N:M
R
→M
S
,Hom
S
op
(N,−)
∼
=
−⊗
S
M:M
S
→M
R
.
(4)eX´Ý(S,²")R-,KM⊗
R
X´Ý(S,²")S-.
(5)eY´Ý(S,²")S-,KHom
S
(M,Y)´Ý(S,²")R-.
(6)é?¿i≥0,9?¿S-XÚR-Y,
Ext
i
S
(X,M⊗
R
Y)
∼
=
Ext
i
R
(Hom
S
(M,X),Y),
Ext
i
R
(Y,N⊗
S
X)
∼
=
Ext
i
S
(Hom
R
(N,Y),X)
(7)é?¿i≥0,?¿R
op
-XÚR-Y,
Tor
R
i
(Hom
R
op
(M,X)⊗
S
M,Y)
∼
=
Tor
S
i
(Hom
R
op
(M,X),M⊗
R
Y)
Ún2.2[15,½n2.2]
S
M
R
´FrobeniusV,-N:=
∗
M…F:=M⊗
R
−:
R
M→
S
M
´Frobenius¼f.K±eQã¤á:
(1)F´§¢¼f;
(2)
R
N´)¤f;
(3)M
R
´)¤f;
(4)M
R
´§¢;
(5)é?¿R-X,Nϕ
X
:X→Hom
S
(M,M⊗
R
X)(ϕ
X
(x)(m)=m⊗
R
x))´üÓ,Ù
¥x∈X…m∈M;
(6)é?¿R
op
-Y,Nψ
Y
:Hom
R
op
(M,Y)⊗
S
M→Y(ψ
Y
(f⊗
S
m)=f(m))´÷Ó,
Ù¥f∈Hom
R
op
(M,Y)…m∈M;
(7)é?¿R-P∈P(R),Nφ
P
:N⊗
S
Hom
R
(M,P)→P(φ
P
(n⊗
S
f)=f(n))´÷Ó
,Ù¥f∈Hom
R
(M,P)…n∈N;
(8)R
op
-E∈I(R
op
),N θ
E
:E→Hom
S
op
(N,E⊗
R
N)(θ
E
(x)(n)=x⊗
R
n)´üÓ,Ù
¥x∈E…n∈N.
Ún2.3[15,íØ2.3]
S
M
R
´FrobeniusV…M
R
´)¤f.
(1)?¿ÝR-P´Hom
S
(M,M⊗
R
P)†Ú‘;
(2)?¿R
op
-E´Hom
R
op
(M,E)⊗
S
M†Ú‘.
Ún2.4
S
M
R
´FrobeniusV.
(1)eX´Y-GorensteinSR
op
-,KHom
R
op
(M,X)´Y-GorensteinSS
op
-.
(2)eY´Y-GorensteinSS
op
-,KY⊗
S
M´Y-GorensteinSR
op
-.
y²(1)Ï•X´Y-GorensteinSR
op
-,¤±•3SR
op
-Ü
E=···→E
1
→E
0
→E
−1
→E
−2
→···,
DOI:10.12677/pm.2021.115091770nØêÆ
~
¦X
∼
=
Ker(E
−1
→E
−2
),¿…é?¿I∈Y,Hom
R
op
(I,E)Ü.ÏE
i
´SR
op
-.¤±
Hom
R
op
(M,E
i
)´SS
op
-.ÏdHom
R
op
(M,E)´SS
op
-Ü,…Hom
R
op
(M,X)
∼
=
Ker(Hom
R
op
(M,E
−1
)→Hom
R
op
(M,E
−2
)).
Q´SS
op
-,KQ⊗
S
M´SR
op
-,Hom
R
op
(Q⊗
S
M,E)Ü.dÓ
Hom
R
op
(Q⊗
S
M,E)
∼
=
Hom
S
op
(Q,Hom
R
op
(M,E))
•,Hom
S
op
(Q,Hom
R
op
(M,E))Ü.ÏdHom
R
op
(M,X)´Y-GorensteinSS
op
-.
(2)Y´Y-GorensteinSS
op
-,-N:=
∗
M.Ï•
S
M
R
´FrobeniusV,¤±
R
N
S
´
FrobeniusV.Ïdd(1)•,Hom
S
op
(N,Y)´Y-GorensteinSR
op
-.qÏ•Hom
S
op
(N,Y)
∼
=
Y⊗
S
M,¤±Y⊗
S
M´Y-GorensteinSR
op
-.
Ún2.5[7,Ún2.8]±eQãd:
(1)M´Y-GorensteinSR
op
-;
(2)é?¿R
op
-H∈Y,Ext
≥1
R
(H,M)=0,…•3SR
op
-Üµ
···→E
2
→E
1
→E
0
→X→0,
¦é?¿H∈Y,Hom
R
(H,−)Ü;
(3)•3áÜ0→G→I→M→0,Ù¥I´S,G´Y-GorensteinS.
Ún2.6[7,Ún2.10]Y-GorensteinS'u*Ü,†Ú‘Ú÷Óص4.
½n2.7
S
M
R
´FrobeniusV…M
R
´)¤f.
(1)R
op
-X´Y-GorensteinS…=Hom
R
op
(M,X)´Y-GorensteinSS
op
-.
(2)R-Y´Y-GorensteinS…=M⊗
R
Y´Y-GorensteinSS-.
y²(1)⇒)d·K2.4Œ.
⇐)X´R
op
-¦Hom
R
op
(M,X)´Y-GorensteinSS
op
-.eyX´Y-GorensteinS
R
op
-.
E´SR
op
-,¤±Hom
R
op
(M,E)´SS
op
-.Ï•Hom
R
op
(M,X)´Y-GorensteinS
S
op
-,¤±é?¿i≥1,Ext
i
S
op
(Hom
R
op
(M,E),Hom
R
op
(M,X))=0.dÓ
Ext
i
S
op
(Hom
R
op
(M,E),Hom
R
op
(M,X))
∼
=
Ext
i
R
op
(Hom
R
op
(M,E)⊗
S
M,X)
•,Ext
i
R
op
(Hom
R
op
(M,E)⊗
S
M,X)=0.qdÚn2.3(2),SR
op
-E´Hom
R
op
(M,E)⊗
S
M
†Ú‘,¤±é?¿i≥1,Ext
i
R
op
(E,X)=0.e¡EXHom
R
op
(I(R
op
),−)Ü†
I(R
op
)-©).
d·K2.4•,Hom
R
op
(M,E)⊗
S
M´Y-GorensteinSR
op
-,¤±dÚn2.5•,kÜ
0→L
1
→I
0
→Hom
R
op
(M,E)⊗
S
M→0,Ù¥I
0
´SR
op
-,L
1
´Y-GorensteinSR
op
-.
ϕM
R
´)¤f,¤ ±•3R
op
-Ü0→K→Hom
R
op
(M,E)⊗
S
M→X→0.•Äe 
íÑã
DOI:10.12677/pm.2021.115091771nØêÆ
~
0

0

L
1

L
1

0
//
H
1

//
I
0

//
X
//
0
0
//
K
//

Hom
R
op
(M,E)⊗
S
M

//
X
//
0
00
^Hom
R
op
(M,−)Š^u,
0

0

Hom
R
op
(M,L
1
)

Hom
R
op
(M,L
1
)

0
//
Hom
R
op
(M,H
1
)

//
Hom
R
op
(M,I
0
)

//
Hom
R
op
(M,X)
//
0
0
//
Hom
R
op
(M,K)
//

Hom
R
op
(M,Hom
R
op
(M,E))⊗
S
M

//
Hom
R
op
(M,X)
//
0
00
N´Hom
R
op
(M,Hom
R
op
(M,E))⊗
S
M→Hom
R
op
(M,X)´Œ÷Ó,¤±dÚn2.6•
Hom
R
op
(M,K)´Y-GorensteinSS
op
-…Hom
R
op
(M,H
1
)´Y-GorensteinSS
op
-.k
Ü0→H
1
→I
0
→X→0,Ù¥I
0
´SR
op
-,Hom
R
op
(M,H
1
)´Y-GorensteinSS
op
-.
Ïdé?¿i≥1,Ext
i
R
(E,H
1
)=0.-EþãL§,R
op
-Ü···→I
2
→I
1
→I
0
→
X→0,¦é?¿R
op
-E∈Y,Hom
R
op
(E,−)Ü.¤±X´Y-GorensteinSR
op
-.
(2)Ï•
S
M
R
´FrobeniusV…M
R
´)¤f,¤±
R
N
S
´FrobeniusV…
R
N´)¤f.
Ïd,R-Y´Y-GorensteinS…=Hom
R
(N,Y)´Y-GorensteinSS-.qdÓª
Hom
R
(N,Y)
∼
=
M⊗
R
Y•,M⊗
R
Y´Y-GorensteinSS-.
4.X-GorensteinÝÚFrobeniusV
!̇ïÄFrobeniusVÚX-GorensteinÝ5Ÿƒm'X.
·K3.1
S
M
R
´FrobeniusV.
(1)eX´X-GorensteinÝR-,KM⊗
R
X´X-GorensteinÝS-.
DOI:10.12677/pm.2021.115091772nØêÆ
~
(2)eY´X-GorensteinÝS-,KHom
S
(M,Y)´X-GorensteinÝR-.
y²(1)Ï•X´X-GorensteinÝR-,¤±•3ÝmR-Ü
P:···→P
1
→P
0
→P
−1
→P
−2
→···,
¦X
∼
=
Ker(P
−1
→P
−2
),…é?¿Q∈X,Hom
R
(P,Q)Ü.Ï•P
i
´ÝR-,¤±
M⊗
R
P
i
´ÝS-.M⊗
R
P´ÝS-Ü,…M⊗
R
X
∼
=
Ker(M⊗
R
P
−1
→M⊗
R
P
−2
).
A´ÝS-,KHom
S
(M,A)´ÝR-.Hom
R
(P,Hom
S
(M,A))Ü.dÓ
Hom
R
(P,Hom
S
(M,A))
∼
=
Hom
S
(M⊗
R
P,A)
•,Hom
S
(M⊗
R
P,A)Ü.ÏdM⊗
R
X´X-GorensteinÝS-.
(2)Ï•Y´X-GorensteinÝS-,-N:=
∗
M,Ï•
S
M
R
´FrobeniusV,¤±
R
N
S
´
FrobeniusV.Ïdd(1)•,N⊗
S
Y´X-GorensteinÝR-,qdÓªN⊗
S
Y
∼
=
Hom
S
(M,Y)
•,¤±Hom
S
(M,Y)´X-GorensteinÝR-.
Ún3.2[6,·K2.2]X´R-,K±eQãd:
(1)X´X-GorensteinÝ;
(2)é?¿F∈X,i>0,Ext
i
R
(X,F)=0,…•3ÝR-Ü
0→X→P
0
→P
1
→P
2
→···,
¦é?¿F∈X,Hom
R
(−,F)Ü;
(3)•3áÜ0→X→P→L→0,Ù¥P´Ý,L´X-GorensteinÝ.
Ún3.3[6,½n2.3(1)]áÜ0→A→B→C→0,Ù¥C´X-GorensteinÝ.
KA´X-GorensteinÝ…=B´X-GorensteinÝ.
½n3.4
S
M
R
´FrobeniusV…M
R
´)¤f.
(1)R-X´X-GorensteinÝ…=M⊗
R
X´X-GorensteinÝS-.
(2)R
op
-Y´X-GorensteinÝ…=Hom
R
op
(M,Y)´X-GorensteinÝS
op
-.
y²(1)⇒)d·K3.1Œ.
⇐)X´R-¦M⊗
R
X´X-GorensteinÝS-.eyX´X-GorensteinÝR-.
P´ÝR-,¤±M⊗
R
P´ÝS-.Ï•M⊗
R
X´X-GorensteinÝS-,¤±é?
¿i≥1,Ext
i
S
(M⊗
R
X,M⊗
R
P)=0.dÓExt
i
S
(M⊗
R
X,M⊗
R
P)
∼
=
Ext
i
R
(X,Hom
S
(M,M⊗
R
P))•,Ext
i
R
(X,Hom
S
(M,M⊗
R
P))=0.qdÚn2.3(1),ÝR-P´Hom
S
(M,M⊗
R
P)†
Ú‘,¤±é?¿i≥1,Ext
i
R
(X,P)=0.e¡EXHom
R
(−,P(R))ÜmP(R)-©).
d·K3.1•,Hom
S
(M,M⊗
R
X)´X-GorensteinÝR-,¤±dÚn3.2•,•3áÜ
0→Hom
S
(M,M⊗
R
X)→P
0
→L
1
→0,Ù¥P
0
´ÝR-,L
1
´X-GorensteinÝR-.
ϕM
R
´)¤f,¤±•3R-áÜ0→X→Hom
S
(M,M⊗
R
X)→K→0.•ÄíÑ
ã
DOI:10.12677/pm.2021.115091773nØêÆ
~
0

0

0
////
X
//
Hom
S
(M,M⊗
R
X)
//

//
K
//

0
0
//
X
//
P
0

//
H
1

//
0
L
1

L
1

00
^M⊗
R
−Š^uíÑã
0

0

0
////
M⊗
R
X
//
M⊗
R
Hom
S
(M,M⊗
R
X)
//

//
M⊗
R
K
//

0
0
//
M⊗
R
X
//
M⊗
R
P
0

//
M⊗
R
H
1

//
0
M⊗
R
L
1

M⊗
R
L
1

00
N´M⊗
R
X→M⊗
R
Hom
S
(M,M⊗
R
X)´ŒüÓ.dÚn3.3•M⊗
R
K´X-Gorenstein
ÝS-,…M⊗
R
H
1
´X-GorensteinÝS-.ÏdkÜ0→X→P
0
→H
1
→0,Ù¥
P
0
´ÝR-,M⊗
R
H
1
´X-GorensteinÝS-.Ïdé?¿i≥1,Ext
i
R
(H
1
,P)=0.-E
þãL§,R-Ü
0→X→P
0
→P
1
→P
2
→···
Ù¥P
i
∈P(R)¦é?¿Q∈X,Hom
R
(−,Q)Ü.¤±X´X-GorensteinÝR-.
(2)Ï•
S
M
R
´FrobeniusV…M
R
´)¤f,-N:=
∗
M.¤±
R
N
S
´FrobeniusV…
R
N´)¤f.ÏdR
op
-Y´X-GorensteinÝ…=Y⊗
R
N´X-GorensteinÝS
op
-
.qdÓªY⊗
R
N
∼
=
Hom
R
op
(M,Y)•,Hom
R
op
(M,Y)´X-GorensteinÝS
op
-.
Ä7‘8
I[g,‰ÆÄ7]Ï‘8(11561061).
DOI:10.12677/pm.2021.115091774nØêÆ
~
ë•©z
[1]Auslander,M.andBridger,M.(1969)StableModuleTheory.In:MemoirsoftheAmericanMathematical
Society,Vol.94,AmericanMathematicalSociety,Providence,RI.https://doi.org/10.1090/memo/0094
[2]Enochs,E.E.andJenda,O.M.G.(1995)GorensteinInjectiveandProjectiveModules.Mathematische
Zeitschrift,220,611-633.https://doi.org/10.1007/BF02572634
[3]Mao,L.X.andDing,N.Q.(2008)GorensteinFP-InjectiveandGorensteinFlatModules.JournalofAlgebra
andItsApplications,7,491-506.https://doi.org/10.1142/S0219498808002953
[4]Ding,N.Q.,Li,Y.L.andMao,L.X.(2009)StronglyGorensteinFlatModules.JournaloftheAustralian
MathematicalSociety,86,323-338.https://doi.org/10.1017/S1446788708000761
[5]Gillespie,J.(2010)ModelStructuresonModulesoverDing-ChenRings.Homology,HomotopyandAppli-
cations,12,61-73.https://doi.org/10.4310/HHA.2010.v12.n1.a6
[6]Bennis,D.andOuarghi,K.(2010)X-GorensteinProjectiveModules.InternationMathematicalForum,5,
487-491.
[7]Meng,F.andPan,Q.(2011)X-GorensteinProjectiveandY-GorensteinInjectivemodules.Hacettepe
JournalofMathematicsandStatistics,40,537-554.
[8]Kasch,F.(1954)GrundlageneinertheoriederFrobeniuserweiterungen.MathematischeAnnalen,127,453-
474.https://doi.org/10.1007/BF01361137
[9]Nakayama,T.andTsuzuku,T.(1960)OnFrobeniusExtensionsI.NagoyaMathematicalJournal,17,
89-110.https://doi.org/10.1017/S0027763000002075
[10]Morita,K.(1965)AdjointPairsofFunctorsandFrobeniusExtensions.ScienceReportsoftheTokyoKyoiku
Daigaku,SectionA,9,40-71.https://www.jstor.com/stable/43698658
[11]Kadison,L.(1999)NewExamplesofFrobeniusExtensions.In:UniversityLectureSeries,Vol.14,American
MathematicalSociety,Providence,RI.https://doi.org/10.1090/ulect/014
[12]Ren,W.(2018)GorensteinProjectiveandInjectiveDimensionsoverFrobeniusExtensions.Communica-
tionsinAlgebra,46,5348-5354.https://doi.org/10.1080/00927872.2018.1464173
[13]Ren,W.(2018)GorensteinProjectiveModulesandFrobeniusExtensions.ScienceChinaMathematics,61,
1175-1186.https://doi.org/10.1007/s11425-017-9138-y
[14]Ren,W.(2019)GorensteinFlatModulesandFrobeniusExtensions.ActaMathematicaSinica,Chinese
Series,62,647-652.
[15]Hu,J.S.,Li,H.H.,Geng,Y.X.andZhang,D.D.(2020)FrobeniusFunctorsandGorensteinFlatDimensions.
CommunicationsinAlgebra,48,1257-1265.https://doi.org/10.1080/00927872.2019.1677699
[16]Xi,C.C.(2020)FrobeniusBimodulesandFlat-DominantDimensions.ScienceChinaMathematics,64,
33-44.https://doi.org/10.1007/s11425-018-9519-2
DOI:10.12677/pm.2021.115091775nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.