设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2021,11(6),1010-1019
PublishedOnlineJune2021inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2021.116115
˜ak-Hessian•§»•)•35
•••ÿÿÿ
Ü“‰ŒÆêƆÚOÆ§[‹=²
ÂvFϵ2021c428F¶¹^Fϵ2021c531F¶uÙFϵ2021c68F
Á‡
ÄuüNS“•{,ÏLE˜‡üNS“S,©Ì‡¼˜ak-Hessian•§»•)
•35.
'…c
k-Hessian•§§»•)§üNS“•{
TheExistenceofPositiveRadialSolutions
foraClassofk-HessianEquation
CunyanYue
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Apr.28
th
,2021;accepted:May31
st
,2021;published:Jun.8
th
,2021
Abstract
Basedonthemonotoneiterativemethod,weobtaintheexistenceofpositiveradialso-
©ÙÚ^:•ÿ.˜ak-Hessian•§»•)•35[J].nØêÆ,2021,11(6):1010-1019.
DOI:10.12677/pm.2021.116115
•ÿ
lutionsforaclassofk-Hessianequationbyconstructingamomtoneiterativesequence.
Keywords
k-HessianEquation,PositiveRadialSolution,MonotoneIterativeMethod
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.0
k-Hessian¯KuAÛÆ,6Nå ÆÚÙ¦A^Ɖ[1].˜„/,·‚½ÂXek-Hessian
Žf:
S
k
(λ(D
2
u)) =
X
1≤j
1
<...<j
k
≤N
λ
j
1
λ
j
2
...λ
j
k
,k= 1,2,···,N,
Ù¥u∈C
2
(R
N
),D
2
u´ëY‡©¼êuHessianÝ,λ
1
,λ
2
,...,λ
N
´D
2
uA
Š,λ(D
2
u)=(λ
1
,λ
2
,...,λ
N
)´D
2
uAŠ•þ,S
k
(λ(D
2
u))´1kÐé¡õ‘ª,´
HessianÝD
2
u¤kk×kÌfªÚ.AO/, k= 1ž,k-HessianŽfòz•Laplace
ŽfS
1
(λ(D
2
u))=
N
P
i=1
λ
i
=∆u,•„[2–4];k=Nž,k-HessianŽfòz•Monge-Amp`ere
ŽfS
N
(λ(D
2
u)) =
N
Q
i=1
= det(λ(D
2
u)),•„[5–7].
Cc5,k-Hessian¯KÚåNõÆö2•'5,¿´L¤J[2–13].Caffarelli
[8] <•kïÄk-Hessian •§S
k
(λ(D
2
u)) = f1w)•35ÚkO; d,Wei[9] $^
üN©l•{¼k-Hessian•§S
k
(λ(D
2
u)) = f(−u)»•)•˜5(J;2015c,ZhangÚ
Zhou[10]$^üNS“•{ÚArzel`a-Ascoli½n¼k-Hessian•§σ
k
(λ(D
2
u)) = p(|x|)f(u)
»•)•35(J,¿ïá»•)•˜•3^‡;2020c,Zhang[11]?˜Ú$^ ØÄ
:½n¼Ûɇ‚5k-Hessian•§S
k
(λ(D
2
u))=λH(x)f(−u)š²…»•)•35,ù
p•Ä´¼êH(x)3>.∂ΩNCÛÉœ¹,fŒ U30:?Ûɽö3∞?k-‡ ‚5
O•.Š5¿´,þã©z¤?ØŽf¥þعFÝ‘η|Ou|I,@ok-HessianŽf¥•¹
FÝ‘ž´Ä•,Œ±)•35,ù´˜‡Š•Ä¯K.
ɱþ©zéu,©ò}Á$^üNS“•{•Äk-Hessian•§
S
k
(λ(D
2
u+η|Ou|I)) = h(|x|)f(u),x∈R
N
(1.1)
DOI:10.12677/pm.2021.1161151011nØêÆ
•ÿ
»•)•35,Ù¥η∈[0,+∞),h∈C([0,+∞),[0,+∞))üN4O.ƒ©z[10]Ú[11]
ó,duŽf¥η|Ou|IÑy¦¯K•\E,.
2.ý•£
•¼•§(1.1)»•)•35,!‰Ñ˜7‡Ún.-r=|x|=
s
N
P
i=1
x
2
i
,
B
R
:= {x∈R
N
: |x|<R},KkXe5Ÿ¤á.
Ún2.1[13]v(r)∈C
2
[0,R)´˜‡»•顼ê…v
0
(0)=0,K¼êu(|x|)=v(r)´
C
2
(B
R
),…
λ(D
2
u+η|Ou|I) =







(v
00
(r)+ηv
0
(r),(
1
r
+η)v
0
(r),...,(
1
r
+η)v
0
(r)),r∈(0,R),
(v
00
(0),v
00
(0),...,v
00
(0)),r= 0;
S
k
(λ(D
2
u+η|Ou|I)) =







C
k−1
N−1
(v
00
(r)+ηv
0
(r))((
1
r
+η)v
0
(r))
k−1
+C
k
N−1
((
1
r
+η)v
0
(r))
k
,r∈(0,R),
C
k
N
(v
00
(0))
k
,r= 0,
Ù¥C
k
N
=
N!
k!(N−k)!
.
Ún2.2ev(r) ∈C[0,R]∩C
1
(0,R)´Cauchy¯K







v
0
(r) =

k
C
k−1
N−1
e
−ψ
k
(r)
R
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds

1
k
,r∈(0,R),
v(0) = γ,γ>0
(2.1)
),Kv(r) ∈C
2
[0,R)´~‡©•§
C
k−1
N−1
(v
00
(r))(v
0
(r))
k−1
r+r(C
k−1
N−1
η+C
k
N−1
(
1
r
+η))(v
0
(r))
k
=
r
k
(1+ηr)
k−1
h(r)f(v(r)),r>0
(2.2)
)…v
0
(0) = 0.
y²:w,,v(r) ∈C
2
[0,R),d(2.1)Υ
(v
0
(r))
k
=
k
C
k−1
N−1
e
−ψ
k
(r)
Z
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds,r≥0.
(2.3)
K
"
C
k−1
N−1
k
e
ψ
k
(r)
(v
0
(r))
k
#
0
= e
ψ
k
(r)

r
1+ηr

k−1
h(r)f(v(r)),r≥0.
(2.4)
DOI:10.12677/pm.2021.1161151012nØêÆ
•ÿ
é(2.4)'ur¦,
C
k−1
N−1
(v
00
(r))(v
0
(r))
k−1
r+r(C
k−1
N−1
η+C
k
N−1
(
1
r
+η))(v
0
(r))
k
=
r
k
(1+ηr)
k−1
h(r)f(v(r)),r>0
…v
0
(0) = 0.
-
T(r) =
Z
r
0
k
C
k−1
N−1
e
−ψ
k
(t)
Z
t
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)ds
!
1
k
dt,r≥0,T(∞) :=lim
r→∞
T(r).
F(r) =
Z
r
γ
1
f(t)
dt,r≥γ>0,F(∞) :=lim
r→∞
F(r),
Ù¥
ψ
k
(r) =
k
C
k−1
N−1

C
k−1
N−1
ηr+C
k
N−1
lnr+C
k
N−1
ηr

.
3©¥,·‚ob±e^‡¤á:
(H1)F(∞) = ∞,T(∞) <∞;
(H2)f∈C([0,+∞),[0,+∞))´üN4O…t>0ž,f(t) >0.
dÚn(2.2)•,•§(1.1)du~‡©•§(2.2). Ïd,•¼•§(1.1)»•)•
35,•Iy²~‡©•§(2.2)k)=Œ.
3.»•)•35
½n3.1e(H1)Ú(H2)¤á,Kk-Hessian•§(1)káõ‡»•)u∈C
2
[0,+∞).
y²:é•§(2.4)È©,
v(r) = v(0)+
Z
r
0
k
C
k−1
N−1
e
−ψ
k
(t)
Z
t
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
!
1
k
dt,r≥0.
(3.1)
(ÜÚn2.2,Њv
0
(r) = v(0) = γ>0,3[0,+∞)þ½ÂS{v
m
(r)}
m≥0
,?1XeS“:







v
0
(r) = γ,
v
m
(r) = γ+
R
r
0

k
C
k−1
N−1
e
−ψ
k
(t)
R
t
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v
m−1
(s))ds

1
k
dt,r≥0.
(3.2)
Äky²{v
m
(r)}
m≥0
3[0,+∞)þ´š~.w,,m=0ž,v
m
(r)=v
0
(r)<v
1
(r),
bv
m−1
(r)≤v
m
(r)¤á,‡y{v
m
(r)}
m≥0
š~,•Iyv
m
(r)≤v
m+1
(r)=Œ.´•é
∀m≥0,r∈[0,+∞)k
DOI:10.12677/pm.2021.1161151013nØêÆ
•ÿ
v
m
(r) = γ+
Z
r
0
k
C
k−1
N−1
e
−ψ
k
(t)
Z
t
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v
m
(s))ds
!
1
k
dt
≤γ+
Z
r
0
k
C
k−1
N−1
e
−ψ
k
(t)
Z
t
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v
m
(s))ds
!
1
k
dt
= v
m+1
(r),
(3.3)
S{v
m
(r)}
m≥0
3[0,+∞)þ´š~.d(H2)Ú{v
m
(r)}
m≥0
üN5
"
C
k−1
N−1
k
e
ψ
k
(r)

(v
m
(r))
0

k
#
0
= e
ψ
k
(r)

r
1+ηr

k−1
h(r)f(v
m−1
(r))
≤e
ψ
k
(r)

r
1+ηr

k−1
h(r)f(v
m
(r)),
(3.4)

(v
m
(r))
0
≤
k
C
k−1
N−1
e
−ψ
k
(r)
Z
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)ds
!
1
k
f(v
m
(r)).
(3.5)
duv
m
(r) ≥0,K
Z
r
0
(v
m
(t))
0
f(v
m
(t))
dt≤
Z
r
0
k
C
k−1
N−1
e
−ψ
k
(t)
Z
t
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)ds
!
1
k
dt= T(r),
?
Z
v
m
(r)
γ
1
f(τ)
dτ≤T(r).
Ïd
F(v
m
(r)) ≤T(r),∀r≥0.
(3.6)
w,,F´V…F
0
(r) =
1
f(v(r))
>0(r>0),¤±F
−1
(F_N)3[0,F(∞))þî‚
4O.qF(∞) = ∞…T(∞) <∞,KF
−1
(∞) = ∞…
v
(m)
(r) ≤F
−1
T(r) ≤F
−1
T(∞) <∞,∀r≥0.
(3.7)
d,duh∈C([0,+∞),[0,+∞))üN4O,@oé½~êc
0
>0,∀ε>0,r
1
,r
2
∈[0,c
0
],
DOI:10.12677/pm.2021.1161151014nØêÆ
•ÿ
|v
m
(r
2
)−v
m
(r
1
) =






Z
r
2
r
1
k
C
k−1
N−1
e
−ψ
k
(t)
Z
t
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v
m−1
(s))ds
!
1
k
dt






≤
k
C
k−1
N−1
!
1
k





Z
r
2
r
1

t
k
(
1
1+ηt
)
k−1
h(t)f(v
m−1
(t))

1
k
dt





≤
k
C
k−1
N−1
!
1
k

c
k
0
(
1
1+ηc
0
)
k−1
h(c
0
)f(v
m−1
(c
0
))

1
k
|r
2
−r
1
|.
-D:= (
k
C
k−1
N−1
)
1
k

c
k
0
(
1
1+ηc
0
)
k−1
h(c
0
)f(v
m−1
(c
0
))

1
k
,δ=
ε
D
,|r
2
−r
1
|<δž,k
|v
m
(r
2
)−v
m
(r
1
) <ε,
S{v
m
(r)}
m≥0
3[0,c
0
]þk.…ÝëY.ŠâArzel`a-Ascoli½n,{v
m
(r)}
m≥0
3[0,c
0
]þ
˜—Âñv(r).dr>0•v(r)´~‡©•§(2.2)˜‡).dγ∈(0,∞)?¿5Œ•,
•§(2.2)káõ‡).
eyv∈C
2
[0,+∞).w,,v∈C
2
(0,+∞),•Iyv
0
(r)Úv
00
(r)3r= 0?ëY.¢Sþ,
v
0
(0) =lim
r→0
v(r)−v(0)
r
=lim
r→0
R
r
0

k
C
k−1
N−1
e
−ψ
k
(t)
R
t
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds

1
k
dt
r
=lim
r→0
k
C
k−1
N−1
e
−ψ
k
(r)
Z
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
!
1
k
=
k
C
k−1
N−1
!
1
k
lim
r→0



R
r
0
re
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
re
ψ
k
(r)



1
k
=
k
C
k−1
N−1
!
1
k
lim
r→0



r

r
1+ηr

k−1
h(r)f(v(r))
1+rψ
0
k



1
k
=
k
C
k−1
N−1
!
1
k
lim
r→0

r
k
h(r)f(v(r))
(1−k)(1+ηr)
k−1
+N(1+ηr)
k

1
k
= 0
DOI:10.12677/pm.2021.1161151015nØêÆ
•ÿ
…
v
0
(r) =
k
C
k−1
N−1
e
−ψ
k
(r)
Z
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
!
1
k
,
lim
r→0
v
0
(r) =lim
r→0
k
C
k−1
N−1
e
−ψ
k
(r)
Z
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
!
1
k
= 0,

lim
r→0
v
0
(r) = v
0
(0) = 0.
Ïd,v
0
(r)3r= 0?ëY.aq/,
v
00
(0) =lim
r→0
v
0
(r)−v
0
(0)
r
=lim
r→0

k
C
k−1
N−1
e
−ψ
k
(r)
R
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds

1
k
r
=
k
C
k−1
N−1
!
1
k
lim
r→0



R
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
r
k
e
ψ
k
(r)



1
k
=
k
C
k−1
N−1
!
1
k
lim
r→0




r
1+ηr

k−1
h(r)f(v(r))
kr
k−1
+r
k
ψ
0
k
(r)



1
k
=
k
C
k−1
N−1
!
1
k
lim
r→0

h(r)f(v(r)
N(1+ηr)
k

1
k
=
k
C
k−1
N−1
!
1
k

h(0)f(v(0))
N

1
k
.
ÏLOŽ,
v
00
(r) =
1
k
k
C
k−1
N−1
!
1
k


−ψ
0
k
(r)
e
−ψ
k
(r)
Z
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
!
1
k
+

r
1+ηr

k−1
h(r)f(v(r))
e
−ψ
k
(r)
Z
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
!
1
k
−1


.
-
V
1
(r) = −ψ
0
k
(r)
e
−ψ
k
(r)
Z
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
!
1
k
,
V
2
(r) =

r
1+ηr

k−1
h(r)f(v(r))
e
−ψ
k
(r)
Z
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
!
1
k
−1
.
DOI:10.12677/pm.2021.1161151016nØêÆ
•ÿ
K
lim
r→0
V
1
(r) = −lim
r→0
ψ
0
k
(r)
e
−ψ
k
(r)
Z
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
!
1
k
= −lim
r→0
ψ
0
k
(r)lim
r→0
e
−ψ
k
(r)
Z
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
!
1
k
=lim
r→0
(−rψ
0
k
(r))lim
r→0



R
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
r
k
e
ψ
k
(r)



1
k
=lim
r→0
(k−N(1+ηr))lim
r→0

h(r)f(v(r))
N(1+ηr)
k

1
k
= (k−N)

h(0)f(v(0))
N

1
k
,
lim
r→0
V
2
(r) =lim
r→0

r
1+ηr

k−1
h(r)f(v(r))
e
−ψ
k
(r)
Z
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
!
1
k
−1
=lim
r→0

1
1+ηr

k−1
lim
r→0
h(r)f(r,v(r))lim
r→0



R
r
0
e
ψ
k
(s)

s
1+ηs

k−1
h(s)f(v(s))ds
r
k
e
ψ
k
(r)



1
k
−1
= N

h(0)f(v(0))
N

1
k
,

lim
r→0
v
00
(r) =
1
k
k
C
k−1
N−1
!
1
k

lim
r→0
V
1
(r)+lim
r→0
V
2
(r)

=
k
C
k−1
N−1
!
1
k

h(0)f(v(0))
N

1
k
= v
00
(0).
Ïdv∈C
2
[0,+∞).
nþ,•§(2.2)káõ‡)v∈C
2
[0,+∞),=k-Hessian•§(1.1)káõ‡»•
)u∈C
2
[0,+∞).
4.A^Þ~
•Ä5-Hessian•§
S
5
(λ(D
2
u+η|Ou|I)) = h(|x|)f(u),x∈R
6
.
(4.1)
Ù¥η=
1
6
,H(r) = (
1+r
r
)
4
e
−r−lnr
,f(u) = u+1.w,,f(u)÷v(H2)…
ψ
5
(r) =
5
C
4
5

C
4
5
r
6
+C
5
5
lnr+
C
5
5
r
6

= r+lnr.
DOI:10.12677/pm.2021.1161151017nØêÆ
•ÿ
d,
T(∞) =
Z
∞
0
5
C
4
5
e
−t−lnt
Z
t
0
e
s+lns

s
1+s

4

1+s
s

4
e
−s−lns
ds
!
1
5
dt
=
Z
∞
0

e
−t−lnt
Z
t
0
1ds

1
5
dt
=
Z
∞
0

t
e
t+lnt

1
5
dt
<
Z
∞
0

t+lnt
e
t+lnt

1
5
dt<∞,
F(∞) =
Z
∞
γ
1
f(t)
dt=
Z
∞
γ
1
t+1
dt= ∞,
=(H1)¤á.Ïd5-Hessian•§(4.1)káõ‡»•)u∈C
2
[0,+∞).
ë•©z
[1]Sheng, W.,Trudinger, N.andWang, X. (2007)The Yamabe Problem forHigher OrderCarva-
tures. JournalofDifferentialGeometry, 77,515-553.https://doi.org/10.4310/jdg/1193074903
[2]Trudinger,N.andWang,X.(2008)TheMonge-AmpYreEquationsandItsGeomeApplica-
tions.In:HandbookofGeometricAnalysis,Vol.I,InternationalPress,467-524.
[3]Shivaji,R.,Sim,I.andSon,B.(2017)AUniquenessResultforaSemipositonep-Laplacian
ProblemontheExteriorofaBall.JournalofMathematicalAnalysisandApplications,445,
459-475.https://doi.org/10.1016/j.jmaa.2016.07.029
[4]Lan,K.(2001)MultiplePositiveSolutionsofSemilinear Differential EquationswithSingular-
ities.JournaloftheLondonMathematicalSociety,63,690-704.
https://doi.org/10.1112/S002461070100206X
[5]Zhang, Z.(2015)Boundary Behavior of LargeSolutionsto theMonge-Amp`ere Equations with
Weights.JournalofDifferentialEquations,259,2080-2100.
https://doi.org/10.1016/j.jde.2015.03.040
[6]Wang, F.andAn, Y.(2012)TripleNontrivial RadicalConvex SolutionsofSystems ofMonge-
Amp`ereEquations.AppliedMathematicsLetters,25,88-92.
https://doi.org/10.1016/j.aml.2011.07.016
[7]Zhang,Z.(2018)LargeSolutionstotheMonge-Amp`ereEquationswithNonlinearGradient
Terms:ExistenceandBoundaryBehavior.JournalofDifferentialEquations,264,263-296.
https://doi.org/10.1016/j.jde.2017.09.010
[8]Caffarelli,L.,Nirenberg,L.andSpruck,J.(1985)DirichletProblemforNonlinearSecond
OrderEllipticEquations.FunctionsoftheEigenvaluesoftheHessian.ActaMathematica,
155,261-301.https://doi.org/10.1007/BF02392544
DOI:10.12677/pm.2021.1161151018nØêÆ
•ÿ
[9]Wei, W.(2016)UniquenessTheoremsfor Negative RadialSolutionsofk-HessianEquationsin
aBall.JournalofDifferentialEquations,261,3757-3771.
https://doi.org/10.1016/j.jde.2016.06.004
[10]Zhang,Z.andZhou,S.(2015)ExistenceofEntirePositivek-ConvexRadialSolutionsto
HessianEquationsandSystemswithWeights.AppliedMathematicsLetters,50,48-55.
https://doi.org/10.1016/j.aml.2015.05.018
[11]Zhang,X.(2020)AnalysisofNontrivialRadialSolutionsforSingularSuperlineark-Hessian
Equations.AppliedMathematicsLetters,106,ArticleID:106409.
https://doi.org/10.1016/j.aml.2020.106409
[12]Gao, C., He, X.andRan, M.(2020)On aPower-Type CoupledSystem ofk-HessianEquations.
QuaestionesMathematicae.https://doi.org/10.2989/16073606.2020.1816586
[13]He,J.,Zhang,X.,Liu,L.andWu,Y.(2018)ExistenceandNonexistenceofRadialSolutions
oftheDichletProblemforaClassofGeneralk-HessianEquations.NonlinearAnalysis,23,
475-492.https://doi.org/10.15388/NA.2018.4.2
DOI:10.12677/pm.2021.1161151019nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.