设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(5),790-801
PublishedOnlineMay2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.115093
n‘HausdorffŽf\Øª
±±±ùùùDDD
þ°ŒÆêÆX,þ°
ÂvFϵ2021c410F¶¹^Fϵ2021c511F¶uÙFϵ2021c518F
Á‡
©Ì‡ ¼˜n‘Hausdorff Žf3\V V‚¼ê˜m¥k.5'u¼ê¿‡^
‡.·‚Óžn‘ÝHausdorffŽf\Øª"
'…c
Žf§ÝHausdorff Žf§¼ê
TheWeightedInequalitiesofn-DimensionalHausdorff
Operators
HongxiuZhou
DepartmentofMathematics,ShanghaiUniversity,Shanghai
Received:Apr.10
th
,2021;accepted:May11
th
,2021;published:May18
th
,2021
Abstract
Inthispaper,weobtainsomenecessaryandsufficient conditionsfortheboundedness
ofthen-dimensionalHausdorffoperatorsonthetwo-weightedLebesguespaces.The
correspondingresultsfortheadjointofn-dimensionalHausdorffoperatorsarealso
obtained.
©ÙÚ^:±ùD.n‘Hausdorff Žf\Øª[J].nØêÆ,2021,11(5):790-801.
DOI:10.12677/pm.2021.115093
±ùD
Keywords
HausdorffOperator,AdjointHausdorffOperator,Weight
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
Hausdorff Žḟ´dHausdorff 3©z[1] ¥• )ûêÂñ5¯KÚ\,§†²;©Û
k—ƒéX,XFourier?ê¦Ú[2]!ê‘?êHausdorff¦Ú[3] .§3E©Û[4]!NÚ
©Û[5–7]¥k2•A^ÚïÄ.
·‚Äk£˜e²;˜‘HausdorffŽfh
ϕ
,Ù½ÂXe:
h
ϕ
(f)(x) =
Z
∞
0
ϕ(
x
t
)
t
f(t)dt,
Ù¥f•ÐŒ±b½áuSchwartz ¼ê˜m.XJÜ·ϕ,Hausdorff ŽfŒ±C•Nõ²;
Žf.eϕ(t) =
χ
(1,∞)
(t)
t
,Kh
ϕ
=•²;˜‘HardyŽf[8]:
Hf(x) =
1
x
Z
x
0
f(t)dt;
eϕ(t) = χ
(0,1)
(t),h
ϕ
=•˜‘HardyŽfÝŽf:
H
∗
f(x) =
Z
∞
x
f(t)
t
dt,
ùpx>0.
Š•˜‘/ªí2,Andersen3©z[9] ¥½ÂR
n
þn‘HausdorffŽf
H
Φ
(f)(x) =
Z
R
n
Φ(x/|y|)
|y|
n
f(y)dy,x∈R
n
.
aqu˜‘œ/,XJΦ(y) =
χ
{|y|>1}
(y)
|y|
n
,@oH
Φ
¬C•n‘HardyŽf[10]:
Hf(x) =
1
|x|
n
Z
|y|<|x|
f(y)dy;
DOI:10.12677/pm.2021.115093791nØêÆ
±ùD
XJΦ(y) = χ
{|y|≤1}
(y),KH
Φ
¬C•n‘HardyŽfÝŽf:
H
∗
f(x) =
Z
|y|≥|x|
f(y)
|y|
n
dy,
ùpx∈R
n
\{0}.|^ÝŽf½ÂéN´:n‘Hausdorff ŽfH
Φ
ÝŽfH
∗
Φ
•
H
∗
Φ
(f)(x) =
1
|x|
n
Z
R
n
Φ

y
|x|

f(y)dy.
p‘HausdorffŽf9ÙC/k˜X(J,a,ÖöŒ±ëwüŸnã5©Ù[11,12].
-0 <p<∞,\V‚˜mL
p
(w)˜mL«÷v
kfk
L
p
(w)
=

Z
R
n
|f(x)|
p
w(x)
p
dx

1/p
<∞
¼êN,Ù¥w(x) ´R
n
þ¼ê(=•šKÛÜŒÈ¼ê).C5,Liflyand3©z[13]¥
‰Ñ˜‘Hausdorff Žfh
ϕ
9ÙÝŽflL
p
(v) L
q
(u) k.5'u¼êuÚv¿‡
^‡.ÉÙéu,˜‡g,¯K:UÄïán‘Hausdorff ŽfH
Φ
9ÙÝŽfH
∗
Φ
lL
p
(v) 
L
q
(u) k.5'u¼êuÚv¿‡^‡Qº©)ûù‡¯K,·‚̇´/Ïu^=
•{ü$‘ê,T•{òéu?np‘²þŽf\¯Kk˜½/•¿Â.
©bu,v´R
n
þü‡¼ê.éun‘HausdorffŽf,·‚H
Φ
lL
p
(v)
L
q
(u)k.5'u¼êuÚv¿‡^‡.Ù(JXe:
½n1.1.1 <p≤q<∞,f∈L
p
(v),Φ ∈L
∞
ÚΦ,f≥0.e•3~êC
1
>0 ¦
C
1
:= sup
t>0
Z
R
n
u(x)Φ

x
t

q/p

Z
|y|<t
Φ

x
|y|

v(y)
−p
0
/p
|y|
−np
0
dy

q/pp
0
×

Z
R
n
Φ

x
|y|

v(y)
−p
0
/p
|y|
−np
0
dy

q/p
02
dx<∞(1.1)
¤á,Keª¤á

Z
R
n
|H
Φ
(f)(x)|
q
u(x)dx

1/q
≤C
2

Z
R
n
f(y)
p
v(y)dy

1/p
,(1.2)
Ù¥C
2
†C
1
,p,qk'.
eé?¿¢êr>0,•3†xÃ'~êC
3
>0,¦eª¤á
Φ

x
r

Z
|y|<r
v(y)
−p
0
/p
|y|
−np
0
dy≤C
3
Z
|y|<r
Φ

x
|y|

v(y)
−p
0
/p
|y|
−np
0
dy,(1.3)
K
Z
R
n
u(x)Φ

x
r

q/p

Z
|y|<r
Φ

x
|y|

|y|
−np
0
v(y)
−p
0
/p
dy

q/p
0
dx≤C
4
´(1.2)¤á7‡^‡,Ù¥C
4
†C
2
,C
3
,p,qk'.
DOI:10.12677/pm.2021.115093792nØêÆ
±ùD
½n1.2.1 <p≤q<∞,f∈L
p
(v),Φ ∈L
∞
ÚΦ,f≥0.e•3~êC
5
>0 ¦
C
5
:= sup
t>0
Z
R
n
u(x)Φ

x
t

q/p

Z
|y|>t
Φ

x
|y|

v(y)
−p
0
/p
|y|
−np
0
dy

q/pp
0
×

Z
R
n
Φ

x
|y|

v(y)
−p
0
/p
|y|
−np
0
dy

q/p
02
dx<∞(1.4)
¤á,Keª¤á

Z
R
n
|H
Φ
(f)(x)|
q
u(x)dx

1/q
≤C
6

Z
R
n
f(y)
p
v(y)dy

1/p
,(1.5)
Ù¥C
6
†C
5
,p,qk'.
eé?¿¢êr>0,•3†xÃ'~êC
7
>0,¦eª¤á
Φ

x
r

Z
|y|>r
v(y)
−p
0
/p
|y|
−np
0
dy≤C
7
Z
|y|>r
Φ

x
|y|

v(y)
−p
0
/p
|y|
−np
0
dy,(1.6)
K
Z
R
n
u(x)Φ

x
r

q/p

Z
|y|>r
Φ

x
|y|

|y|
−np
0
v(y)
−p
0
/p
dy

q/p
0
dx≤C
8
´(1.5)¤á7‡^‡,Ù¥C
8
†C
6
,C
7
,p,qk'.
éuHausdorffŽfÝŽfH
∗
Φ
,·‚ÓH
∗
Φ
lL
p
(v) L
q
(u)k.5'u¼ê
uÚv¿‡^‡.Ù(JXe:
½n1.3.1 <p≤q<∞,f∈L
p
(v),f≥0.bΦ ´šK»•¼ê,…Φ ∈L
∞
.e•3~ê
C
9
>0 ¦
C
9
:= sup
t>0
Z
R
n
u(x)|x|
−nq
Φ

t
|x|

q/p

Z
|y|<t
Φ

y
|x|

v(y)
−p
0
/p
dy

q/pp
0
×

Z
R
n
Φ

y
|x|

v(y)
−p
0
/p
dy

q/p
02
dx<∞(1.7)
¤á,Keª¤á

Z
R
n
|H
∗
Φ
(f)(x)|
q
u(x)dx

1/q
≤C
10

Z
R
n
f(y)
p
v(y)dy

1/p
,(1.8)
Ù¥C
10
†C
9
,p,qk'.
eé?¿¢êr>0,•3†xÃ'~êC
11
>0,¦eª¤á
Φ

r
|x|

Z
|y|<r
v(y)
−p
0
/p
dy≤C
11
Z
|y|<r
Φ

y
|x|

v(y)
−p
0
/p
dy.(1.9)
DOI:10.12677/pm.2021.115093793nØêÆ
±ùD
K
Z
R
n
u(x)|x|
−nq
Φ

r
|x|

q/p

Z
|y|<r
Φ

y
|x|

v(y)
−p
0
/p
dy

q/p
0
dx≤C
12
´(1.8)¤á7‡^‡,Ù¥C
12
†C
10
,C
11
,p,qk'.
½n1.4.1 <p≤q<∞,f∈L
p
(v),f≥0.bΦ ´šK»•¼ê,…Φ ∈L
∞
.e•3~ê
C
13
>0 ¦
C
13
:= sup
t>0
Z
R
n
u(x)|x|
−nq
Φ

t
|x|

q/p

Z
|y|>t
Φ

y
|x|

v(y)
−p
0
/p
dy

q/pp
0
×

Z
R
n
Φ

y
|x|

v(y)
−p
0
/p
dy

q/p
02
dx<∞(1.10)
¤á,Keª¤á

Z
R
n
|H
∗
Φ
(f)(x)|
q
u(x)dx

1/q
≤C
14

Z
R
n
f(y)
p
v(y)dy

1/p
,
Ù¥C
14
†C
13
,p,qk'.
eé?¿¢êr>0,•3†xÃ'~êC
15
>0,¦eª¤á
Φ

r
|x|

Z
|y|>r
v(y)
−p
0
/p
dy≤C
15
Z
|y|>r
v(y)
−p
0
/p
Φ

y
|x|

dy.
K
Z
R
n
u(x)|x|
−nq
Φ

r
|x|

q/p

Z
|y|>r
Φ

y
|x|

v(y)
−p
0
/p
dy

q/p
0
dx≤C
16
´(1.4)¤á7‡^‡,Ù¥C
16
†C
14
,C
15
,p,qk'.
2.½ny²
½n1.1y²Äk`²HausdorffŽfH
Φ
½Â´Ün.¯¢þ,|^H¨olderØª
(1/p+1/p
0
= 1)
H
Φ
(f)(x) =
Z
R
n
Φ(x/|y|)
|y|
n
f(y)dy
=
Z
R
n
f(y)v(y)
1/p
Φ(x/|y|)
1/p
Φ(x/|y|)
1/p
0
v(y)
−1/p
|y|
−n
dy
≤

Z
R
n
f(y)
p
v(y)Φ(x/|y|)dy

1/p

Z
R
n
Φ(x/|y|)v(y)
−p
0
/p
|y|
−np
0
dy

1/p
0
.
Ï•f∈L
p
(v) ÚΦ∈L
∞
,¤±mý1˜‡È©´k•.qdb^‡(1.1),Œ•mý1
‡È©'ux´A??k•.
DOI:10.12677/pm.2021.115093794nØêÆ
±ùD
e¡y²¿©5.|^4‹IC†
Z
R
n
|H
Φ
(f)(x)|
q
u(x)dx=
Z
R
n

Z
S
n−1
Z
∞
0
Φ

x
t

f(ty
0
)
1
t
dtdσ(y
0
)

q
u(x)dx.(2.1)
d(2.1),|^H¨older Øª(1/p+1/p
0
= 1)
Z
R
n
u(x)

Z
S
n−1
Z
∞
0
Φ

x
t

f(ty
0
)
1
t
dtdσ(y
0
)

q
dx
≤
Z
R
n
u(x)

Z
S
n−1
Z
∞
0
Φ

x
t

f(ty
0
)
p
v(ty
0
)t
n−1
h
1
(x,t)
p
dtdσ(y
0
)

q/p
×

Z
S
n−1
Z
∞
0
Φ

x
t

v(ty
0
)
−p
0
/p
t
−np
0
+n−1
h
1
(x,t)
−p
0
dtdσ(y
0
)

q/p
0
dx,(2.2)
Ù¥
h
1
(x,t) =

Z
t
0
Z
S
n−1
Φ

x
s

v(sy
0
)
−p
0
/p
s
−np
0
+n−1
dσ(y
0
)ds

1/pp
0
,0 ≤t≤∞.
w,
h
1
(x,t) =

Z
|y|<t
Φ

x
|y|

v(y)
−p
0
/p
|y|
−np
0
dy

1/pp
0
.
-z= h
1
(x,t)
pp
0
,|^‡È©Ä5Ÿ,Øª(2.2) mà•˜‡È©Œz•
Z
S
n−1
Z
∞
0
Φ

x
t

v(ty
0
)
−p
0
/p
t
−np
0
+n−1
h
1
(x,t)
−p
0
dtdσ(y
0
)
=
Z
h
1
(x,∞)
pp
0
h
1
(x,0)
pp
0
z
−1/p
dz
= p
0

Z
∞
0
Z
S
n−1
Φ

x
t

v(ty
0
)
−p
0
/p
t
−np
0
+n−1
dσ(y
0
)dt

1/p
0
.(2.3)
duq≥p,é(2.2)mà|^2ÂMinkowskiÈ©Øª
p
0q/p
0
Z
R
n
u(x)

Z
∞
0
Z
S
n−1
Φ

x
t

f(ty
0
)
p
v(ty
0
)t
n−1
h
1
(x,t)
p
h
1
(x,∞)
p
2
/p
0
dσ(y
0
)dt

q/p
dx
≤p
0q/p
0

Z
∞
0
Z
S
n−1
f(ty
0
)
p
v(ty
0
)t
n−1

Z
R
n
u(x)Φ

x
t

q/p
×h
1
(x,t)
q
h
1
(x,∞)
pq/p
0
dx

p/q
dσ(y
0
)dt

q/p
.
db^‡(1.1),Œ±•

Z
R
n
|H
Φ
(f)(x)|
q
u(x)dx

1/q
≤C
1/q
1
p
01/p
0

Z
R
n
f(y)
p
v(y)dy

1/p
.
DOI:10.12677/pm.2021.115093795nØêÆ
±ùD
ey7‡5.b(1.2)¤á,Ké?¿¢êr>0,eãØª


Z
R
n






Z
|z|<r
Φ

x
|z|

|z|
n
f(z)dz






q
u(x)dx


1/q
≤C
2

Z
|z|<r
f(z)
p
v(z)dz

1/p
¤á.f(z) = v(z)
−p
0
/p
|z|
n−np
0
,òþãØª{z•

Z
R
n
u(x)




Z
|z|<r
Φ

x
|z|

|z|
−np
0
v(z)
−p
0
/p
dz




q
×

Z
|z|<r
v(z)
−p
0
/p
|z|
−np
0
dz

−q/p
dx
!
1/q
≤C
2
.
|^(1.3),Kk

Z
R
n
u(x)




Z
|z|<r
Φ

x
|z|

|z|
−np
0
v(z)
−p
0
/p
dz




q
×

Z
|z|<r
v(z)
−p
0
/p
|z|
−np
0
dz

−q/p
dx
!
1/q
=

Z
R
n
u(x)Φ

x
r

q/p

Z
|z|<r
Φ

x
|z|

|z|
−np
0
v(z)
−p
0
/p
dz

q
×

Φ

x
r

Z
|z|<r
v(z)
−p
0
/p
|z|
−np
0
dz

−q/p
dx
!
1/q
≥C
−1/p
3

Z
R
n
u(x)Φ

x
r

q/p

Z
|z|<r
Φ

x
|z|

|z|
−np
0
v(z)
−p
0
/p
dz

q
×

Z
|z|<r
Φ

x
|z|

v(z)
−p
0
/p
|z|
−np
0
dz

−q/p
dx
!
1/q
= C
−1/p
3
Z
R
n
u(x)Φ

x
r

q/p

Z
|z|<r
Φ

x
|z|

|z|
−np
0
v(z)
−p
0
/p
dz

q/p
0
dx
!
1/q
.
nþ
Z
R
n
u(x)Φ

x
r

q/p

Z
|z|<r
Φ

x
|z|

|z|
−np
0
v(z)
−p
0
/p
dz

q/p
0
dx≤C
q/p
3
C
q
2
.
½ny..
½n1.2 y²Äky²¿©5.Šâ(2.1)ÚH¨olderØª(1/p+1/p
0
= 1)Υ
Z
R
n
u(x)

Z
S
n−1
Z
∞
0
Φ

x
t

f(ty
0
)
1
t
dtdσ(y
0
)

q
dx
≤
Z
R
n
u(x)

Z
S
n−1
Z
∞
0
Φ

x
t

f(ty
0
)
p
v(ty
0
)t
n−1
h
2
(x,t)
p
dtdσ(y
0
)

q/p
×

Z
S
n−1
Z
∞
0
Φ

x
t

v(ty
0
)
−p
0
/p
t
−np
0
+n−1
h
2
(x,t)
−p
0
dtdσ(y
0
)

q/p
0
dx,(2.4)
DOI:10.12677/pm.2021.115093796nØêÆ
±ùD
Ù¥
h
2
(x,t) =

Z
∞
t
Z
S
n−1
Φ

x
s

v(sy
0
)
−p
0
/p
s
−np
0
+n−1
dσ(y
0
)ds

1/pp
0
,0 ≤t≤∞.
aqu(2.3)O.-z= h
2
(x,t)
pp
0
,Øª(2.4)mà•˜‡È©Œz•
Z
S
n−1
Z
∞
0
Φ

x
t

v(ty
0
)
−p
0
/p
t
−np
0
+n−1
h
2
(x,t)
−p
0
dtdσ(y
0
)
=
Z
h
2
(x,0)
pp
0
h
2
(x,∞)
pp
0
z
−1/p
dz
= p
0

Z
∞
0
Z
S
n−1
Φ

x
t

v(ty
0
)
−p
0
/p
t
−np
0
+n−1
dσ(y
0
)dt

1/p
0
.
duq≥p,é(2.4)mà|^2ÂMinkowski È©Øª
p
0q/p
0
Z
R
n
u(x)

Z
∞
0
Z
S
n−1
Φ

x
t

f(ty
0
)
p
v(ty
0
)t
n−1
h
2
(x,t)
p
h
2
(x,0)
p
2
/p
0
dσ(y
0
)dt

q/p
dx
≤p
0q/p
0

Z
∞
0
Z
S
n−1
f(ty
0
)
p
v(ty
0
)t
n−1

Z
R
n
u(x)Φ

x
t

q/p
×h
2
(x,t)
q
h
2
(x,0)
pq/p
0
dx

p/q
dσ(y
0
)dt

q/p
.
A^4‹IC†Ú^‡(1.4)

Z
R
n
|H
Φ
(f)(x)|
q
u(x)dx

1/q
≤C
1/q
5
p
0
1/p
0

Z
R
n
f(y)
p
v(y)dy

1/p
.
ey7‡5.b(1.5)¤á,Ké?¿¢êr>0,e¡Øª


Z
R
n






Z
|z|>r
Φ

x
|z|

|z|
n
f(z)dz






q
u(x)dx


1/q
≤C
6

Z
|z|>r
f(z)
p
v(z)dz

1/p
¤á.À¼êf(z) = v(z)
−p
0
/p
|z|
n−np
0
,òþãØª{z•

Z
R
n
u(x)




Z
|z|>r
Φ

x
|z|

|z|
−np
0
v(z)
−p
0
/p
dz




q
×

Z
|z|>r
v(z)
−p
0
/p
|z|
−np
0
dz

−q/p
dx
!
1/q
≤C
6
.
aqu½n1.1¥7‡5y²,|^(1.6),Œ
Z
R
n
u(x)Φ

x
r

q/p

Z
|z|>r
Φ

x
|z|

|z|
−np
0
v(z)
−p
0
/p
dz

q/p
0
dx≤C
q/p
7
C
q
6
.
y..
DOI:10.12677/pm.2021.115093797nØêÆ
±ùD
½n1.3 y²Äk`²ÝHausdorff ŽfH
∗
Φ
½Â´Ün.¯¢þ,|^H¨older Øª
(1/p+1/p
0
= 1)k
H
∗
Φ
(f)(x) = |x|
−n
Z
R
n
Φ(y/|x|)f(y)dy
≤

Z
R
n
f(y)
p
v(y)Φ(y/|x|)dy

1/p
|x|
−n

Z
R
n
Φ(y/|x|)v(y)
−p
0
/p
dy

1/p
0
.
Ï•f∈L
p
(v) ÚΦ∈L
∞
,¤±mý1˜‡È©´k•.qdb^‡(1.7),Œ•mý1
‡È©†|x|
−n
¦È´A??k•.
ey¿©5.d4‹IC†Œ•
Z
R
n
|H
∗
Φ
(f)(x)|
q
u(x)dx=
Z
R
n

Z
S
n−1
Z
∞
0
Φ

ty
0
|x|

f(ty
0
)t
n−1
dtdσ(y
0
)

q
u(x)
|x|
nq
dx.(2.5)
|^H¨olderØª
Z
R
n
u(x)
|x|
nq

Z
S
n−1
Z
∞
0
Φ

ty
0
|x|

f(ty
0
)t
n−1
dtdσ(y
0
)

q
dx
≤
Z
R
n
u(x)
|x|
nq

Z
S
n−1
Z
∞
0
Φ

ty
0
|x|

f(ty
0
)
p
v(ty
0
)t
n−1
h
3
(x,t)
p
dtdσ(y
0
)

q/p
×

Z
S
n−1
Z
∞
0
Φ

ty
0
|x|

v(ty
0
)
−p
0
/p
t
n−1
h
3
(x,t)
−p
0
dtdσ(y
0
)

q/p
0
dx,(2.6)
Ù¥
h
3
(x,t) =

Z
t
0
Z
S
n−1
Φ

sy
0
|x|

v(sy
0
)
−p
0
/p
s
n−1
dσ(y
0
)ds

1/pp
0
,0 ≤t≤∞.
aqu½n1.1¥é(2.2)?nL§,´•
Z
∞
0
Z
S
n−1
Φ

ty
0
|x|

v(ty
0
)
−p
0
/p
t
n−1
h
3
(x,t)
−p
0
dσ(y
0
)dt
= p
0

Z
∞
0
Z
S
n−1
Φ

ty
0
|x|

v(ty
0
)
−p
0
/p
t
n−1
dσ(y
0
)dt

1/p
0
.
Ï•q≥p,é(2.6)mà¦^2ÂMinkowski È©Øª,Œ±XeO
p
0
q/p
0
Z
R
n
u(x)
|x|
nq

Z
∞
0
Z
S
n−1
Φ

ty
0
|x|

f(ty
0
)
p
v(ty
0
)t
n−1
h
3
(x,t)
p
h
3
(x,∞)
p
2
/p
0
dσ(y
0
)dt

q/p
dx
≤p
0
q/p
0
Z
∞
0
Z
S
n−1
f(ty
0
)
p
v(ty
0
)t
n−1
Z
R
n
u(x)
|x|
nq
Φ

ty
0
|x|

q/p
×h
3
(x,t)
q
h
3
(x,∞)
pq/p
0
dx

p/q
dσ(y
0
)dt

q/p
.
DOI:10.12677/pm.2021.115093798nØêÆ
±ùD
duΦ´»•,|^b^‡(1.7),Œ•

Z
R
n
|H
∗
Φ
(f)(x)|
q
u(x)dx

1/q
≤C
1/q
9
p
0
1/p
0

Z
R
n
f(y)
p
v(y)dy

1/p
.
ey7‡5.b(1.8)¤á,Ké?¿¢êr>0,e¡O

Z
R
n
u(x)
|x|
nq




Z
|z|<r
Φ

z
|x|

f(z)dz




q
dx

1/q
≤C
10

Z
|z|<r
f(z)
p
v(z)dz

1/p
¤á.f(z) = v(z)
−p
0
/p
,éþ¡È©Øª?1C/
Z
R
n
u(x)
|x|
nq




Z
|z|<r
Φ

z
|x|

v(z)
−p
0
/p
dz




q

Z
|z|<r
v(z)
−p
0
/p
dz

−q/p
dx
!
1/q
≤C
10
.
|^b(1.9),Œ±
Z
R
n
u(x)|x|
−nq




Z
|z|<r
Φ

z
|x|

v(z)
−p
0
/p
dz




q

Z
|z|<r
v(z)
−p
0
/p
dz

−q/p
dx
!
1/q
=
Z
R
n
u(x)|x|
−nq
Φ

r
|x|

q/p

Z
|z|<r
Φ

z
|x|

v(z)
−p
0
/p
dz

q
×

Φ

r
|x|

Z
|z|<r
v(z)
−p
0
/p
dz

−q/p
dx
!
1/q
≥C
−1/p
11
Z
R
n
u(x)|x|
−nq
Φ

r
|x|

q/p

Z
|z|<r
Φ

z
|x|

v(z)
−p
0
/p
dz

q
×

Z
|z|<r
Φ

z
|x|

v(z)
−p
0
/p
dz

−q/p
dx
!
1/q
= C
−1/p
11
Z
R
n
u(x)|x|
−nq
Φ

r
|x|

q/p

Z
|z|<r
Φ

z
|x|

v(z)
−p
0
/p
dz

q/p
0
dx
!
1/q
.
l
Z
R
n
u(x)|x|
−nq
Φ

r
|x|

q/p

Z
|z|<r
Φ

z
|x|

v(z)
−p
0
/p
dz

q/p
0
dx≤C
q/p
11
C
q
10
.
y..
½n1.4 y²Äky²¿©5.|^(2.5),H¨older ØªÚ2ÂMinkowskiÈ©Øª,
Z
R
n
u(x)|x|
−nq

Z
∞
0
Z
S
n−1
Φ

ty
0
|x|

f(ty
0
)t
n−1
dσ(y
0
)dt

q
dx
≤
Z
R
n
u(x)|x|
−nq

Z
∞
0
Z
S
n−1
Φ

ty
0
|x|

f(ty
0
)
p
v(ty
0
)t
n−1
h
4
(x,t)
p
dσ(y
0
)dt

q/p
DOI:10.12677/pm.2021.115093799nØêÆ
±ùD
×

Z
∞
0
Z
S
n−1
Φ

ty
0
|x|

v(ty
0
)
−p
0
/p
t
n−1
h
4
(x,t)
−p
0
dσ(y
0
)dt

q/p
0
dx
= p
0
q/p
0
Z
R
n
u(x)|x|
−nq

Z
∞
0
Z
S
n−1
Φ

ty
0
|x|

p
f(ty
0
)
p
v(ty
0
)t
n−1
h
4
(x,t)
p
×h
4
(x,0)
p
2
/p
0
dσ(y
0
)dt

q/p
dx
≤p
0
q/p
0
Z
∞
0
Z
S
n−1
f(ty
0
)
p
v(ty
0
)t
n−1
Z
R
n
u(x)|x|
−nq
Φ

ty
0
|x|

q/p
×h
4
(x,t)
q
h
4
(x,0)
pq/p
0
dx

p/q
dσ(y
0
)dt

q/p
,
Ù¥
h
4
(x,t) =

Z
∞
t
Z
S
n−1
Φ

sy
0
|x|

v(sy
0
)
−p
0
/p
s
n−1
dσ(y
0
)ds

1/pp
0
,0 ≤t≤∞.
duΦ´»•,|^^‡b(1.10),Œeª¤á

Z
R
n
|H
∗
Φ
(f)(x)|
q
u(x)dx

1/q
≤C
1/q
13
p
0
1/p
0

Z
R
n
f(y)
p
v(y)dy

1/p
.
7‡5y²aq½n1.37‡5y².ùpØ2•[‰Ñ.y..
Ä7‘8
I[g,‰ÆÄ7]Ï‘8(51685168).
ë•©z
[1]Hausdorff,F.(1921)SummationsmethodenundMomentfolgenI.MathematischeZeitschrift,
9,74-109.https://doi.org/10.1007/BF01378337
[2]Hardy, G.H. (1925)Notes on SomePointsin the Integral Calculus, LX. An Inequality between
Integrals.MessengerofMathematics,54,150-156.
[3]HedbergL.(1972)OnCertainConvolutionIneqalities.ProceedingsoftheAmericanMathe-
maticalSociety,36,505-510.https://doi.org/10.1090/S0002-9939-1972-0312232-4
[4]Siskakis, A.G. (1987) Composition Semigroups and the Ces`aro Operator on H
p
. Journalofthe
LondonMathematicalSociety,36,153-164.https://doi.org/10.1112/jlms/s2-36.1.153
[5]Georgakis,C.(1992)TheHausdorffMeanofaFourier-StieltjesTransform.Proceedingsofthe
AmericanMathematicalSociety,116,465-471.
https://doi.org/10.1090/S0002-9939-1992-1096210-9
DOI:10.12677/pm.2021.115093800nØêÆ
±ùD
[6]Liflyand,E.andM´oricz,F.(2000)TheHausdorffOperatorIsBoundedontheRealHardy
SpaceH
1
(R).ProceedingsoftheAmericanMathematicalSociety,128,1391-1396.
https://doi.org/10.1090/S0002-9939-99-05159-X
[7]Liflyand, E. and M´oricz, F. (2002) CommutingRelations for HausdorffOpereators and Hilbert
TransformsonRealHardySpaces.ActaMathematicaHungarica,97,133-143.
https://doi.org/10.1023/A:1020867130612
[8]Kufner,A., Maligranda,L.andPersson, L.E. (2007)TheHardyInequality:AboutItsHistory
andSomeRelatedResults.Vydavatelsk´yServis,UppsalaUniversityLibrary,Uppsala,162p.
[9]Andersen, K.F.(2003)BoundednessofHausdorffOperatorsonL
p
(R
n
),H
1
(R
n
)andBMO(R
n
).
ActaScientiarumMathematicarum,69,409-418.
[10]Kufner,A.,Persson,L.E.andSamko,N.(2017)WeightedInequalitiesofHardyType.2nd
Edition,WorldScientificPublishingCompany,Inc.,RiverEdge,NJ,xx+459p.
https://doi.org/10.1142/10052
[11]Chen,J.,Fan,D.andWang,S.(2013)HausdorffOperatorsonEuclideanSpaces.Applied
Mathematics-AJournalofChineseUniversities,28,548-564.
https://doi.org/10.1007/s11766-013-3228-1
[12]Liflyand,E.(2013)HausdorffOperatorsonHardySpaces.EurasianMathematicalJournal,4,
101-141.
[13]Liflyand, E. (2018) Hardy Type Inequalities in the Category of Hausdorff Operators. In:Kara-
petyants, A.,Kravchenko, V.andLiflyand, E.,Eds., ModernMethodsinOperatorTheoryand
HarmonicAnalysis.OTHA2018.SpringerProceedingsinMathematicsStatistics,Vol.291,
Springer,Cham,81-91.https://doi.org/10.1007/978-3-030-26748-36
DOI:10.12677/pm.2021.115093801nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.